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1. Introduction 

Tumor markers are measurable biochemicals that are associated with a malignancy. They 

are either produced by tumor cells (tumor-derived) or by the body in response to tumor 

cells (tumor-associated). They are usually substances that are released into the circulation 

and then measured in the blood sample. There are a few exceptions to this, such as tissue-

bound receptors that must be measured in a biopsy from the solid tumor or proteins that are 

secreted into the urine. Despite the fact that tumor markers are hardly ever specific enough 

to be used alone to diagnose cancer, they do have a number of clinical applications. They 

can be used to stage cancer, to indicate a prognosis, to monitor treatment, or in follow-up to 

watch for cancer recurrence. Changes in some tumor markers have been sensitive enough to 

be used as targets in clinical trials. Tumor markers for diagnosis are used in combination 

with other clinical parameters such as biopsy and radiological findings. Although there are a 

multitude of tumor markers, very few of them have found their way into clinical practice 

because of their lack of specificity. However, some of these non-specific markers have found 

a place in monitoring cancer treatment rather than in diagnosis. 

Tumor marker discovering is focuses currently much research and attention. Their final 

clinical usage is directed by approval from the Food and Drug Administration (FDA) and 

guidelines established by organizations such as the American Society of Clinical Oncology 

and the American Cancer Society. Not all tumor receptor marker tests are widely available 

nor are they widely accepted.  

In the current review we attempt to propose and bring closer some new “cancer markers” 

connected to oxidative stress and cell death. In recent times, therapeutic approaches take 

advantages from determination of oxidative stress markers. These markers have gained 

importance in the evaluation of cancer treatment and prognosis. In this chapter we try to 
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explain the beneficial application of oxidative stress and apoptotic markers for medical 

requirements [1]. 

2. Apoptosis 

Apoptosis is the process of programmed cell death which is very important when cells 

harmful for organism appear. In this way organism destroys cells that endanger the 

homeostasis, are malign, , mutated, cells that ignore the signals of cell cycle regulation, lose 

the ability to undergo apoptosis, and cannot communicate with neighboring cells. In case of 

cancer process of programmed cell death is inhibited and tumor cells are allowed to tolerate 

apoptotic signals. Defective Apoptosis has been recognized as a fundamental factor in the 

development and progression of cancer. Restore of appropriately induce apoptosis may 

establish antitumor therapy based on o triggering selective death of cancer cell [2,3]. 

Large varieties of different stimuli are able to initiate programmed cell death by apoptosis 

signaling pathways. Thus there is the extrinsic pathway that depends on triggering of death 

receptors expressed on the cell surface, the intrinsic pathway mediated by molecules 

released from the mitochondria and the third pathway activated by granzmes [4,5]. These 

pathways lead to activation of the specific proteinase caspases and result in DNA 

fragmentation, degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, 

formation of apoptotic bodies, expression of ligands for phagocytic cell receptors and finally 

uptake by phagocytic cell [6]. 

2.1. Regulation and inhibition of apoptosis in cancer treatment 

The cells homeostasis is regulated by different mechanism included proliferation, growth 

arrest, and apoptosis [7]. The disorder in the balance between cell growth and death often 

leads to the carcinogenesis. The cells proliferation is regulated by cell cycle, which is an 

involved sequence of grow and cells replication [8]. It is now accepted that cancer is more 

accurately described as being the product of malfunctions within the regulation of the cell 

cycle, such that injured or mutated cells which are normally killed, are allowed to progress 

through the cell cycle, accumulating mutations. During this process the cells are tending to 

genetic lesions. However, well-organized control mechanisms are shown to exist, which 

detects damage. It may lead to malignancy or the early stages of carcinogenesis [9]. There 

are a few control spots of cell cycle. The restrictive points lead to repair damage in cells or 

eliminated cells in different ways: necrosis, senescence (permanent arrest) or apoptosis [10-

13]. Problem of selective direct selected cells on apoptotic pathway is still unclear. Many 

genes and their proteins products play a dual role in the cell division and apoptosis 

including p53, pRb, Bcl-2 family. Subsequent stimulation these molecules may induce cell 

proliferation, cell cycle arrest or cell elimination [8]. The different result is dependent on 

different factors, which respectively inhibit or support apoptotic cell death. In many types of 

cancer the mutation of gene responsible for check points are observed [14]. Apoptosis play a 

central role in the pathogenesis of human disease especially in malignance while the factors 

controlling the apoptotic progression are suppressed, overexpressed or modified their 
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function (mutation, phosphorylation, acetylation) [15,16]. Defects in its pathways be able to 

promote cancer cell survival and also confer resistance to antineoplastic drugs. The study 

into apoptosis is going at a fast pace and this has led to the possibility of new therapeutic 

approaches to some human diseases [11]. 

2.2. Signaling pathways of apoptosis 

Mitochondria play a crucial role in apoptosis. Their function is essential for the process of 

programmed cell death.  

In case of the intrinsic pathway several stimuli, including reactive oxygen species and other 

cytotoxic elements, lack of growth factors, kinase inhibitors initiate this pathway. As a 

result, activated the pro-apoptotic proteins permeabilize the outer mitochondrial membrane 

to trigger the release of Smac/DIABLO and cytochrome c to cytosol [17]. The former 

mentioned, Smac/DIABLO, directly binds to cytosolic IAP (inhibitor of apoptosis protein) 

and removes it from active caspases, and thus allows the caspases to cleave their substrates. 

During organization of these proteins complex cytochrome c, released into the cytosol, 

promote formation of the apoptosome. Cytochrome c binds apoptotic protease activating 

factor-1(Apaf-1) using the energy provided by ATP and procaspase 9 is activated into its 

active form [18,19]. This event results in the activation of caspases 3 and 7 as the down-

stream effector caspases. Some authors indicated that the release of cytochrome c is tightly 

regulated by the pro- and anti-apoptotic members of the Bcl-2 family [5]. 

The extrinsic pathway of programmed cell death involves interaction between ligand and 

plasma membrane receptor (Fas/CD95, TNFα, TRAIL) [20]. Consequently caspase-8 

recruitment and activation occurs. This caspase cleaves and activates Bid, which releases 

cytochrome c from the mitochondria to activate the apoptosome, and apoptosis events. 

Caspase-8 may bypass the mitochondria and induce apoptosis by directly activating 

caspase-3.  

Perforin/granzyme-induced apoptosis is the main pathway activated by cytotoxic T 

lymphocytes to eliminate virus-infected or transformed cells. Granzymes are a different 

family of serine proteases and the granule protein, perforin, supports granzyme (A or B) 

release to the target cell cytosol and, on entry [21,22]. Granzyme B can operate by specific 

cleavage of Bid and induction of cytochrome c release, by activation of initiator caspase-10 

or by direct activation of caspase-3 [23]. Sutton et al. show that granzyme B triggers the 

mitochondrial apoptotic pathway in mouse myeloid cells through direct cleavage of Bid; 

however, cleavage of procaspases was stalled when mitochondrial disruption was blocked 

by Bcl-2 [24]. In case of granzyme A caspase-independent cell death can occur via initiation 

of DNA cleavage. Apart from granzyme A pathway caspases are essential during apoptosis. 

They are aspartate-specific cysteine proteases that are present in healthy cells as zymogens, 

which are usually activated by proteolytic cleave to form a fully functional active site [19]. 

The group of initiator caspases (2, 8, 9 and 10) triggers cleaves inactive proenzymes of 

effector caspases. Effector caspases (3, 6 and 7) in turn cleave other protein substrates within 
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the cell, to initiate irreversible events of the apoptotic process [18]. Important factors 

involved in the regulation of apoptosis are inhibitors of apoptosis proteins (IAPs) that can 

block caspase cascade, but only some of them directly interact with caspases [25].  

 

Figure 1. Interactions and the diversity of apoptotosis signaling pathways. Caspase cascade can be 

activated by the apoptosome, death receptors orgranzyme B. Initiator caspases -8, -9 or -10 directly or 

by with the participation of specific protein trigger effector caspases -3, -6 or -7 which results in cell 

death. 

The ability of chemotherapeutic agents to initiate caspase activation appears to be a crucial 

element of drug efficacy. Consequently, defects in caspase activation often results in 

chemoresistance. 

The normal epithelial cells of gastrointestinal tract colonic epithelium strongly express 

caspases 1 [26], 3, 7, 8, and 9 [27]. In case of colon cancer it was shown abnormal caspase 

expression. Downregulation of caspase 1 expression was observed in colon cancer samples 

[26]. Palmerini et al. [27] found the downregulation of caspase 7 in most colonic carcinoma 

tissues. The colon cancer response to immune attack and chemoradioresistance induced 
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apoptosis. Death receptor (extrinsic) pathway of apoptosis and mitochondrial (intrinsic) 

pathway of apoptosis were investigated in SW480 and SW620 colon cancer cells. The 

investigation study revealed that SW620 cell lines appeared more resistant to apoptosis 

induced by CH-11, cisplatin and ionizing radiation then SW480 and that Fas receptor and 

Apaf-1 was decreased in comparison to SW480 cells [28]. Mese et al. (2000) noticed that 

caspase-3 may mediate apoptosis induced by Cisplatin derivative in human epidermoid 

carcinoma cell line A431 [29] .  

