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1. Introduction 

“Healthy organs behave as ‘biological oscillators’, which couple to one another, and this 

orderly coupling is maintained through a communication network, including neural, 

humoral, and cytokine components” (Godin & Buchman, 1996). The nervous system –acting 

through the autonomic nervous system (ANS)– coordinates the fine-tuning of 

cardiorespiratory interplay, to maintain an appropriate oxygen delivery to the tissues 

(Abboud & Thames, 1983; Eyzaguirre et al., 1983). Autonomic (sympathetic-

parasympathetic) balance is maintained by several reflex arcs, like arterial baroreflexes 

(Kirchheim, 1976), central chemoreflexes, peripheral arterial chemoreflexes, and pulmonary 

stretch reflexes (Liljestrand, 1958). These reflexes represent the major components of blood 

pressure and breathing regulation. Therefore, the interactions among these reflexes are of 

special clinical interest, since the overactivity of a single reflex, occurring 

pathophysiologically in several disorders, can lead to the suppression of opposite reflex 

responses (Schmidt et al., 2001). 

Sepsis syndromes (SS), which include systemic inflammatory response syndrome (SIRS) and 

its consequences, severe sepsis and septic shock, involve many pathological processes like 

systemic inflammation, coagulopathies, hemodynamic abnormalities, and multiple organ 

dysfunction syndrome (MODS) (Riedemann et al., 2003). The progression of MODS 

associated to systemic inflammation is mainly due to an uncontrolled release of pro-

inflammatory mediators, which damage parenchymatous organs. Additionally, sepsis 

activates and/or depress numerous other systems within the body, including neural, 

hormonal, and metabolic pathways (Carre & Singer, 2008; Singer et al., 2004). Thus, systemic 

inflammation would initiates disruption of communication and uncoupling, and subsequent 

MODS would reflects the progressive uncoupling of ‘biological oscillators’ that can become 

irremediable. 
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Increasing evidences here summarized shown that a particular neural reflection, the carotid 

body chemoreflexes, not only serves as a chemoreceptor for respiratory reflex responses, as 

traditionally accepted, but also as a sensor for the immune status, as modulator of 

autonomic balance tending to coordinate cardiorespiratory interplay, devoted to maintain 

oxygen homeostasis in different pathologies, and as a protective factor during sepsis and 

MODS. 

2. Sepsis syndromes prevalence and current therapies 

Sepsis is defined as “the systemic inflammatory response that occurs during infection” (Bone 

et al., 1992). It involves the evidence of infection and two or more of the following 

conditions: fever or hypothermia, tachycardia, tachypnea or a respiratory frequency 

resulting in an arterial PCO2 below 32 mm Hg, and altered white blood cells count; severe 

sepsis, sepsis associated with organ dysfunction, hypoperfusion or hypotension including 

lactic acidosis, oliguria, or acute alteration in mental state; septic shock, sepsis-induced 

hypotension despite adequate fluid resuscitation, and sustained perfusion abnormalities; 

and multiple organ dysfunction syndrome (MODS), by the presence of altered organ function in 

an acutely ill patient such that homeostasis cannot be maintained without intervention 

(Riedemann et al., 2003). 

Significant demographic variation exists in the risk of developing sepsis. For example, from 

the standpoint of gender, the incidence of sepsis is higher in men, and the mean age at 

which men develop sepsis is younger. Case fatality rates also increase with age (Martin et al., 

2006). The overall burden of severe sepsis is also increasing, in terms of both the number of 

patients who develop the syndrome and the extent and intensity of care that they require 

(Angus et al., 2001). Sepsis also poses a significant burden of disease in pediatric patients, 

where the incidence is highest in infants, mainly in children younger than one year of age 

(Watson & Carcillo, 2005). Maternal sepsis and neonatal sepsis are of particular concern. 

Maternal sepsis is responsible for at least 75,000 deaths annually, disproportionately 

affecting low-income countries (van Dillen et al., 2010). In the United States, studies of 

neonatal sepsis have documented rates as high as 170 cases per 1000 live births (Thaver & 

Zaidi, 2009). The average costs per case are US$22,100. Costs are higher in infants, non-

survivors, intensive care unit patients, surgical patients, and patients with more organ 

failure. The incidence was projected to increase by 1.5% per annum (Angus et al., 2001). The 

international costs associated with sepsis and its management are reviewed in Chalupka & 

Talmor (2012). 

Instead of many efforts and significant advances in maintaining therapies, SS and MODS, 

are the main cause of death between critical care patients (Martin et al., 2003). Increased 

morbi-mortality associated to SS is due to the absence of a really effective therapy 

(Riedemann et al., 2003). Thus, the knowledge of molecular mechanisms and 

pathophysiology of sepsis help us to improve current therapies (for a Review see Barochia et 

al., 2010) and to identify new pharmacological therapeutic targets. 
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Treatments of sepsis and septic shock involves antibiotic administration, intravenous fluids 

(crystalloids or colloids), vasopressors and/or inotropes (adrenergic agents), packed red 

blood cells (PRBC) transfusions, and corticosteroids (Barochia et al., 2010). Sepsis care 

bundles increase patients’ survival. Numerous studies have demonstrated improved 

outcomes in life-threatening infections with early administration of appropriate antibiotics. 

Hemodynamic support with fluids and vasopressors is as important as antibiotic in 

reducing mortality (Natanson et al., 1990), but there are great differences among different 

patient populations. A considerable variation in the ranges of central venous pressure and 

mean arterial pressure prompted physicians to suggest that “the usage should be individualized 

to different patients, based on their own underlying medical conditions” (Perel, 2008). 