The protease activating factor Apaf-1, which was identified as the molecular core of the 

apoptosome executes mitochondria dependent apoptosis. The relevant levels of Apaf-1 are 

crucial in the inhibition of tumor progression and for preserving the sensitivity of cancer 

cells to apoptosis [30]. Melanoma cells avoid apoptosis by inhibiting the expression of the 

gene encoding Apaf-1. Suppression of release of SMAC/DIABLO from mitochondria was 

reported in melanoma cells [31]. Allelic loss and subsequent absence of Apaf-1 expression in 

melanoma cells is associated with chemoresistance [32]. Treating melanoma cells with the 

methylation inhibitor 5-aza-29-deoxyctyidine increased Apaf-1 expression and 

chemosensitized melanoma cells [32]. Shinoura et al. transduced Apaf-1 and caspase-9 into 

U-373MG glioma cells and observed increases in chemosensitivity of study cells [33]. In the 

other study Shinoura et al showed A-172 cells did not undergo apoptosis after p53 

transduction, whereas U251 cells were markedly sensitive to p53-mediated apoptosis. A-172 

cells showed higher endogenous expression of Bcl-X(L) than U251, and transduction of Bcl-

X(L) repressed p53-mediated apoptosis in U251 cells, suggesting that high endogenous 

expression of Bcl-X(L) renders A-172 cells, at least in part, resistant to p53-mediated 

apoptosis. In the next step researchers transduced A-172 cells and U251 cells with the Apaf-1 

or caspase-9 genes; both are downstream components of p53-mediated apoptosis and found 

that A-172 cells were highly sensitive to Apaf-1- and caspase-9-mediated apoptosis [34]. 

The presence of the specific antigen on the surface of the cell makes it the ideal aim for the 

antibodies, which could be used to the therapy of given kind of cancer. CD20 is a B-cell 

surface antigen that is an effective target for immunotherapy of B-cell malignancies using 

unmodified or radiolabeled murine monoclonal anti-CD20 antibodies. This cell surface 

phosphoprotein is involved in cellular signaling events including proliferation, activation, 

differentiation, and apoptosis. Shan et al. show that murine antiCD20 monoclonal 

antibodies inhibit B-cell proliferation, induce nuclear DNA fragmentation, and leads to cell 

death by apoptosis [35]. 

The monoclonal antibody against the protein CD20 selectively down-regulated the 

expression of antiapoptotic Bcl-xL and up-regulated the expression of proapoptotic Apaf-1 

in Ramos cells [36].  

Jazirehi et al. showed that anti-CD20 antibody in ARL cell line diminishes the activity of the 

p38MAPK signaling pathway resulting in inhibition of the interleukin (IL)-10 leading to the 

inhibition of constitutive STAT-3 activity and subsequent downregulation of Bcl-2 

expression leading to chemosensitization [37]. They also observed upregulation of Raf-1 

kinase inhibitor protein (RKIP) expression in non-ARL cell line.  
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Immunotherapy with specific antibody could be applied alone or in combination with 

chemotherapy. In the Jurkat clone J16, CD95 stimulation as well as anti-cancer agents’ 

etoposide induces apoptosis. Etoposide was also found to induce caspase-8 processing and 

apoptosis in a CD95-independent fashion because blocking of CD95 receptor function with a 

specific antibody does not inhibit etoposide-induced apoptosis [38].  

Jin et al. 2007 showed cancer cell lines transfected with chemokine-like factor CMTM8 

submit to apoptosis. Caspase-dependent and independent mediated apoptosis, induced by 

CMTM8 overexpression, was facilitated by the mitochondria and inhibited by knockdown 

of Bad or overexpression of Bcl-xL [39]. 

An apoptosis promotion involves signaling through members of the tumor necrosis factors 

(TNF). On binding to their proper receptors, some members of the TNF family can initiate 

caspase activation, resulting in apoptosis. There was also observed that TNF can induce 

apoptosis in a limited number of tumor cell lines [40]. The effect of TNF induction with 

anticancer agent OK-432 on the survival rate of colorectal cancer patient was investigated. 

Patients in the TNF- producing group proved a better prognosis than those of the 

nonproducing group [41]. Ito et al. showed that endogenous TNF production peaked after 

stimulation with OK-432 (Ito et al. 1996). The apoptosis-signaling pathways stimulated by 

TNFs, require further explanation of the physiological role of these ligands in the potential 

application for cancer therapy and prevention [41]. 

2.3. The role of p53 and Bcl-2 family in apoptosis 

Oxidative stress oncogene activation and arrest of cell growth lead to activation of tumor 

suppressor gene p53, which activates apoptosis or senescence [42-44]. The p53 gene has been 

called “guardian of the genome”, due to crucial role in protecting the genome against the 

proliferation of mutated cells [45]. The gene p53 is a 53-kDa nuclear phospho-protein that 

binds to DNA to act as a transcription factor, and controls cell proliferation and DNA repair. 

p53 gene encoded the p53 proteins. In physiological conditions p53 occurs inactive form on 

the low level in the cells. However tumor suppressor protein p53 is induced in response to 

stress such as DNA damage, oncogene activation and hypoxia. Under the influence of DNA 

damaging agents the level of p53 protein increased and stopped the cell cycle in order to 

repair or cell death [46]. p53 protein interacts with other proteins, whose job is to protect 

and preserve DNA stability of the genes. One such protein is a polymerase poly-ADP-ribose 

(PARP, PARP-1, EC 2.4.2.30) [47]. DNA damage in the course of therapy cancer increases the 

expression of PARP and increases the amount of poly-ADP-ribose (PAR) in tumor cells, 

which positively correlates with the severity of the reaction of proapoptotic [48]. Mutations 

of p53 have been observed in over 50% of human cancers (e.g. ovarian, colon carcinoma), 

the mutations are connecting with resistance to radio- or chemotherapy treatment [49,50].  

This fact supports that p53 plays an important role in the prevention of tumor development. 

The decisive function of p53 regulating the verdict of a cell to live or die makes it an 

attractive target for anticancer therapeutics [51]. The role of p53 in cell’s reply to 

chemotherapy remains unclear. Moreover, there are many conflicting studies and 
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approaches which would be the main therapeutic strategy to cancer therapeutics. Previous 

study was based on the idea that activation of p53 can induce apoptosis in the tumor. Other 

are based on the observation that cells with defective p53 are more sensitive to combinations 

of chemotherapeutic drugs [52].There are numerous investigations where the cells with 

defective p53 undergo apoptosis. The p53 protein can mediate apoptosis in response to 

DNA damage caused by chemotherapy but the inducing cell cycle arrest and favoring DNA 

repair might increase resistance by allowing cells to live after DNA has been damaged by 

chemotherapeutic treatment [53]. Loss of p53 and Bcl-2 family take part in a decisive role in 

apoptosis. This date create the question: is defective p53 the Achilles heel of the tumor? 

Mutations of p53 have been observed in over 50% of human cancers (e.g. ovarian, colon 

carcinoma), the mutations are connecting with resistance to radio- or chemotherapy 

treatment [48,49]. This fact supports that p53 plays an important role in the prevention of 

tumor development. The decisive function of p53 regulating the verdict of a cell to live or 

die makes it an attractive target for anticancer therapeutics [50]. The role of p53 in cell’s 

reply to chemotherapy remains unclear. Moreover, there are many conflicting studies and 

approaches which would be the main therapeutic strategy to cancer therapeutics. Previous 

study was based on the idea that activation of p53 can induce apoptosis in the tumor. Other 

is based on the observation that cells with defective p53 are more sensitive to combinations 

of chemotherapeutic drugs [52]. There are numerous investigations where the cells with 

defective p53 undergo apoptosis. The p53 protein can mediate apoptosis in response to 

DNA damage caused by chemotherapy but the inducing cell cycle arrest and favoring DNA 

repair might increase resistance by allowing cells to live after DNA has been damaged by 

chemotherapeutic treatment [53]. It is common known that malignant cells undergoing 

apoptosis p-53 dependent or p-53 independent. Many cases showed that p53 is needed if 

cells are to submit to chemotherapy. However many examination conducted in recent years 

have resulted in the discovery of drugs which have been used successfully to treat patients 

with p53- defective tumors. Additionally, radiation therapy is usually applied patients 

independent of their p53 status [54]. The crucial investigation supporting the significance of 

p53 in mediating DNA damage and induced apoptosis in cells derived from p53 knockout 

mice. The authors showed that p53 is required for radiation-induced apoptosis in mouse 

thymocytes. The cells isolated from this mouse were totally resistant to -irradiation and 

died [55]. Similar the fibroblast isolated from the same mice were also resistant to 

radiotherapy and chemotherapy with adriamycin [56]. Other scientific reports indicated that 

radiation of T cell lymphoma derived from the same mice with knockout p53 was able to its 

killing. There are many studies in which the effect of p53 on the cellular response to 

chemotherapy and radiotherapy is controversial. Some reports suggesting that p53 wild-

type are more sensitive to many of anticancer drugs, but there are many investigation, 

which demonstrated that p53-defective are or not sensitive to chemotherapy. Similar results 

obtained after photodynamic treatment in different cancer cells. Some examination 

designate that p53 is necessary for executor caspase 3 activation, suggesting that can play a 

decisive role in PDT- induced early apoptosis in malignant tissue [57]. Other study 

examined the outcome of photodynamic reaction with Photofrin (Ph-PDT) on clear human 

ovarian carcinoma OvBH-1 with “silent mutation” in the p53 gene. They suggest that this 
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mutation may inhibit apoptosis in these cells [58]. The modification of this method by 

chemotherapeutic drug 2-methoxyestradiol leads to apoptotic pathway induction in these 

cells [59]. However, additional studies demonstrate that PDT can induce apoptosis in cancer 

cells by pathway independent of p53 [60]. 

Differential cells sensitivity on chemo- and other anticancer therapy is probably dependent 

not only on p53 status but other genes and their products, which control cancer cells 

responding (c-Myc, protein kinase A, protein kinase C, cyclins). Moreover p53 work 

together with different tumor suppressor family. The big influence on anticancer therapy 

effectiveness is also individual dependent on type of cancer and their environment [61,62]. 

Recent studies have shown that important role in the effectiveness on anticancer therapy 

plays a modification by its phosphorylation [63].  

One of approach, which leads to regulation of p53 function, depends on its post-

translational modifications. Some of amino acid in p53 proteins is phosphorylated. One of 

the most important issues is the phosphorylation of p53 at position Ser 15. It is common 

known that chemotherapy resulting in an increased stabilization of this protein [64,65]. The 

cells with phosphorylated p53 protein most often were observed in serine 392 and N-

terminal and in serine 20 et C-terminal end observed in cells [66]. This process enhanced the 

stability form of p53 protein. Recent investigation have shown that p53 phosphorylation et 

serine 15 and 20 was necessary to induce apoptosis in ovarian cancer cells after 

chemotherapy with cisplatin. The p53 protein is also change in lung cancer, but there was no 

strong correlation between changes in expression of this protein (both mutant and native) 

and course of disease [67,68]. There was, however, significant improvement in patients 

undergoing therapy combined, in which the course of exacerbation p53 protein expression 

[67]. It is known that phosphorylation area of p53 protein binding MDM2 inhibits 

degradation of p53, a C-terminal phosphorylation of Ser392 alters the cell cycle [69,70]. In 

addition the new examination have shown that stimulation or inhibition of tumor growth 

might be due to changes in proteins modify p53. The in vitro and in vivo studies 

demonstrate that Sir2 protein is involved in this procedure. They cause p53 deacethylation 

which inhibits its activity. These proteins blocks apoptosis induced by “guardian of the 

genome” in response to stress, which may promote tumor growth The use of Sir2 inhibitors, 

that prevent p53 deacethylation along with its promoters allow the development of new 

anticancer strategy based on the maximization of action of this protein [71, 72]. It is obvious 

that only p53-tageted therapeutic strategy is not enough for the treatment of all type of 

malignant tissue. Ideally anticancer strategy will be therapy adapted to patients based on 

the p53 status, checkpoint proteins and gene controlling and oncogenic changes [73]. 

Bcl-2 family is the other important proteins which near and with p53 take part in a decisive 

role in apoptosis [74]. About twenty five members of the Bcl-2 family of proteins have been 

identified [75]. The products of Bcl-2 gene family are divisible into two main groups: 

antiapoptotic Bcl-2, Bcl-Xl, and Bclw, and proapoptotic Bax, Bak, Bad, and Bim, which 

respectively inhibit or support the effecting of apoptotic cell death [76,77]. The other 

researcher divided this proteins into three subfamilies based on structural and functional 

features: pro-survival, whose members are most structurally similar to Bcl-2; proapototic 
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Bax and Bak and antagonize their prosurvival functions BH3-only proteins [78,79]. Thus 

families of proteins control mitochondrial stability by maintaining the balance between 

proapoptotic proteins that translocate to the mitochondria and antiapoptotic ones that exist 

in the mitochondrial membrane [76,77]. The Bcl-2 gene product is located in the membranes 

of the endoplasmic reticulum, nuclear envelope and the external membranes of the 

mitochondria [76]. The fact that key Bcl-2 family genes are p53 targets including pro- and 

antiapoptotic [80]. Bak and especially Bax were the groups induced by p53 mainly in 

response to stress [81,82]. P53 plays a crucial role in regulation of proapoptotic Bcl-2 

proteins. Bax induced the mitochondrial pathway by outflow of apoptogenic proteins, such 

as cytochrome c. However, in different studies the involvement of Bax and p53 in different 

anticancer therapy mediated apoptosis was observed [83,84]. 

Bax gene encoding the protein contains on the promotor sequence the binding location for 

p53. The requirement of Bax and Bak in p53 –activated apoptosis occurs to be cancer cell-

type dependent. Moreover, p53 can also independently activate Bax present in the 

cytoplasm and this protein forms a homodimer and releases cytochrome c from the 

mitochondria [85]. Bax protein takes part in apoptotic response of the developing nervous 

system to  irradiation and leads to sensitivity fibroblast cells with E1A-expressing to 

chemotherapy [86,87]. Additional studies showed that the level of Bax protein acts not 

crucial role in inducing apoptosis or growth arrest in other cancer cells. In epithelial colon 

carcinoma undergoing apoptosis in response to radiotherapy, Bax did not appear to be main 

inductor of cell death [88,89]. The explanation of enigmatic function of Bax in apoptosis has 

recently been examined in the context of PUMA. PUMA gene is as well as Bax activating by 

p53 especially in response to DNA damage. This gene encodes to BH3-domain-conteinig 

protein: PUMA  and PUMA β [90,91]. A fundamental balance between PUMA and p21 

which controlled cell cycle determine growth arrest by senescence or death by apoptosis in 

cooperation with p53. This date was obtained from colorectal cancer cells where the growth 

arrest through of p21 is the normal rescue response to p53 expression in these cells. The 

defect of p21 induced in these cells apoptosis pathway, whereas PUMA is damage the 

apoptosis is prevented. These results suggest that Bax is absolutely necessary for PUMA – 

induced apoptosis [92]. Probably PUMA expression promotes mitochondrial translocation 

and multimineralization of Bax and in consequence inducing apoptosis. Bax takes part in 

the apoptotic death response indirectly target of p53 through PUMA [92]. The pro-apoptotic 

member of Bcl-2 protein Bid acts crucial function in connecting between the extrinsic and 

intrinsic apoptotic pathway. It has unique ability to connect two different types of apoptosis. 

Activation of Bid involves cleavage of cytoplasmic Bid by activator caspase 8 and induces 

post-translational changes. This process leads to Bid translocation into the mitochondrial 

membrane and activates pro-apoptotic Bax and Bak proteins which initiate apoptosome 

formation. Bid gene succumb p53 regulation in response to chemo- and radiotherapy in 

many type of cancer. Cellular sensitivity to chemotherapy with adriamycin or 5-fluoroacyl is 

dependent on wild-type p53 and Bid. These results suggest that p53 can regulate the 

intrinsic and extrinsic pathway through Bid regulation [93]. It is common that inhibition of 

apoptosis can lead to cancer. In the large Bcl-2 family we can find also inhibitors of cell 

death or growth arrest. Bcl-2 (Bcl-2 its self) residue in the outer mitochondrial membrane 



 
Antioxidant Enzyme 274 

and mainly plays an anti-apoptotic function [94]. The Bcl-2 anti-apoptotic protein inhibits 

apoptosis in cancer cells and promotes cell survival. In many malignancies especially in 

hematologic the overexpression of Bcl-2 family was found. Recent studies showed that 

increasing levels of Bcl-2 and Bcl-XL have associated with a more aggressive malignant 

phenotype often connected with drug resistance to various type of chemotherapy not only 

in hematologic but also solid tumors [95,96]. As an example in primary prostate cancer, high 

Bcl-2 level is con were connected with high Gleason scores and an increase rate of cancer 

recurrence after radical prostatectomy. Also the high expression of BCL-XL in the NCI 60 

cell line is strongly correlated with resistance to most chemotherapy agents. There are many 

investigations determining the levels of expression of cell death inhibitors in various types 

of cancer. These studies afford correlative evidence, but also are designed to search new 

possibilities of tumor destruction [52]. Many in vitro experiments confirm the preventing 

role of Bcl-2 in apoptosis activating in different type of cancer [97]. 

This fact decides about therapeutic targets through inhibition of this protein and arrest 

malignance process [98]. Wild-type p53 can establish complex with Bcl-2 and Bcl-XL and 

suppress there anti-apoptotic function. However, in 50% of cancers the p53 gene is disrupted 

and losses its ability to bind to these proteins. Hence research is continuing on the use of 

synthetic inhibitors in preclinical and clinical study (Table 1.) [97]. The most of them 

determined the direction of future clinical development and are promising.  

 

Agents Target proteins Sponsor Stage 

Apogosypol Bcl-2 Mcl-1 Brnham (NCI) Preclinical 

HA14 Bcl-2 Maybrige Chem Preclinical 

Antimycin A Bcl-2, Bcl-XL U of Washington Preclinical 

Oblimersen sodium Bcl-2 Genta Phase III 

Gossypol (AT-101) Bcl-2, Bcl-XL, Bcl-w, Mcl-1(NCI) Phase I/II 

ABT-737(ABT 263) Bcl-2, Bcl-XL, Bcl-w Abbott Phase I 

BH31s Bcl-XL Harvard U Preclinical 

GX15-070 Bcl-2, Bcl-XL, Bcl-w Mcl-1 Gemin X Phase I 

Abbreviations: BH3Is, BH3 inhibitors; NCI, National Cancer Institute; Maybridge Chem, Maybridge Chemical Co. 

Ltd.; U, University. Acc. to Kang and all [97]. 

Table 1. Agents targeting anti-apoptotic Bcl-2 family proteins. 

Apoptosis is perturbed in many cancers. It is the major barrier leads to destruction of 

cancers. The p53 and Bcl-2 pro-apoptotic protein are one of the many proteins that induce 

the intrinsic signaling pathway. Previous and present studies yield new information about 

various factors which regulate apoptosis. Among them are proteins that inhibit apoptosis. 