Administration of PRBC decreases inotropes use (Nguyen et al., 2007), but the efficacy of 

administration in patients with sepsis is unclear. The usage of low-dose corticosteroids is 

variable between patient populations. However, as questions persist regarding the risk and 

benefits of these therapies for sepsis, they continue to undergo investigation (Misset et al., 

2010). Although the use of these agents may be beneficial for some septic patients, the 

Surviving Sepsis Campaign guidelines (Dellinger et al., 2004) gave a weak recommendation 

for use these therapies, even the inclusion of some patients, until the knowledge of 

individual components that could modify the expected results. It is clear that the course of 

sepsis and therapies outcomes depend largely from host predisposition factors and 

response. 

The serial evaluation of the SOFA score helps to predict outcome in critically ill patients. 

SOFA score can help assess organ dysfunction or failure over time and are useful to evaluate 

morbidity and mortality, by evaluating respiratory, coagulation, liver, cardiovascular, 

central nervous system (CNS), and renal variables (Peres et al., 2002). However, in spite of 

SOFA score assessment, “It is more important to know what sort of person this disease has, than 

what sort of disease this person has” (William Osler, 1849-1919). 

3. Pathophysiology of sepsis and multiple organ dysfunction syndrome 

As it was mentioned, the progression of MODS is due to an uncontrolled release of pro-

inflammatory mediators, which damage parenchymatous organs. However, it is still 

unknown why sepsis progresses to MODS in only certain individuals or what the exact 

pathway is that leads to this. But, it is clear that if the inflammatory process becomes self-

sustained and progressive, MOD results. In addition, because of marked hypotension and 

tissue hypoperfusion, oxygen delivery fails to meet tissue oxygen demands, which results in 

a compensatory increase in oxygen extraction. If the imbalance between oxygen delivery 

and consumption is not corrected, tissue ‘dysoxia’ progress to an anaerobic metabolism and 

lactate production (Nguyen et al., 2004). Persistent serum lactate elevation is an important 

marker of decreased tissue perfusion –even in the absence of arterial hypotension (Howell et 

al., 2007)–, and is strongly associated with mortality rate in critically ill patients (Meregalli et 

al., 2004). Thus, during sepsis an extraordinarily complex and intricate cascade of 

inflammatory mediators, extra- and intra-cellular signaling pathways are activated, 
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resulting in microvascular dysregulation and/or mitochondrial dysfunction (‘cytopathic 

hypoxia’) (Crouser, 2004), which culminate in MODS and death. 

To avoid tissue dysoxia, early in the course of sepsis, cardiac output (CO) rises to maintain 

blood pressure and organ perfusion in the face of reduced peripheral vascular resistance 

(‘hyperdynamic sepsis’). As sepsis progresses, CO is frequently reduced (‘hypodynamic 

sepsis’), which has a poor prognosis. Cardiac dysfunction per se is apparent in up to 44% of 

critically ill septic patients, with the etiological agents suspected to be circulating depressant 

factors (Singh & Evans, 2006). Elevated cardiac biomarkers (e.g., Troponin I (ver Elst et al., 

2000; Yucel et al., 2008)) in conjunction with electrocardiographic (ECG) changes are 

valuable in the diagnostic of sepsis and in the assessment of progression. Raised Troponin I 

levels in patients with sepsis result from various mechanisms, including hypoperfusion or 

direct extension of infection to cardiac tissue. Electrocardiographic changes in sepsis are not 

as well described. Some of them include loss of QRS amplitude, increase in corrected QT 

(QTc) interval, bundle branch blocks, and development of narrowed QRS intervals with 

deformed, positively deflected J waves (Martinez et al., 2009). 

Contradictory evidences from animal studies suggest that such hypoperfusion does not 

invariably lead to heart dysfunction and death. But, our preliminary results (unpublished 

data) reveal many other ECG and vectorcardiographic changes in rats injected 

intraperitoneally (i.p.) with 15 mg/kg lipopolysaccharide (LPS), which are strongly 

associated with cardiac dysfunction and, almost certainly, left vetricular hypoperfusion and 

ischemia. Briefly, LPS administration decreases RR interval (RRI) and R amplitude. Also, 

sepsis increases QTc interval and ST height. Strikingly, when both carotid/sinus nerves are 

sectioned (bilateral carotid neurotomy (BCN) prior to LPS administration, the changes in the 

parameters mentioned above are greater than control condition (with intact carotid chemo- 

and baro-sensory innervations). In addition, BCN decreases QRS duration, increases JT 

interval and T amplitude. On the other hand, the cardiac vector is significantly decreased 

(from ca. 65º to ca. 15º) 

As it was mentioned, the major task toil of autonomic nervous system (ANS) is the fine-

tuning of the cardiorespiratory interplay, in order to maintain an appropriate oxygen 

delivery to the tissues. However, the neural regulation of cardiorespiratory function and the 

role-played by peripheral reflexes during sepsis, in which organ communications networks 

are disrupted, is poorly understood. In addition to plasma or urinary levels of 

neurotransmitters or their metabolites, there are three methods to evaluate autonomic 

function: a) analysis of heart rate variability (HRV); b) baroreflex sensitivity (BRS); and c) 

cardiac chemoreflex sensitivity (CCRS). 

The analysis of HRV gives a clear idea about the neural (autonomic) control of 

cardiorespiratory function and interaction. Decreased HRV is consistent with the 

pathogenesis of MODS, which involves the physiological uncoupling of vital organ 

systems. In fact, HRV decreases in response to human endotoxemia (Godin et al., 1996; 

Rassias et al., 2005), and is a good index of cardiac mortality (Schmidt et al., 2001). 

Moreover, patients with sepsis (Barnaby et al., 2002) and MODS (Korach et al., 2001; 
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Schmidt et al., 2005) have an impaired sympatho-vagal balance. In fact, some evidences 

describe a sustained sympatho-excitation during sepsis, which accompanies the fall in 

blood pressure. Baroreceptors and chemoreceptors denervation accelerated the fall in 

mean blood pressure and increases sympathetic tone (Vayssettes-Courchay et al., 2005). 