Protein plays the crucial role in regulatory cell development, cell cycle, cell growth and 

apoptosis. The intracellular proteins are selective stabilized or eliminated by ubiquitin-

depenedent pathways. This procedure leads to correcting the regulation of many metabolic 
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processes in cells. Ubiquitin is a protein complex composed of the activating enzyme (E1), a 

coniugating enzyme (E2) and protein ligase (E3) [100-103]. Ubiquitin targets the protein 

substrate for damage via the 26S proteosome. The free ubiquitin is recycled. This process 

plays a crucial role of many significant signaling pathways and important role in many 

cellular pathways including apoptosis. Many proteins which can regulate apoptotic 

pathways have been recognized as target substrates for ubiquitination [103]. Elements of the 

cell apoptosis mechanism are often altered in cancer. The resistance to apoptosis is one of 

the major problems in the anticancer therapy. The ubiquitin –proteosome protein damage 

can inhibit apoptosis by degradation proapoptotic controller. From this studies appear that 

proteosome inhibitors can apply as antitumor therapies through enhancing apoptosis [103]. 

Apoptosis regulatory molecules have been recognized as substrates and degraded in 

proteosome. The degradation leads to apoptosis resistance in cancer cells. To these we can 

include inter alia members of Bcl-2 family and IAP [104-106]. The heat shock proteins can 

play an important role in recognition and degradation of damaged proteins by 

ubiquitination [107]. The heat shock proteins (HSPs) are a highly conserved class of proteins 

whose expression in increased in cells exposed to different kinds of stress. HSPs are a family 

which limit the consequences of damage and facilitate cellular recovery [108,109]. When 

there are damaged proteins, HSP binds injured molecules. This results in dissociation of 

HSF (heat shock factor), then migrates to the nucleus, where it binds with HSE (heat shock 

rudiments) leading to HSP overexpression [110]. The basis for the classification on these 

proteins was their chaperone activity and molecular weight. HSPs can be divided into three 

subfamilies: large (HSP100, 90), intermediate HSP 70, 60 and 40) and small (sHSP less than 

40 kDa). In addition to many function the HSPs protein plays a crucial role in inhibition of 

apoptotic process. Anti-apoptotic role of sHSP proteins makes it encourages the 

development of tumor progression and metastasis. sHSP in the receptor pathway of 

apoptosis blocks DAXX protein and through AKT kinase inhibits activation and 

translocation of Bax to mitochondria [111]. There are several reports according to which the 

use of antisense oligonucleotides directed against HSP27 can be basis of anti-cancer therapy. 

The overexpression HSP27 is often finds in malignant cells for example in ovarian and 

breast cancer. Blocking apoptosis by the sHSP lead to interfere with some cytostatics and 

decrease the effectiveness of chemotherapy. It is often connected with poor prognosis of 

cancer [112-114]. HSP90 inhibits formation of an active apoptosome whereas HSP70 

prevents the recruitment of procaspase-9 to the apoptosome complex [60]. Previous 

investigation involved both HSP70 and HSP27 of Bid dependent apoptosis. Bid is the 

protein which associated two apoptotic pathways intrinsic and extrinsic. HSP-mediated 

regulation of apoptosis through inhibition of major pro-apoptotic proteins is involved in this 

process [115,116]. 

3. Enzymatic antioxidants 

Defense against oxidative stress is provided by a system of antioxidants enzymes and non-

enzymatic antioxidant substances capable of neutralizing free radicals and preventing an 

excess production of reactive oxidative species (ROS) [117]. The first line of cellular defense 
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against oxidative stress enzymes are: the family of superoxide dismutases (SODs), glutathione 

peroxidases (GPXs), and catalase (CAT) enzymes. They are the main free radical-scavenging 

enzymes which decomposing superoxide radicals and H2O2. Also glutathione transferase 

(GST) plays an important role in the protective mechanisms. It plays an important role in 

catalyzing the conjugation of reactive electrophilic agent to glutathione (GSH) [118]. 

Antioxidant enzymes drive chemical reactions to convert ROS into non-toxic molecules: 

 

Figure 2. The chemical reactions involving ROS and antioxidant enzymes.  

This enzymatic system is complex and highly integrated [119-121]. SOD is an essential 

antioxidant enzyme that defends cells against potentially damaging superoxide radicals. 

There are three known human isoforms of SOD, which defends cells against potentially 

damaging superoxide radicals:  

 SOD1 (CuZnSOD) is found in the cytoplasm and nucleus in the form of a dimer; 

 SOD2 (MnSOD) is a tetrameric protein that functions in the mitochondria, more than 

95% of cellular oxygen is metabolized in the mitochondria during oxidative 

phosphorylation; 

 SOD3 (CuZnSOD) is a tetrameric, extracellular form of the enzyme while each enzyme 

performs a critical function, SOD2 is particularly important due to its location within 

the mitochondria [122-124]. 

Enyzmes of the GPX family are selenoproteins, which catalyze the reduction of 

hydroperoxides to water and the respective alcohols, while oxidizing GSH to GSSG [122]. 

Glutathione sulfide reductase is responsible for converting GSSG to GSH. These two 

compounds serve as the major redox couple within the cell, which determinant the total 

cellular antioxidant capacity [125, 126]. There has been identified four distinct isoforms of 

GPX in humans. GPX1, which is localized in the cytoplasm and mitochondria in the liver, 

kidney, lung, and red blood cells, catalyzes the reduction of H2O2 and some organic 

peroxides [127]. GPX2, localized mainly in the liver and gastrointestinal tract, protects 

against lipid hydroperoxides. GPX3 is has the same function, but it is highly detected in 

plasma. GPX4, expressed in the testis, is capable of reducing phospholipid hydroperoxide, 

including lipid peroxides derived from cholesterol [128,129].  

Catalase is an antioxidant enzyme which catalyzes the conversion of H2O2 to water and 

oxygen. It is concentrated mainly in peroxisomes [130]. 

Persistent oxidative stress is a major initiator to progress cancer [119,121,131]. Reactive 

oxidative species (ROS) may cause irreparable damage, therein: base modification, DNA 
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strand breaks, DNA-protein cross-links [132]. Following cellular damage initiated the 

deregulation of cell signaling pathways, tumor suppressors and an inhibition of apoptosis 

[121]. A variety of studies involving antioxidant enzyme levels and cancer development 

have been performed. Tumor cells nearly always show a decrease in SOD1 and SOD2 

expression. Glutathione peroxidase activities have been found to be changeable, while 

catalase activity is generally lower in tumor cells than in healthy tissue [133-135]. 

The changes in enzymatic antioxidants status [118], the level of lipid oxidation [136] and an 

increase of DNA breaks number in tumor cells and leukocytes of blood indicate the process 

of malignancy [137]. Oxidative DNA damage in blood and other tissues were detected in 

various types human carcinogenesis [118,138,139,140]. The GST is involved in detoxification 

of carcinogens. Its activity increased significantly in cancer patients [141]. In smokers the 

role of GST is crucial in modulating susceptibility to smoking-related lung cancer, oral 

cancer and chronic obstructive pulmonary disease [118,142,143]. It is also observed that the 

GPx and SOD activities decrease in the group of cancer patients during cancer development 

[118,144]. Burlakova et al. noted that the absence of a response these enzymes indicate a 

weakening of antioxidant enzymes system [118]. They found no change in the 

malondialdehyde (MDA) level, which is consistent with the previous work in patients with 

oral cancer [117,145,146,147]. In initial period its level is increased, but later it decreased 

[118]. It was observed that SOD, GPx and GSH levels in the erythrocyte and plasma was 

significantly lower in cervical cancer patients, as well as Vitamin E, Vitamin C and GST 

level. These results suggest possible use of antioxidant supplementation as prophylactic 

agents for prevention and treatment of this cancer [148]. 

Carcinogenesis process is accompanied by weakening of the antioxidant enzyme system, 

but also by high expression ROS-generated enzymes [149]. The NADPH oxidases (Nox 

enzymes) share the capacity to transport electrons across the plasma membrane and to 

generate superoxide and other reactive oxygen species (ROS) [150,151]. The physiological 

functions of Nox enzymes include: cell differentiation, host defense, posttranlational 

processing of proteins, cellular signaling, and regulation of gene expression. Those enzymes 

could also induce a wide range of pathological processes, including the process of 

carcinogenesis [150]. NOX1 homolog of the NADPH oxidase is highly expressed in the colon 

[152,153] and it might contribute to development of colon cancer through at least two 

mechanisms: ROS-dependent DNA damage and ROS-dependent enhancement of cell 

proliferation [150]. NOX4 homolog of the NADPH oxidase is suggested to promote cell 

growth in melanoma cells [153]. Drugs directly inhibiting the NADPH oxidases activation 

could successfully inhibit oxidative stress and inflammation caused by this enzymes [149]. 

Apocynin (4-hydroxy-3-methoxyacetophenone) is now used indiscriminately as a NOX4 

[154] and as a NOX5 inhibitor [155]. 

In some situations ROS are used in anticancer therapies. Photodynamic therapy (PDT), a 

promising therapy for solid tumors, based on the photochemical reaction produces singlet 

oxygen and other forms of reactive oxygen, such as superoxide ion, hydrogen peroxide, 

hydroxyl radical [156-160]. Tumor cells can respond to photodynamic damage by apoptosis 

or necrosis [161-163]. Singlet oxygen and superoxide anion have been demonstrated to play 
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a main role in the cytotoxic effects induced by PDT [164, 165]. SOD1 and SOD2 scavenged 

cells from singlet oxygen and significant extent the antitumor efficacy of PDT [156, 166, 167]. 

Combinations of SOD inhibitor with PDT might result in significant increase in the 

efficiency of anticancer treatment [154]. Overexpression of SOD2 suppresses apoptosis, 

negatively correlates with the sensitivity of tumor cells to radiation therapy and anticancer 

drugs [168, 169]. 2-methoxyestradiol (2-MeOE2) was shown to selectively inhibit the activity 

of superoxide dismutases [170]. PDT with 2-MeOE2 selectively enhance free radical 

generation and suppress antioxidant defenses, which significantly increases the 

effectiveness of therapy [156]. 

PDT is also antagonized by other cellular antioxidant defense mechanisms: catalase, 

lipoamide dehydrogenase, the glutathione system, heme oxygenase-1 (HO-1) [171-173]. HO-

1 catalyses the rate-limiting step in the oxidative degradation of heme. Products of the 

reaction catalyzed by this enzyme are CO and biliverdin which is rapidly converted to 

bilirubin. Biliverdin and bilirubin are potent antioxidants capable of scavenging peroxy 

radicals and inhibiting lipid peroxidation [174-176]. Induction of HO-1 protects against the 

cytotoxicity of oxidative stress, which seems to play a protective role against PDT-induced 

cell death [173, 177]. 

Administration of HO-1 inhibitors might be an effective way to potentiate antitumor 

effectiveness of PDT. Zinc (II) propoporphyrin IX, and HO-1 inhibitor, markedly augmented 

PDT-mediated cytotoxicity towards colon adenocarcinoma C-26 and human ovarian 

carcinoma MDAH2774 cells [173]. Kocanova et al showed that treatment of HeLa (human 

cervix carcinoma cells) and T24 cells (human transitional cell carcinoma of the urinary 

bladder) with hypericin-PDT dramatically induced of HO-1 expression. This HO-1 

stimulation is governed by the p38MAPK (p38 mitogen-activated protein kinase) and PI3K 

(phosphatidylinositol 3-kinase pathways). Blocking these signaling pathways by p38MAPK 

inhibitors or small interfering RNA (siRNA) for p38MAPK suppress HO-1 increases, raising 

the propensity of the cells to undergo PDT-induced apoptosis [178]. 

4. Non-enzymatic antioxidants 

Among the non-enzymatic antioxidants can be distinguished based compounds, both 

endogenous (glutathione, melatonin, estrogen, albumin) and exogenous (carotenoids, 

vitamin C, vitamin E, flavonoids), which must be delivered to the body with food because 

the body is not able to produce them himself.  

Carotenoids are natural antioxidants present in the chloroplasts and chromatopfores, giving 

the plants the color yellow, red and orange, visible especially in autumn. Their function is to 

stabilize the lipid peroxide radicals as well as provide protection against damage from 

sunlight by absorbing energy or redirecting it to other processes in the cell. Carotenoids 

ingested with food (beta-carotene) are precursors of retinoids (vitamin A). Vitamin A is fat-

soluble antioxidant. 

Some studies have shown that supplementation with high doses of β-carotene or carotenoid 

in smokers, as well as in laboratory animals exposed to tobacco smoke increases the risk of 
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lung cancer [179-181]. A study have shown that administering both vitamin A and vitamin 

C to the cell culture of human breast cancer cells was three times more effective than the 

administration of these vitamins separately [184]. β-carotene it normally functions as an 

antioxidant, at high concentration it exhibits prooxidant effects especially at high oxygen 

tension [185, 186]. Carotenoids diets have demonstrated some anticarcinogenic activity in 

animal experiments [187-190]. 

Ascorbic acid (vitamin C) is antioxidant that works in aqueous environments of the body. 

Humans cannot synthesize vitamin C, it must be provided exogenously in the diet and 

transported intracellularly. Prolonged absence of vitamin C in the diet leads to the 

development of scurvy. Vitamin C has important roles in vascular and connective tissue 

integrity, leukocyte function, and defense against microorganisms. Vitamin C is considered 

as a most powerful ROS scavenger because of its ability to donate electrons in a number of 

non-enzymatic and enzymatic reactions. Some authors demonstrated ability to neutralize 

free radicals produced by exposure to light to compounds of lower toxicity [191,192]. 

Vitamin C plays an important role in the detoxification of substances such as tobacco smoke, 

ozone and nitrogen dioxide [193]. Ascorbic acid reduces tocopheryl radical formed by the 

reaction of vitamin E with lipid radicals, protects membranes against oxidation, and 

prevents lipid peroxidation and affect the regeneration of vitamin E [194,195]. 

The data reported here suggest that the dose of vitamin C supplement used may induce 

additional defenses against oxidative damage, through an increase in lymphocyte SOD and 

CAT activity [196]. Experimental data suggest that these antioxidants such as carotenoids, 

vitamin C and vitamin E can interact synergistically; they protect each other from 

degradation and/or promote their regeneration [197-200]. Low serum levels of Vitamin C in 

high risk population may contribute to the increased risk of chronic gastritis or gastric 

metaplasia, which are both precancerous lesions [201]. The positive effect of Vitamin C has 

also been found in lung and colorectal cancer [202]. Vitamin C has proven to be beneficial as 

a factor in preventing cancer of the lungs, larynx, mouth, esophagus, stomach, colon, 

rectum, pancreas, bladder, cervix, endometrium, breast, and malignant brain tumor. 

Vitamin C is effective in the defense against oxidative stress-induced damage [203]. 

α-tocopherol Vitamin E is a fat-soluble antioxidant that stops the production of reactive 

oxygen species formed when fat undergoes oxidation[204]. The most active form of vitamin 

E in humans is α-tocopherol and there is considered as a major antioxidant in 

biomembranes.  

It has been noticed that in colorectal cancer patients the incidence decrease vitamin E [205-

207] and the intake of Vitamin E [200 IU] reduced the incidence of colorectal cancer by 

triggered apoptosis of cancer cells [208]. Colorectal carcinogenesis may be reflected by 

greater elevation of MDA and decrease level of vitamin E and vitamin C in the serum [209]. 

Other study reported negative results for Vitamin E in combination with Vitamin C and beta 

carotene to prevent colorectal cancer adenoma [210, 211]. Since Vitamin C regenerates 

Vitamin E, it has been proposed that addition of Vitamin E hinders the protective effect of 

Vitamin C against oxidative damage. 
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Flavonoids are polyphenolic compounds that are ubiquitous in nature. Over 4,000 

flavonoids have been identified, many of which occur in fruits, vegetables and beverages 

(tea, coffee, beer, wine and citrus fruits, grapes, soy products). The flavonoids have been 

reported to have antiviral, anti-allergic, anti-inflammatory, and antitumor and antioxidant 

activities. Protective effect, preventing lipid peroxidation, is also responsible for maintaining 

the appropriate level of glutathione in the cells. For the flavonoids and their derivatives with 

the strongest antioxidant potential include: delfinina, epicatechin, kaempferol, quercetin, 

luteolin. Quercetin, the most abundant dietary flavonol, is a potent antioxidant because it 

has all structural features for free radical scavenging activity.  

Flavonoids are most commonly known for their antioxidant activity in vitro. At high 

experimental concentrations that would not exist in vivo, the antioxidant abilities of 

flavonoids in vitro may be stronger than those of vitamin C and E, depending on 

concentrations tested [212]. Epidemiological studies have shown that regular consumption 

of fruits and vegetables is associated with reduced risk of chronic diseases such as cancer 

and cardiovascular disease [213,214]. It has been reported that fresh apples have potent 

antioxidant activity inhibit the growth of colon and liver cancer cells in vitro [215]. Apples 

are commonly consumed and are the major contributors of phytochemicals in human diets. 

Some studies have demonstrated that whole apple extracts prevent mammary cancer in rat 

models in a dose-dependent manner at doses comparable to human consumption of one, 

three, and six apples a day. Consumption of apples may be an effective strategy for cancer 

chemoprevention. Fresh fruits could be more effective than a dietary supplement [216]. The 

inhibitory effect of black tea polyphenols on aromatase activities has been investigated. 

Black tea polyphenols, TF-1, TF-2, and TF-3, significantly inhibited rat ovarian and human 

placental aromatase activities. In in vivo models, these black tea polyphenols also inhibited 

the proliferation in MCF-7 cells [217]. 

Glutathione (GSH) is the most important non-enzymatic cytosolic antioxidant. This 

tripeptide is produced by the body from three amino acids: cysteine, glutamic acid and 

glycine [218]. In addition to neutralize free radicals, glutathione is responsible for 

maintaining the antioxidant activity of other antioxidants, stabilizing its reduced form. One 

of the basic functions of glutathione is to maintain the sulfhydryl groups of proteins in the 

reduced state and inhibition of oxidation by hydrogen peroxide [191, 193, 219]. Glutathione 

together with glutathione peroxidase (GSH-Px) reduces hydrogen peroxide H2O2 and lipid 

peroxides, which is accompanied by the formation of glutathione disulfide, which is 

reduced by NADPH in a reaction catalyzed by glutathione reductase [220]. Equally effective 

could lead hydroxyl radical HO, the most dangerous of free radicals to form water. It is able 

to regenerate vitamin E and vitamin C back to their active forms.  

Preliminary results indicate glutathione changes the level of reactive oxygen species in 

isolated cells grown in a laboratory, which may reduce cancer development [221, 222]. 