Thus, under altered baro- and chemo-reflexes pathways, the sympathetic output from 

the medulla appears to play a key role in the correlation between heart rate and 

sympathetic nerve activity. On the other hand, decreased parasympathetic tone is a good 

predictor of risk of death in patients with sepsis (Chen et al., 2008). Altogether, these data 

suggest that reflex arcs involved in maintaining the autonomic balance are altered 

during sepsis. 

Vayssettes-Courchay et al. (2005) shown that baro- and chemo-reflexes are not inhibited 

during sepsis, and they give them a minor importance in the sympathetic activation and in 

the blood pressure modifications. Nevertheless, recently we described the first functional 

evidence of chemoreceptors inflammation and dysfunction during sepsis. In cats, local or 

systemic administration of LPS induces a significant reduction in chemoreceptor activity, 

ventilatory chemoreflexes, and ventilator chemosensory drive (Fernandez et al., 2008). In 

fact, LPS-induced tachypnea is prevented by prior bilateral carotid neurotomy. 

Our results (unpublished data) shown that the i.p. administration of 15 mg/kg LPS to rats, 

decreases HRV and increases sympathetic tone, assessed by HRV frequency bands and low 

frequency/high frequency (LF/HF) quotient. Bilateral carotid neurotomy previous to LPS 

administration evokes a greater decrease in HRV and increase in LF/HF ratio than animals 

with intact carotid/sinus nerves. As it was mentioned, both decreased HRV and increased 

sympathetic tone are good markers of morbi-mortality. In fact, BCN prior to LPS 

administration increases the relative risk of death (Table 1). In addition, rats submitted to 

peripheral chemodenervation prior to the intravenous (i.v.) administration of high doses of 

LPS, show a smaller survival time (Tang et al., 1998). 

 

 SHAM BCN 

 saline LPS saline LPS 

Relative Risk (RR) 

(IC 95%) 

1 

(n=8) 

1.2 (0.9 – 1.6) 

(n=12) 

1.3 (0.9 – 1.8) 

(n=9) 

2.6 (1.5 – 4.5)a 

(n=21) 

Plasma Cortisol 

(ng/mL) (Mean  SD) 

536.5  383.3 

(n=7) 

1552.0  940.5b

(n=7) 

637.5  397.0 

(n=6) 

321.5  153.2c 

(n=6) 

a, p=0.0033 vs. SHAM-saline. Fisher’s exact test 
b, p<0.05 vs. SHAM-saline. Kruskal-Wallis ANOVA, Dunn’s post test. 

c, p<0.01 vs. SHAM-LPS. Kruskal-Wallis ANOVA, Dunn’s post test. 

Table 1. Summary of observations in rats submitted to bilateral carotid neurotomy (BCN) or simulated 

surgery (SHAM) prior to the i.p. administration of 15 mg/kg LPS (LPS) or vehicle (saline). The data 

were assessed 90-min after LPS or vehicle administration. Table prepared from part of the data 

presented in Reyes et al., 2012 (In press. Adv Exp Med Biol) 
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Baroreflex sensitivity describes ANS capacity to increase vagal activity and to decrease 

sympathetic activity after a sudden increase in blood pressure. Baroreflex activation 

counteract sympathetic activation (Somers et al., 1991). BRS is altered in rats treated with a 

lethal dose of LPS (Shen et al., 2004). Rougaush et al. reported an increased BRS after 

bacterial sub-pyrogenic dose of endotoxin. The change in sensitivity may underlie necessary 

adjustments to altered blood flow distribution after LPS administration (Rogausch et al., 

2000). However, Schmidt et al. reported a marked decrease in BRS during MODS (Schmidt et 

al., 2005). Thus, there is no consensus about the role played by arterial baroreceptors during 

sepsis. Classically, the stimulation of peripheral chemoreceptors evokes respiratory and 

cardiovascular effects and a sympatho-excitatory response (Alanis et al., 1968; Montarolo et 

al., 1976). Cardiac chemoreflex sensitivity (CCRS) allow us to estimate the sympathetic 

influence upon cardiorespiratory responses (Schmidt et al., 1999). Hyperoxia decreases 

autonomic function i.e., decreased CCRS and increases BRS. CCRS gives an important 

component of the cardiorespiratory interactions in patients with MODS. Severity of illness is 

the more pronounced determinant of impaired CCRS (Schmidt et al., 2004). Recently, 

Schueller et al. described a reduced CCRS in critical ill patients (sepsis or cardiogenic shock). 

Moreover, there is a close negative correlation between the CCRS and the SOFA-score 

(Schueller et al., 2008). 

In summary, there is consensus that uncoupling of the autonomic, respiratory and 

cardiovascular systems occurs over both short- and long-range time scales during sepsis and 

MODS. However, the origin from these altered reflex arcs is not well described. 

4. Inflammatory mediators during sepsis 

The development of sequential organ failure in critically ill patients with sepsis is strongly 

predictive of mortality. However, the mechanisms involved in the dynamic interaction 

between different organ systems are dictated by the intricate interplay of homodynamic, 

oxygen transport, and metabolic disturbances. Genetic predisposition is almost certainly 

relevant in upregulating the expression of inflammatory mediators [e.g., tumor necrosis 

factor (TNF), interleukin (IL)-1, IL-6, high mobility group box (HMGB) 1], thereby 

influencing adversely the anti-/pro-inflammatory balance. 

Mammals are continuously exposed to different pathogens, like Gram-negative bacteria 

and/or its components, such as LPS (endotoxin). LPS exerts many different biological effects. 