Glutathione supplementation increases mean survival time treated mice [223]. Others study 

demonstrates that in colorectal carcinoma patients, a very highly significant decrease in total 

plasma thiols and intracellular glutathione [224].  
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Selenium is a trace element that is essential in the human diet. The antioxidant properties of 

selenoproteins help prevent cellular damage from free radicals. Many studies confirm that 

selenium reduces the risk of all cancers especially cancer of the liver, prostate, colorectal and 

lung cancer [225, 226]. The results showed that Selenium could significantly inhibit tumor 

growth as well as extend the median survival time of tumor-bearing mice [227]. Selenium 

significantly inhibits the proliferation cancer cells in vitro [228]. Selenium deficiency is 

associated with an increased risk of cancer and cancer death [229, 230].  

Non-enzymatic antioxidants are relatively ineffective in comparison with the action of 

antioxidant enzymes. Only together with enzymes is effective line of defense against 

oxidative stress [187]. 

5. ROS and RNS 

Nitric oxide (NO) is a diffusible, short-lived, diatomic free radical ubiquitously produced by 

mammalian cells, and it is a multifunctional signaling molecule that regulates complex 

cellular processes. L-arginine derived NO production is mediated by activation of nitric 

oxide synthase (NOS). There are three isoforms: endothelial NOS (eNOS), neuronal NOS 

(nNOS) and inducible NOS (iNOS). It has been detailed that iNOS gene transcription and 

promoter activity are increased by oxidative stress and it regulates chromatin modification 

leading to cellular injury. NO has been used for various diseases as a screening marker, such 

as cerebral strokes, asthma and chronic obstructive pulmonary diseases [231-235]. 

Consequently, measurement of NO might be a reliable biomarker to predict earlier oxidative 

stress mediated cellular response including injury and specific differentiation of stem cells. 

The excess of ROS/RNS (reactive oxygen species/reactive nitric species) generated from 

endogenous sources, for example mitochondria in response to inflammatory conditions, 

upregulation of enzymes (NADPH oxidase, hemoxygenase-1, xanthine oxidase, nitric oxide 

synthases), or from the environment (smoking, radiation, industrial pollution) may damage 

macromolecules such as lipids, proteins and DNA and induce neurological disorders, 

atherosclerosis or aging. The identification of valid biomarkers of stress is involved with 

previous characterizing the event of stress and for early identification of the disease 

development which might follow [236]  

5.1. Lipid peroxidation 

Lipid peroxidation is a normal metabolic process extending under regular conditions. It can 

proceed into three steps: initiation, propagation and termination. The initiation phase is 

connected to the activation of oxygen and is rate limiting. Polyunsaturated fatty acids (the 

main component of membrane lipids) are receptive to peroxidation. The process of lipid 

peroxidation is one of the most investigated consequences of reactive oxygen species (ROS) 

actions on membrane structure and function. Production of oxygen radicals increases with 

clinical progression of disease. It is also involved with the increase of lipid peroxidation 

products and resulting membrane degeneration [237]. Peroxidation of cell membranes, 

which contain a high concentration of polyunsaturated fatty acids, is a critical mechanism 
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leading to growth inhibition and cell death. The cell death can occur by necrosis; however 

lipid peroxidation can induce also apoptosis, activating the intrinsic suicide pathway 

present within all cells [238]. This type of cell death eliminates precancerous and cancerous, 

virus-infected and otherwise damaged cells that threaten our health. Some authors also 

demonstrated that lipid hydroperoxides and oxygenated products of lipid peroxidation 

degradation as well as lipid peroxidation initiators (ROS) can be involved in the cascade of 

signal transduction the control of cell proliferation, and the induction of differentiation, 

maturation, and apoptosis. It has been shown that lipid peroxidation and ROS are triggers 

and essential mediators of apoptosis [238, 239].  

Saintot et al. suggested that lipid peroxidation could be verified to be a prediagnostic 

marker for breast cancer. Lipid peroxidation levels in breast ductal cells may become a 

promising cancer biomarker to detect, through non-invasive methods such as nipple fluid 

aspirate sampling, for example, women at high risk for breast cancer. In addition, a better 

understanding of the relationship between breast cancer risk factors and oxidative 

stress/lipid peroxidation-related biomarkers and genes may prove useful in identifying the 

dietary or non-dietary exposure, genotype combinations that put women at the lowest risk. 

In addition, lipid peroxidation markers could also be applied in prognosis. Decreased 

concentration of malondialdehyde (MDA) in plasma, another lipid peroxidation product, 

has been found to be significantly related with severity of prognosis factors for breast 

cancer. MDA concentration was significantly lower in the plasma of patients with large 

tumors or in whom nodes and/or metastasis was observed [239-241]. There was also 

observed increased concentration of MDA (malonodialdehyde) in colorectal carcinoma 

patients. Authors suggest ROS production in gut due to phagocytes, which are accumulated 

in mucus of patients with bowel disease [237,242, 243]. Bahat et al. also demonstrated thet 

colorectal carcinogenesis may be associated with greater MDA concentration and decreased 

level of vitamin C in the patients’ serum [243]. Other authors hypothesize that lipid 

peroxidation can be a principal mechanism in rodent renal carcinogenesis. Saczko et al. 

demonstrated that MDA marker and concentration of –SH groups can be a validate marker 

for efficiency in PhII mediated photodynamic therapy (PDT) in lung carcinoma cells (A549). 

Authors proved that the level of lipid peroxidation was significantly higher for cells after 

PDT, comparing to control cells. They observed much lower concentrations of -SH groups in 

A549 cells after PDT treatment, in comparison with respective values in control cells [244]. 

5.2. Protein damage 

Proteins contained by cells undergo oxidative stress in the presence of various reactive 

oxygen species (ROS). The consequential damage of proteins may take the form of nitration 

or oxidation of various residues, depending on the presence of ROS. ROS can also induce 

the formation of advanced oxidation protein products (AOPP) or advanced glycation end 

products (AGE), both of which are stable markers of oxidative stress. Increased AOPP, 

malondialdehyde levels, and decreased thiol and nitric oxide concentrations, may imply 

that patients are under oxidative stress. Proteins damage can provoke reduced cell-specific 

functional ability and may then allow other mutations to produce signaling components 
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which will then go unconstrained aiding tumourigenesis. Many studies use oxidative 

protein damage markers for determination of stages in cancer patients’ and disease 

progression [245].  

Protein oxidation by ROS is related with the formation of many different kinds of protein 

cross-linkages, including those formed by addition of lysine amino groups to the carbonyl 

group of an oxidized protein; by interaction of two carbon-centered radicals obtained by the 

hydroxyl radical-driven abstraction of hydrogens from the polypeptide backbone; by the 

oxidation of sulphydryl groups of cysteine residues to form –S–S– crosslinks, and the 

oxidation of tyrosine residues to form –tyr–tyr– cross-links. Protein damage is repairable 

and is a known non-lethal event for a cell. There was reported that two mitochondrial 

proteins: aconitase and adenine nucleotide – translocase can be significant targets of long-

term oxidative destruction. It has been presented that the hydroxyl radical represents the 

major species responsible for the oxidation of proteins [121,246]. Low concentrations of 

superoxide radical and hydrogen peroxide may stimulate proliferation and enhance 

survival in a different cell types. In consequence ROS can play a very important 

physiological role as secondary messengers [121]. 

ROS and RNS induce modification in protein structure and function. These changes 

observed in protein concentration and structure modification and may be monitored and 

regarded as biomarkers. There are some widely used protein tumor markers listed in Table 

2. These indicators are associated with many types of cancer; others, with as few as one. 

However there are many not widely applied proteins that may help in cancer treatment and 

diagnosis; only several of them are described below.  

5.2.1. Filamin-A 

Recent studies indicated the possibility that filamin-A (cytoskeleton protein) may play a role 

in cancer response to DNA damage based chemotherapy reagents. This protein can be 

served as a biomarker to predict cancer prognosis for chemotherapy, or as an inhibition 

target to sensitize filamin-A positive cancer to therapeutic DNA damage. Yue et al. [247] 

proved that lack of filamin-A expression sensitizes cells to chemotherapy reagents, such as 

bleomycin and cisplatin, and a wide range of DNA repair activities require filamin-A. They 

presented that the level of filamin-A in melanoma cells correlates with their sensitivity to 

bleomycin and cisplatin. Authors also presented that inhibition of filamin-A sensitizes 

xenograft tumors to bleomycin and cisplatin treatment. These results suggest that filamin-A 

status may be used as a biomarker for prognosis after treatments. However this protein 

marker could also be used as a target to sensitize filamin-A positive cells to therapeutic 

DNA damage [247]. Thus, filamin-A status in cancer would be a novel marker for prognosis 

assessment and optimization of individualized treatment planning. Second, as shown in, 

even an incomplete inhibition of filamin-A expression in C8161 cells can confer a sensitivity 

to bleomycin and cisplatin treatment in mouse xenograft model. Thus, filamin-A may be 

used as an effective therapeutic target for these cancers with high or normal level of filamin-

A expression. Filamin-A despite of being a cytoskeleton protein, plays a role in the repair of 
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multiple forms of DNA damage. Furthermore, filamin-A can be used as a biomarker to 

predict cancer sensitivity to therapeutic DNA damage, and as an inhibition target to 

improve therapy efficacy for filamin-A positive cancers [247]. 
 

Tumor marker Application

AFP (Alpha-fetoprotein) liver, testicular, and ovarian cancer 

Her-2/neu stage IV breast cancer 

Bladder Tumor Antigen urothelial carcinoma 

Thyro-globulin Thyroid cancer metastasis 

PSA Prostate cancer 

Leptin, prolactin, osteoponin 

and IGF-II 

Ovarian cancer 

CD98, fascin, sPIgR4 

 and 14-3-3 eta 

Lung cancer 

Troponin I Myocardial infraction 

B-type natriuretic peptide Congestive heart failure 

Beta-HCG (Beta-human 

chorionic gonadotropin) 

testicular cancer and tumors, such as choriocarcinoma and 

molar pregnancies, that begin in placental cells called 

trophoblasts 

CA 125 (Cancer antigen 125) ovarian cancer, non-small cell lung cancer 

CA 15-3 (Cancer antigen 15-3 breast cancer 

CA 19-9 (Cancer antigen 19-

9) 

pancreatic cancer 

  

CA 27-29 (Breast carcinoma-

associated antigen) 

breast cancer 

CEA (Carcinoembryonic 

antygen) 

many cancers, malignant pleural effusion, peritoneal cancer 

dissemination especially liver, intestinal, and pancreatic. 

Table 2. Commonly applied FDA (Food and Drug Administration) tumor markers [1, 248]. 

5.2.2. Troponin I 

TNI is a protein present exclusively in heart cells. The TNI concentration measured in blood 

is a well-established marker of heart muscle injury that’s widely used to diagnose and treat 

heart attacks and other acute coronary syndromes. However Cardinale at al. indicate TNI as 

a protein marker for prediction of possible heart damage after chemotherapy. The increased 

levels of troponin I (TNI) protein in the blood helps identify possible heart damage after 

cancer treatment [232]. Authors also suggest that tracking TNI levels can help form a heart 

disease prevention plan for some chemotherapy patients. TNI categorizes heart disease risk 

early, long before impairment in heart function and symptoms develop, and when many 

preventive treatments would probably help prevent long-term health effects. However TNI 

can be assessed and monitored for the safety and effectiveness of different treatments [232]  
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5.2.3. Caveolin- 1 

Caveolin-1 (Cav-1) plays an important role in cell transformation and the process of 

tumorigenesis. Moreover, Cav-1 is involved in metastatic processes. It has also been shown 

that Cav-1 expression is induced under oxidative stress conditions. It was demonstrated that 

Cav-1 can be a prognostic markers of aggressive (high-grade) forms of prostate cancer [249, 

250]. Authors found that in patients with high serum Cav-1 the antioxidant capacity of the 

body was reduced. These results signify that Cav-1 may be an interesting biomarker for the 

prediction of disease burden [249]. Mercier et al. indicated Cav-1 as a new therapeutic target 

for the treatment of breast cancer. They described Cav-1multiple functions as a controller of 

estrogen signaling and kinase activity and its lately found role as an important factor 

monitoring the dynamic relationship between cancer epithelia and stroma position [251]. 

6. Conclusions 

According the current review we tried to assume oxidative stress related markers in Table 3. 

The association of free radicals, antioxidant enzymes and oxidants at different steps of the 

malignant transformation and in cancer therapeutic applications is evident. Many details 

regarding the detailed role of apoptosis, free radicals and antioxidant markers in multifactor 

diseases such as cancer are still discovered.  

 

Molecular biomarker Process involved in oxidative stress 
iNOS, eNOS, nNOS (inducible/endothelial/neuronal 

nitric oxide synthase) 
ROS and NO 

NO 

Singlet oxygen 

Malondialdehyde (MDA)  

Lipid peroxidation 

4-hydroxynonenal (HNE)  

Hydroxypropanodeoxyguanosines (HO-PdGs)  

Exocyclic etheno DNA adducts (etheno-dA,-dC,-dG) 

Isoprostanes  

Bityrosine cross-links 

Protein oxidation 

Filamin A 

Oxidative scissions 

Amino acid radicals (i.e. proline, histidine, arginine, 

lysine, cysteine) 

paraoxonase-1 

Carbonyl and thiol groups 

GSTpi, Caspases, catalase, superoxide dismutase 

Caveolin-1 

Table 3. Molecular biomarkers of lipid and protein oxidation [249, 252-254]. 
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To determine with confidence which type and what level of oxidative damage can be really 

a applicable biomarker for cancer, needs measuring the DNA of healthy patients during a 

few decades to map the individuals who can develop cancer [121]. 

Author details 

Julita Kulbacka*, Jolanta Saczko, Agnieszka Chwilkowska,  

Anna Choromańska and Nina Skołucka 

Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland 

Acknowledgement 

The study was supported by National Science Center research grant UMO-

2011/01/D/NZ4/01255. 

7. References 

[1] Nordenson NJ, Jones CLA (2002) Tumor Markers, Gale Encyclopedia of Cancer. 

Available: http://www.encyclopedia.com. Accessed 2012 Apr 3. 

[2] Evan GI and Vousden KH (2001) Proliferation, cell cycle and apoptosis in cancer. 

Nature 411: 342–348. 

[3] Johnstone RW, Ruefli AA and Lowe SW (2002) Apoptosis: a link between cancer 

genetics and chemotherapy. Cell 108: 153–164. 

[4] Igney FH and Krammer PH (2002) Death and anti-death: tumour resistance to 

apoptosis. Nat. rev. cancer 2: 277–288. 

[5] Elmore S (2007) Apoptosis: A Review of Programmed Cell Death. Toxicol. pathol. 35: 

495-516. 

[6] Gulbins E, Jekle A, Ferlinz K, Grassme H, Lang F (2000) Physiology of apoptosis. Am. j. 

physiol renal. physiol. 279: 605–615. 

[7] Story M, Kodym R (1998) Signal transduction during apoptosis; implications for cancer 

therapy. Front. biosci. 23: 365-375.  

[8] Foster I (2008) Cancer: A cell cycle defect. Radiography 14: 144-149. 

[9] Dixon S, Soriano BJ, Lush RM, Bomer MM, Figg WD (1997) Apoptosis its role in the 

development of malignacies and its potential as a novel therapeutic target. The ann. of 

pharmaco. 31: 76-81. 

[10] Guimareas CA, Linden R (2004) Apoptosis and alternative death styles. Eur j. biochem. 

366: 1638-1650. 

[11] Vermuelan K, Berneman ZN, van Bockstaele DR (2003) Cell cycle and apoptosis. Cell 

prolif. 36: 165-175. 

[12] Singh R, George J, Shula Y (2010) Role of senescence and mitotic catastrophe in cancer 

therapy. Cell div. 5: 1-12.  

                                                                 
* Corresponding Author 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 287 

[13] Roninson IB (2003) Tumor cell senescence in cancer treatment. Cancer res. 63: 2705-2715. 

[14] DeVita JVT, Hellman S, Rosenberg SA (1997) Cancer: principles and practice of 

oncology. Philadelphia: Lippincott-Raven. 

[15] Thatte U, Dahanukar S (1997) Apoptosis ± clinical relevance and pharmacological 

manipulation. Drugs 54: 511-532. 

[16] Pearson M, Carbone R, Sebastini C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella 

E, Minucci S, Pandolfi PP, Pelicci PG (2000) PML regulates p53 acetylation and 

premature senescence induced by oncogenic Ras. Nature 406: 207-210. 

[17] Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA and Korsmeyer SJ 

(2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c 

during apoptosis. Dev. cell 2: 55–67. 

[18] Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed 

JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-

initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a 

caspase-9-dependent manner. J. cell biol. 144: 281-292. 

[19] Twiddy D, Cain K (2007) Caspase-9 cleavage, do you need it? J. biochem. 405: e1–e2. 

[20] Locksley R M, Killeen N and Lenardo M J (2001) The TNF and TNF receptor 

superfamilies: integrating mammalian biology. Cell 104: 487–501. 

[21] Krupnick AS, Kreisel D, Popma SH, Balsara KR, Szeto WY, Krasinskas AM, Riha M, 

Wells AD, Turka LA, Rosengard BR (2002) Mechanism of T cell-mediated endothelial 

apoptosis. Transplantation 74: 871–876. 

[22] Choy JC, Cruz RP, Kerjner A, Geisbrecht J, Sawchuk T, Fraser SA, Hudig D, Bleackley 

RC, Jirik FR, McManus BM, Granville DJ (2005) Granzyme B induces endothelial cell 

apoptosis and contributes to the development of transplant vascular disease. Am. j. 

transplant. 5: 494-499. 

[23] Barry M, Bleackley RC (2002) Cytotoxic T lymphocytes: all roads lead to death. Nat. rev. 

immunol. 2: 401-409. 

[24] Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA, 

Trapani JA (2000) Initiation of apoptosis by granzyme B requires direct cleavage of bid, 

but not direct granzyme B-mediated caspase activation. J. exp. med. 192:1403-1414. 

[25] Zangemeister-Wittke U, Simon HU (2004) An IAP in action: the multiple roles of 

survivin in differentiation, immunity and malignancy. Cell cycle 3: 1121–1123. 

[26] Jarry A, Vallette G, Cassagnau E, Moreau A, Bou-Hanna C, Lemarre P, Letessier E, Le 

Neel J-C, Galmiche J-P, Laboisse CL (1999) Interleukin 1 and interleukin 1 beta 

converting enzyme (caspase 1) expression in the human colonic epithelial barrier: 

caspase 1 downregulation in colon cancer. Gut 45: 246-251. 

[27] Palmerini F, Devilard E, Jarry A, Birg F, Xerri L (2001) Caspase 7 downregulation as an 

immunohistochemical marker of colonic carcinoma. Human pat. 32: 461-467. 