While low-doses could be beneficial, by inducing immunostimulation and by increasing 

resistance to infection (Schletter et al., 1995), larger-doses of LPS in plasma evoke many 

pathophysiological reactions, like fever, leucopenia, tachycardia, tachypnea, hypotension, 

disseminated intravascular coagulation, MODS, and death (Patel et al., 2003; Hotchkiss & 

Karl, 2003; Pinsky, 2004). The systemic inflammatory response induced by LPS is due to host 

cells stimulation (monocytes/macrophages, endothelial, and polymorphonuclear cells) to 

produce and release endogenous mediators like reactive oxygen species (ROS) and pro-

inflammatory cytokines (Schletter et al., 1995). Inflammatory mediators and ROS are 

believed to disrupt communication pathways between organs, which precedes organ 
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failure. Indeed, endothelial dysfunction has been proposed as a common pathway for organ 

dysfunction in sepsis (Simon & Fernandez, 2009). During systemic inflammation, many 

physiological functions of endothelial cells are disrupted, contributing to multiple organ 

failure (Volk & Kox, 2000). 

During the last decade, there has been a rapid progress in understanding innate immune 

response to pathogens or their component. The early concept supposed a nonspecific 

recognition. But, the discovery of Toll-like receptors (TLRs) showed that recognition by the 

innate immune system is specific (Akira et al., 2001). TLR-4 is identified as the long-sought 

receptor that respond to bacterial LPS (Akira et al., 2006). TLR4 forms a complex with MD-2 

on the cell surface. Additional proteins such as the soluble plasma protein LPS-binding 

protein (LBP) and either soluble or membrane-anchored CD14 are also involved in LPS 

binding (Akashi-Takamura & Miyake, 2008). LPS transfer to the LPS-binding receptor (TLR-

4/MD-2) (da Silva et al., 2001), activates nuclear factor-B (NF-B), a transcription factor 

involved in the synthesis and release of immune system-related cytotoxic factors, by 

stimulation of pro-inflammatory and immunoregulatory molecules synthesis in 

mononuclear cells (monocytes /macrophages and neutrophils), like IL-1, IL-6, TNF-, IL-10, 

and transforming growth factor (TGF)- (Medvedev et al., 2000;Sanlioglu et al., 2001). 

Increased plasma levels of TNF-α, IL-1 and IL -6, γ-interferon (IFN-γ), and TGF-β are 

present in patients with different pathological conditions (Schletter et al., 1995), but a 

particular cytokine, TNF-α, seems to play a pivotal role during sepsis and MODS (Tracey et 

al., 1986). 

Tumor necrosis factor- has been implicated as an important mediator of the lethal effect 

of endotoxin.  Several publications have shown that by reducing the activity or the 

expression of TNF- significantly decrease the endotoxin-induced damages. The amount 

of TNF- in serum can be associated with the degree of tissue damage because of the 

stagnant blood capillary (Yang et al., 2007). TNF- is a well-known cytotoxic cytokine for 

certain tissue cells. In fact, plasma levels of several biophysical damage indicators are 

increased during sepsis, like liver alanine aminotransferase, aspartate aminotransferase, 

and bilirrubin; heart and other possible organ (such as muscle) lactic dehydrogenase and 

creatine phosphokinase; ureic nitrogen (BUN, renal function); and pancreatic alkaline 

phosphatase and amylase. 

5. Reflex control of inflammation: Part I – Brain-to-immune 

communication 

Inflammation is a localized protective response to infection or injury. It evokes many 

different effects upon the organisms tending to solve the inflammatory focus, like humoral 

factors which increase the blood flow or attract specific immune cells (Libert, 2003). As it 

was mentioned above, TNF-α, plays a pivotal role during systemic inflammation. Excessive 

inflammation and TNF-α synthesis increase morbi-mortality in SS. In consequence, highly 

conserved endogenous mechanisms normally regulate the magnitude of innate immune 

response and prevent excessive inflammation (Wang et al., 2003). 
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The CNS regulates systemic inflammatory responses to endotoxin through neural and 

humoral mechanisms. Evidence accumulated over the last 30 years suggests that 

norepinephrine (NE), the main neurotransmitter of the sympathetic nervous system, fulfills 

the criteria for neurotransmitter/neuromodulator in lymphoid organs: i) primary and 

secondary lymphoid organs receive extensive sympathetic/noradrenergic innervation; ii) 

under stimulation, NE is released from the sympathetic nerve terminals in these organs; and 

iii) the target immune cells, including lymphocytes and macrophages, express adrenergic 

receptors (AR). Adrenoceptors are G-protein coupled receptors that can be divided into two 

subgroups: the - and -AR, which can be further subdivided into different subtypes. 

Neutrophils, mononuclear, and natural killer cells, also T- and B-lymphocytes express - 

and -AR. The most important adrenoceptor –in terms of the immune system– is the 2-AR. 

Activation of 2-AR results in an increase in cAMP concentrations, which can modulate 

cytokine expression, i.e., decreasing TNF- and increasing IL-8 (Elenkov & Chrousos, 1999). 

However, recently was described that 2A-AR stimulation increases TNF- gene expression 

in Kupffer cells and plasma TNF- during sepsis (Miksa et al., 2009). Thus, through AR 

stimulation, locally released NE, or circulating catecholamines, affect lymphocyte traffic, 

circulation, and proliferation, and modulate cytokine production and the functional activity 

of different lymphoid cells (Elenkov et al., 2000), just as they control heart rate and other 

vital functions. Serum levels of sympatoadrenergic transmitters –i.e., Neuropeptide-Y, ATP, 

and vanillyl mandelic acid (VMA, as an indirect measurement of catecholamine levels)–, are 

also increased during sepsis (Donoso et al., 2008). 

A growing body of literature is aimed at studying -blockade as a treatment of sepsis. Their 

effects on metabolism and glucose homeostasis, cytokine expression, and myocardial 

function may be beneficial in the setting of sepsis. Sepsis induces an overall catabolic state, 

mainly due to excessive adrenergic stimulation (Bergmann et al., 1999). -Blockade has been 

proposed as a strategy to counteract the devastating consequences of this hyperadrenergic 

state. But treating a potentially hypotensive condition with a drug with antihypertensive 

properties may initially seem detrimental (Novotny et al., 2009). Peripheral (i.p.) 1-AR 

blockade prior to endotoxemia increases survival time, reduces hepatic expression of pro-

inflammatory cytokines, decreases protein expression of cardiac dysfunction markers, and 

preserves arterial blood pressure and left ventricular contractility (Ackland et al., 2010). 

Surprisingly, few studies report overall mortality in the published -blocker trials in sepsis. 

Interestingly, of those investigators that do report mortality in sepsis models, one out of four 

show increased mortality in -blockade groups. 

Vasopressor and inotropic therapies for sepsis employ adrenergic support. In fact, a recent 

publication about the “Efficacy and Safety of Dopamine Versus Norepinephrine in the 

Management of Septic Shock” showed that NE treatment decreases 28-day mortality and has a 

lower risk of sinus tachycardia and arrhythmias than dopamine (DA) (Patel et al., 2010). This 

work concludes that arrhythmias are significant predictors of sepsis morbi-mortality, and 

that “patients receiving DA should be monitored for the development of cardiac arrhythmias”, but 

does not consider a potential increase of MOD indicators induced by DA infusion, since 

high doses of DA (> 20 μg/kg/min) has a predominant -AR effect, a potent 
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immunostimulator (Povoa & Carneiro, 2010). Recently De Baker et al. reported that DA 

administration is associated with greater mortality and a higher incidence of arrhythmic 

events compared to NE administration (De Backer et al., 2012). 

It should be noted that different cathecholamines used to treat patients with septic shock, 

have relative - and -AR effects (depending on the dose). Thus, in addition to individual 

differences, it is necessary to consider the fine-tuning of both, immune system and 

cardiovascular effects of adrenergic drugs used for sepsis treatment.  

The CNS can also rapidly inhibit the release of macrophage TNF-α, and attenuate systemic 

inflammatory responses acting through the vagus (parasympathetic) nerve. This 

physiological mechanism, termed the ‘cholinergic anti-inflammatory pathway (Borovikova 

et al., 2000)’ has major implications in immunology and in therapeutics (Rosas-Ballina & 

Tracey, 2009). The main vagal neurotransmitter, acetylcholine (ACh), inhibits LPS-induced 

TNF-α, IL-1 and IL-6 release, but not anti-inflammatory cytokine IL-10, in LPS stimulated 

in vitro cultured human macrophages (Borovikova et al., 2000; Wang et al., 2003). In addition, 

peripheral vagus nerve electrical stimulation inhibits liver TNF- production, attenuates 

peak serum TNF-α amounts, and prevents the development of shock, during lethal 

endotoxemia in rats (Borovikova et al., 2000). 

Recent work on the anatomical basis of the cholinergic anti-inflammatory pathway indicates 

that the spleen is required for vagus nerve control of inflammation (Huston et al., 2006). The 

spleen is the major source of serum TNF- during endotoxemia (Mignini et al., 2003). In 

splenectomized rats injected with endotoxin, serum TNF- is reduced by 70%, and vagus nerve 

stimulation fails to further suppress TNF-. The celiac branches of the vagus terminate in the 

celiac-superior mesenteric plexus and not in the spleen (Berthoud & Powley, 1996). The spleen 

is innervated by the splenic nerve, which originates in celiac-superior mesenteric plexus. The 

splenic nerve is composed mainly by catecholaminergic fibers, which terminate in close 

apposition to immune cells (Felten et al., 1987). Thus, attenuation of TNF- production by 

spleen macrophages induced by vagus nerve stimulation is mediated by norepinephrine 

released from splenic nerve endings. These data confirms the importance of the adrenergic 

transmitters in the regulation of immune response. It must be noted that immune cells have all 

the essential components of a non-neuronal cholinergic system and that ACh synthesized and 

released from lymphocytes acts as an immunomodulator via both muscarinic (mAChR) and 

nicotinic ACh receptors (nAChR) (Kawashima & Fujii, 2000; Kawashima & Fujii, 2003). Most 

evidences points towards a crucial role for the 7 nAChR in the cholinergic regulation of 

macrophage activity (Wang et al., 2003). Nicotine exerts anti-inflammatory effects through 7 

nAChR (Ulloa, 2005). Acetylcholine (and nicotine), also has cardiorespiratory effects (Fernandez 

et al., 2002; Zapata et al., 2002). Acting through the peripheral arterial chemoreceptors, ACh, 

nicotine, and epibatidine (a selective agonist for neuronal nAChRs) increases tidal volume and 

blood pressure in anesthetized cats (Zapata et al., 2003; Reyes et al., 2007), which support the 

idea that cholinergic nicotinic treatment can also improve cardiorespiratory performance during 

sepsis, and prevent tissue dysoxia, lactic acidosis and MODS. In addition, nicotine inhibit 

cardiac apoptosis induced by LPS in rats (Suzuki et al., 2003). 
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Finally, both endotoxin and cytokines, stimulates HPA anti-inflammatory responses, either 

by adrenal glucocorticoids (Turnbull & Rivier, 1999) or by inhibiting prolactin secretion, a 

potent regulator of humoral and cellular immune response during physiological and 

pathological states (Freeman et al., 2000). Thus, it is clear that the nervous system reflexively 

regulates the inflammatory response in real time, just as it controls heart rate and other vital 

functions. 

6. Reflex control of inflammation: Part II – Immune-to-brain 

communication 

Much less is known about the effect of the immune system on the CNS. Immune system-

derived signals act on the CNS through four different pathways: i) by saturable transport 

across the blood–brain barrier (BBB) (Banks & Kastin, 1987); ii) by brain circumventricular 

organs (CVOs) (Stitt, 1990); iii) by cytokine binding to brain endothelial cells, which evokes 

paracrine mediators release (Fabry et al., 1993; Cao et al., 1998); and iv) by the activation of 

peripheral sensory nerves (i.e., vagus nerve) (Goehler et al., 1997). 

The role of peripheral sensory nerves in immunomodulation is controversial. It is believed 

that chemosensory transduction begins in immune cells, which release inflammatory 

mediators to activate neural elements, including vagal paraganglia (Goehler et al., 1997; 

Goehler et al., 1999) and primary afferent neurons located in sensory ganglia, which evokes 

host defense reflexes. Two cell types compose vagal paraganglia: type I (glomus) cells and 

type II (sustentacular) cells (Berthoud et al., 1995). Vagal glomus cells (GC) are innervated by 

vagal afferent neurons, whose cell bodies are located in the nodose ganglion, and their 

central projection end primarily within the dorsal vagal complex (DVC) of the medulla 

oblongata. Thus, immunosensory inputs could initiate local cardiorespiratory reflexes and 

carry information about the state of inflammation. 

In spite of the interleukin-1 (IL-1) receptor expression in vagal GC (Goehler et al., 1997), IL-

1 (and TNF-), had no significant effect on the frequency of action potentials recorded 

from single fibers from isolated superfused rat GC obtained from vagal nerve paraganglia 

(Mac Grory et al., 2010). In addition, in rodents exposed to i.p. LPS or IL-1β, bilateral 

subdiaphragmatic vagotomy prevents sickness manifestations and activation of nucleus 

tractus solitarii (NTS), locus coeruleus (LC), and hypothalamus (Bluthe et al., 1994; Bret-Dibat 

et al., 1995; Gaykema et al., 1995; Watkins et al., 1995; Hansen & Krueger, 1997; Borsody & 

Weiss, 2005). Thus, immune chemosensory inputs and incoming neural signals could be 

originated from other receptors, such as the peripheral arterial chemoreceptors neural 

pathway: the carotid body (CB) and its sensory ganglion. 

The DVC consists of the NTS, the dorsal motor nucleus of the vagus (DMN), and the area 

postrema (AP) (Berthoud & Neuhuber, 2000). The DMN is the main site of origin of 

preganglionic vagus efferent fibers; while cardiovascular vagal efferences originate within 

the medullar nucleus ambiguus (NA). The AP, which lacks of BBB, is an important CVO and 

an important site for humoral immune-to-brain communication. The main portion of vagal 
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sensory input is received by neurons in the NTS, which coordinate autonomic function and 

interaction with the endocrine system. Ascending projections from the NTS reach 

hypothalamic paraventricular nucleus (PVN), an important structure in the HPA axis 

activation. Synaptic contacts also exist between the neurons in the NTS and rostral 

ventrolateral medulla (RVM), which occupies an important role in control of cardiovascular 

and respiratory homeostasis. The neurons from RVM project to the locus coeruleus (LC), 

which innervates higher brain sites, like hypothalamus and PVN. Neuronal projections 

emanate from the RVM and LC to sympathetic preganglionic neurons in the spinal cord. 

There are also descending pathways from the PVN to the RVM and NTS (Pavlov et al., 

2003). Thus, these ascending and descending connections provide a neuronal substrate for 

interaction between HPA axis and the ANS as an immunomodulatory mechanism. 

In response to plasma levels of TNF-α, vagal immunosensory activity increases (Emch et al., 

2000) or decreases (Emch et al., 2002) vagal motor activity. Transection of abdominal vagal 

trunks suppresses fever and hyperalgesia caused by i.p. LPS but has little effect on the 

febrile response to i.v. or intramuscular LPS. To elucidate the importance of visceral afferent 

innervation on the response to LPS, Wan et al. studied the expression of the immediate early 

gene c-fos in the hypothalamus and brain stem of the rat following peripheral –either i.v. or 

i.p.– injection of LPS. Subdiaphragmatic vagotomy completely blocked the induction of c-

Fos protein following i.p. injection of LPS; however, vagotomy had a minimal effect on c-Fos 

protein induction following i.v. LPS administration (Wan et al., 1994). In addition, c-Fos 

activation of NTS neurons induced by LPS persists after cervical bilateral vagotomy 

(Hermann et al., 2001). Both subdiaphragmatic and cervical bilateral vagotomy abolition of 

CNS c-Fos activation induced by i.p. LPS are controversial, since it could be due to the 

section of neurons from the abdominal region that mediate the response to LPS per se or, 

merely, because of the role played by the vagus efferent fibers –perhaps those within the 

celiac branches– in LPS transport from the peritoneal cavity to the blood. Thus, when these 

fibers are cut, LPS escape to systemic circulation is limited, and systemic responses to LPS 

would be diminished (e.g., c-Fos protein induction in the CNS) (Lenczowski et al., 1997; 

Romanovsky et al., 2000). 

The number of neurons within the DVC that expressed c-Fos activation after peripheral 

administration of LPS is correlated with plasma levels of TNF-. Thus, the activation of 

DVC neurons did not require intact vagal pathways, suggesting that TNF- generated 

peripherally could acts directly on these neurons, because DVC exhibits the characteristics 

of CVOs (i.e., fenestrated capillary network and absence of functional BBB) (Hermann et al., 

2001) or, more probably, through another neural afferent pathway. In consequence, it is 

possible to suggest that prominent CNS manifestations of endotoxemia are apparently 

caused by incoming neural signals provided by other peripheral receptors, distinct from 

vagal paraganglia, like the carotid arterial chemoreceptors, which function is intact after 

bilateral cervical vagotomy. Our results shown that LPS-induced c-Fos activation in NTS 

neurons and plasmatic cortisol increases in septic rats (treated i.p. with 15 mg/kg LPS) are 

suppressed by bilateral carotid neurotomy (Reyes et al., 2012. Adv Exp Med Biol. In press) 

(Table 1). 
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Seen from an anatomical standpoint, the carotid body (CB) is the largest paraganglia in the 

body (Mascorro & Yates, 1980), and like other paraganglia, it receives sensory innervation, 

and has specialized glomus cells with abundant synapses with the sensory nervous fibers 

(Verna, 1997). 

7. The arterial chemoreceptors in neuroimmunomodulation 

The CB is the main peripheral chemoreceptor responsible for the detection of blood oxygen 

levels. The CB consists of groups of glomus (type I) cells arranged around capillaries, 

ensheathed by sustentacular (type II) cells, and surrounded by connective tissue. It receives 

profuse sensory innervation from the carotid (sinus) nerve (CSN), a branch of the 

glossopharyngeal nerve, whose sensory nerve endings are in close contact with glomus cells 

(GC) (Hess & Zapata, 1972). CB innervation is essentially by sensory neurons residing mainly 

in the petrosal ganglion (Kalia & Davies, 1978; Berger, 1980). Interestingly, the first synapsis at 

the CNS for afferent CSN fibers occurs in the NTS (Donoghue et al., 1984; Finley & Katz, 1992). 

Thus, inflammation-derived sensory input originated from arterial chemoreceptors (Zapata et 

al., 2011) can be differentially processed in the peripheral chemoreceptor per se, in the sensory 

ganglion, and/or in the brainstem, and modify cardiorespiratory chemoreflexes, endocrine, 

and autonomic functions, like the neural control on the immune system. In rats, petrosal 

ganglion is a constituent of a ganglion complex, composed by nodose, petrosal and jugular 

ganglia, the nodose-petrosal-jugular ganglion complex (NPJgc). 

Many reports allow us to propose that peripheral arterial chemoreceptors play a pivotal role in 

afferent signaling during sepsis. Recently, we demonstrated that i.v. administration of LPS to 

pentobarbitone-anesthetized cats evokes similar symptoms to those observed in patients with 

severe sepsis and septic shock, with tachycardia, tachypnea and hypotension, and that the 

increased respiratory frequency is prevented by bilateral section of the carotid and aortic 

nerves (Fernandez et al., 2008). In addition, LPS enhances tonic CB chemosensory activity 

(measured by recording the frequency of chemosensory discharges) but reduces its 

responsiveness to transient excitatory (hypoxia and nicotine) or depressant (pure oxygen) 

stimuli. Diminished ventilatory responses to moderate and severe hypoxia in cats reproduces 

the diminished ventilatory responses to hypoxia observed in unanesthetized newborn piglets 

subjected to Escherichia coli endotoxin infusion (McDeigan et al., 2003), as well as in rats, in a 

process that is in part mediated by an inhibitory effect of endothelial nitric oxide on the 

respiratory control mechanisms (Ladino et al., 2007). Apoptosis studies carried out in CB 

excised from endotoxemic cats discard that CB diminished chemosensory activity observed in 

LPS-treated animals resulted from a reduction of functional tissue (Fernandez et al., 2008), and 

suggest the participation of systemic soluble factors (e.g., cytokines), or locally produced by 

either resident monocytes/macrophages (Dvorakova et al., 2000), or parenchyma cells. 

Lipopolysaccharide administration increases cytokine plasma levels in many species, 

including rats (Waage, 1987), bovines (Ohtsuka et al., 1997) and cats (Otto & Rawlings, 1995). 

Thus, by using in vitro experiments, where the carotid artery is perfused and the entire 

preparation (including the CB) is superfused, the frequency of carotid nerve discharges 
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recorded under normoxic conditions was not significantly modified by TNF-α, but the 

enhanced CB chemosensory discharges recorded along responses to hypoxic stimulation was 

transiently diminished, in a dose-dependent manner (Fernandez et al., 2008). The cat CB 

expresses both type-1 and type-2 TNF-α receptor mRNA. Immunohistochemical studies with 

specific antibodies, determined that TNF-R1 protein is located mainly in the GC. In addition, a 

strong positive TNF- protein immunoreactivity was also found in the GC cytoplasm 

(Fernandez et al., 2008). These observations suggest that locally or systemically produced and 

secreted TNF-α, acting in an autocrine or paracrine fashion, could modify GC function. 

Apart from the presence of TNF-α and TNF-R1, it is known that GC from rat CB express IL-

1 receptor type I (Wang et al., 2002) and IL-6 receptor α (Wang et al., 2006), and that GC 

respond to IL-1β application with depolarization and a transient rise in intracellular calcium 

(Shu et al., 2007). On the other hand, i.p. administration of IL-1 evokes IL-1 receptor type I 

and tyrosine hydroxylase (TH) up-regulation in the rat CB (Zhang et al., 2007). The fact that 

pro-inflammatory cytokines and their receptors are functionally expressed in the CB type I 

cells, suggests that inflammatory mediators may have different functional roles in the 

activation of neurons in the NPJgc, even in the absence of sepsis syndromes –e.g., exerting a 

tonic control of cardiorespiratory, endocrine, autonomic, and/or immune functions–. In fact, 

hypoxia, the natural stimulus for peripheral arterial chemoreceptors upregulates the 

expression and function of proinflammatory cytokines in the rat CB (Lam et al., 2008), and 

the adaptation to chronic hypoxia involves immune cell invasion and increased expression 

of inflammatory cytokines in rat CB (Liu et al., 2009). Thus, it is possible to suggest that local 

or systemic pro-inflammatory cytokines, recognized by membrane receptors located in the 

GC, modify CB chemosensory activity and, through afferent pathways projecting to the 

NTS, stimulate or inhibit specific components of the systemic inflammatory response. It 

must be noted that, regarding the source of immune signals, neural pathways provide faster 

and more precise information than humoral pathways. 

In view of data mentioned above, we tested whether LPS-induced systemic inflammation 

exerts a direct effect upon CB chemoreceptors. We determined that the rat CB and NPJgc 

constitutively express the mRNAs for TLR4, MyD88, TNF- and its receptors (TNF-R1 and 

TNF-R2). Intraperitoneal administration of 15 mg/kg LPS evokes IKB degradation, and 

subsequent NF-B p65 translocation into the nucleus from GC and NPJgc chemosensory 

neurons. LPS also evokes p38 MAPK and ERK phosphorylation. Consistently, LPS treatment 

increases both mRNA and protein levels of TNF-, TNF-R2, and TH. Double-labeling studies 

show that TLR4, TNF-α, and TNF-R1 are localized in TH-containing GC and neurons from CB 

and NPJgc, respectively, suggesting that the expression was confined to the chemoafferent 

neural pathway. TNF-R2 is also present surrounding GC clusters within the CB and in 

chemosensitive neurons. TNF-α, and TNF-R2 expression are increased in the carotid 

chemoreceptors from endotoxemic rats (Fernandez et al., 2011). Thus –in addition to systemic 

LPS effect– our results suggest that LPS acting directly through TLR-4 modifies TNF- and its 

receptors expression on chemosensory cells of the carotid chemoreceptors neural pathway. 

These results show a novel afferent pathway to the CNS during physiological conditions and 

endotoxemia, and could be relevant in understanding sepsis pathophysiology and therapy. 
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Thus, it is very interesting to highlight that during sepsis syndromes, LPS acting directly upon 

carotid chemoreceptors, modify TNF- expression. In addition systemic or local inflammatory 

mediators could change arterial chemoreceptors function and afferent signaling through TNF-

 receptors, whose expression is also modified during sepsis (our results), or through IL-1 

and/or IL-6 receptors (Figure 1). Interestingly, TNF- stimulates c-Fos activation of neurons in 

the NTS (Hermann et al., 2001). Results here obtained would imply that arterial chemoreflexes, 

not only serves as a chemoreceptor for respiratory reflex responses, as traditionally accepted, 

but also as a sensor for the immune status, as modulator of autonomic balance tending to 

coordinate cardiorespiratory interplay devoted to maintain oxygen homeostasis in different 

pathologies, and as a protective factor during sepsis and MODS. 

 

Figure 1. Proposed model for neural reflex control of inflammation during sepsis syndromes. 

Lypopolysaccharide (LPS) acting through macrophages or other cytokine-producing cell, increases plasma 

levels of pro-inflammatory cytokines (e.g., TNF-) which in activates immunosensory inputs from vagal 

paraganglia or carotid body (CB) chemoreceptors. Immunosensory signals reach the nucleus tractus solitarii 

(NTS) neurons. The dorsal motor nucleus (DMN) is the main site of origin of preganglionic vagus efferent 

fibers, activating the cholinergic anti-inflammatory reflex, by secreting acetylcholine (ACh), which 

decreased immune response. The main portion of vagal sensory inputs received by NTS neurons 

coordinates autonomic function and interaction with the endocrine system. Ascending projections from the 

NTS reach hypothalamic paraventricular nucleus (PVN), activating the hypothalamic-pituitary-adrenal 

(HPA) axis for glucocorticoids production and immunosupression. Synaptic contacts with the rostral 
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ventrolateral medulla (RVM) and subsequent projection to the locus coeruleus (LC) innervates higher brain 

sites, like PVN. Also, neuronal projections emanate from the RVM and LC to sympathetic preganglionic 

neurons in the spinal cord, which in turn activates adrenal epinephrine (EN) secretion and norepinephrine 

(NE), reducing pro-inflammatory activity. Thus, these ascending and descending connections provide a 

neuronal substrate for interaction between HPA axis and the ANS as an immunomodulatory mechanism. 

PG, petrosal ganglion; NG, nodose ganglion; CSN, carotid/sinus nerve; VN, vagus nerve; GPN, 

glossopharyngeal nerve; NS, nervous system; ACTH, adrenocorticotrophic hormone. 

The disruption of continuous detection of the ‘inflammatory status’ of the body exerted by 

carotid chemoreceptors could be responsible for modifying the activity of the ANS, thus 

altering the control exerted by the nervous system on the immune system, and evoking an 

uncontrolled cytokine production. This excessive and uncontrolled systemic inflammatory 

response and dysautonomy could be responsible for subsequent neural uncoupling of the 

vital organs and MODS. 

8. Conclusion 

Sepsis syndromes are the main cause of death between critical care patients. They result 

from neural, cardiovascular, respiratory, and immune systems uncoupling. Multiple organ 

dysfunction syndrome (MODS) is due to an uncontrolled release of pro-inflammatory 

mediators, which damage parenchymatous organs. However, it is still unknown why sepsis 

progresses to MODS in only certain individuals. 

The effects of sepsis therapies are controversial and strongly dependent of individual 

components, like individual response and genetic predisposition. Thus, the course of sepsis 

and therapies outcomes depends largely from host factors. 

Increasing evidences shown that peripheral carotid chemoreceptors act as sensor for the 

immune status, as modulator of autonomic balance tending to coordinate cardiorespiratory 

interplay devoted to maintain oxygen homeostasis in different pathologies, and as a 

protective factor during sepsis and MODS. 

As result of the autonomic and immune imbalance originated from carotid chemoreceptors, 

neural and cytokine communication networks between healthy organs are disrupted. So, the 

impaired autonomic function would decrease cardiorespiratory function, oxygen delivery to 

the tissues, and the reflex control of inflammation. The heterostasis induced by systemic 

inflammation worsens the uncoupling of biological oscillators, what would lead to MODS 

and death. 
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