[28] Huerta S, Heinzerling JH, Anguiano-Hernandez YM, Huerta-Yepez S, Lin J, Chen D, 

Bonavida B, Livingston EH (2007) Modification of gene products involved in resistance 

to apoptosis in metastatic colon cancer cells: roles of Fas, Apaf-1, NFkappaB, IAPs, 

Smac/DIABLO, and AIF. J surg. res. 142: 184-194. 



 
Antioxidant Enzyme 288 

[29] Mese H, Sasaki A, Nakayama S, Alcalde RE, Matsumura T (2000) The role of caspase 

family protease, caspase-3 on cisplatin-induced apoptosis in cisplatin-resistant A431 cell 

line. Cancer chemother. pharmacol. 46: 241-245. 

[30] Kugler W, Buchholz F, Köhler F, Eibl H, Lakomek M, Erdlenbruch B (2005) 

Downregulation of Apaf-1 and caspase-3 by RNA interference in human glioma cells: 

consequences for erucylphosphocholine-induced apoptosis. Apoptosis 10: 1163-1174. 

[31] Zhang XD, Borrow JM, Zhang XY, Nguyen T, Hersey P (2003) Activation of ERK1/2 

protects melanoma cells from TRAIL induced apoptosis by inhibiting Smac/DIABLO 

release from mitochondria. Oncogene 22: 2869–2881. 

[32] Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, 

Herman JG, Gerald WL, Lazebnik YA, Cordon-Cardo C, Lowe SW (2001) Inactivation 

of the Apoptosis Fffector Apaf-1 in Malignant Melanoma. Nature 409: 207–211. 

[33] Shinoura N, Sakurai S, Asai A, Kirino T and Hamada H (2001) Cotransduction of Apaf-

1 and caspase-9 augments etoposide-induced apoptosis in U-373MG glioma cells. Jpn. j. 

cancer res. 92: 467-474. 

[34] Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H (2000) Transduction of Apaf-1 or 

caspase-9 induces apoptosis in A-172 cells that are resistant to p53-mediated apoptosis. 

Biochem. biophys. res. commun. 272: 667-673.  

[35] Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by 

ligation of CD20 with monoclonal antibodies. Blood 1: 1644-52. 

[36] Jazirehi AR, Gan XH, De Vos S, Emmanouilides C, Bonavida B (2003) Rituximab (anti-

CD20) selectively modifies Bcl-xL and apoptosis protease activating factor-1 (Apaf-1) 

expression and sensitizes human non-Hodgkin's lymphoma B cell lines to paclitaxel-

induced apoptosis. Mol. cancer 2: 1183-1193. 

[37] Jazirehi AR, Bonavida B (2005) Cellular and molecular signal transduction pathways 

modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma: 

implications in chemosensitization and therapeutic intervention. Oncogene 24: 2121-

2143. 

[38] Boesen-de Cock JG, de Vries E, Williams GT, Borst J (1998) The anti-cancer drug 

etoposide can induce caspase-8 processing and apoptosis in the absence of CD95 

receptor-ligand interaction. Apoptosis 3: 17-25. 

[39] Jin C, Wang Y, Han W, Zhang Y, He Q, Li D, Yin C, Tian L, Liu D, Song Q and Ma D 

(2007) CMTM8 Induces Caspase Dependent and –Independent Apoptosis Through a 

Mitochondria-Mediated Pathway. J. cell physiol. 211: 112–120. 

[40] Cretney E, Shanker A, Yagita H, Smyth MJ, Sayers TJ (2006) TNF-related apoptosis-

inducing ligand as a therapeutic agent in autoimmunity and cancer. Immunol. and cell 

biol. 84: 87–98. 

[41] Ito H, Yagita A, Fujitsuka M, Atomi Y, Tatekawa I (1996) Tumor Necrosis Factor 

Production and Colon Cancer. Jpn. j. cancer res. 87:1160-1164. 

[42] Sato S., Kigawa J., Mingava Y. Chemosensivity and p53-depenedent apoptosis in 

epithelial ovarian carcinoma. Cancer 86: 1307-1313. 

[43] Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88: 323-31. 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 289 

[44] Riley T, Sontag E, Chen P & Levine A (2008) Transcriptional control of human p53- 

regulated genes. Nature rev. mol. cell biol. 9: 402-412. 

[45] Kirsh DG, Kastan MB (1998) Tumor-supressor p53: implications for tumor development 

and prognosis. J clin. oncol. 16: 3158-3168. 

[46] Yu J, Zhang L (2005) The transcriptional targets of p53 in apoptosis control. Biochem. 

res. commu. 331: 851-858. 

[47] Tong WM, Cortes U, Wang ZQ (2001) Poly(ADP-ribose) polymerase:a guardian angel 

protecting the genome and suppressing tumorigenesis. Biochim. biophys. acta 1552: 27–

37. 

[48] Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Smulson ME (1999) Poly(ADP-

ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer res. 59: 

2190–2194. 

[49] Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CAJ, Butel JS, 

Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to 

spontaneous tumours. Nature 356: 215-221. 

[50] El-Deiry WS (2003) The role of p53 in chemosensitivity and radiosenssitivity. Oncogene 

22: 7486-7495.  

[51] Stokłosa T and Gołąb J (2005) Prospects for based cancer therapy. Acta biochim. pol. 52: 

321-328.  

[52] Gerl R and Vaux DL (2005) Apoptosis in the development and treatment of cancer. 

Carcinogenesis 26: 263-270. 

[53] Ferreira CG, Tolis C and Giaconne G (1999) P53 and chemosensitivity. Ann. oncol. 10: 

1011-1021.  

[54] Miyata H, Doki Y, Shiozoki H, Inoue M, Yano M, Fujiwara Y, Yamamoto H, Nishioka K, 

Kishi K, Monden M (2000) CDC25B and p53 are independently implicated in radiation 

sensitivity for human esophageal cancers. Clin. cancer res. 6: 4859-4865. 

[55] Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE 

and Jacks T (1993) p53 is required for irradiation-induced apoptosis in mouse 

thymocytes. Nature 362: 847-849.  

[56] Love SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and 

Jacks T (1994) p53 status and the efficacy of cancer therapy. Science 266: 807-810. 

[57] Mitsunga M, Tsubota A, Nariai K, Sumi M, Yoshikawa T (2007) Early apoptosis and cell 

death induced by ATX-S10Na(II)-mediated photodynamic therapy are Bax- and p53 

dependent in human colon cancer cells. World j. gastroentero.13: 692-698. 

[58] Bar KB, Saczko J, Ziółkowski P, Chwiłkowska A, Słomska I, Drąg-Zalesińska M, 

Wysocka T, Duś D (2007) Photofrin II based photosensitization of human ovarian clear-

cell carcinoma cell Line (OvBH-1). Pharm. rep. 59: 1734-1140. 

[59] Saczko J (2011) Determination of photodynamic therapy efficiency in clear ovarian 

cancer resistant to chemo- and radiotherapy. Habilitation, Wroclaw: Publishing House 

Wroclaw Medical University.  

[60] Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signalling 

mechanism in photodynamic therapy. Biochim. biophys. acta 1704: 59-86. 



 
Antioxidant Enzyme 290 

[61] Natalija F., Pirkko H., Risto E. Effects of estradiol and medroxyprogesterone acetate on 

expressionof the cell cycle proteins cyclin D1, p21 and p27 in cultured human breast 

tissues. Cell cycle 2008; 7: 71-80. 

[62]  Olsson A, Norberg M, Okvist A, Dercov K, Choudhury A, Tobin G, Celsing F, 

Osterborg FA, Rosenquist R, Jondal M, Osorio LM (2007) Upregulation of bif-1 is a 

potential mechanism of chemoresistance in B-cell chronic lymphocytic leukaemia. Br. j. 

cancer 97: 769-780.  

[63] Yoshida K, Liu H and Miki Y (2006) Proteinkinase C  regulates Ser 46 phosforylation of 

p53 tumor suppressor in the apoptotic response to DNA damage. J. biol. chem. 281: 

5734-5740.  

[64] Lee S, Elenbaas B, Levine A, Griffith J (1995) p53 and its 14 kDa C-terminal domain 

recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81: 

1013–1020. 

[65] Lian F, Li Y, Bhuiyan M, Sarkar FH (1999) p53-independent apoptosis induced by 

genistein in lung cancer cells. Nutr. cancer 33: 125–131. 

[66] Kmet LM, Cook LS, Magliocco AM (2003) A review of p53 expression and mutation in 

human benign, low malignant potential, and invasive epithelial ovarian tumors. Cancer 

2: 389-404. 

[67] Inoue A, Narumi K, Matsubara N, Sugawara S, Saijo Y, Satoh K, Nukiwa T (2000) 

Administration of wild type p53 adenoviral vector synergistically enhances the 

cytotoxicity of anti-cancer drugs in human lung cancer cells irrespective of the status of 

p53 gene. Cancer lett. 157: 105–112.  

[68] Hołownia A, Mróz M, Kozłowski M, Chyczewska E, Laudański J, Chyczewski L, 

Braszko JJ (2007) Potranslacyjna fosforylacja białka p53 w komórkach niedrobno 

komórkowego raka płuca po radio- i chemioterapii. Via med. 75: 241-250. 

[69] Luciani MG, Hutchins JR, Zheleva D, Hupp TR (2000) The C-terminal regulatory 

domain of p53 contains a functional docking site for cyclin A. J. mol. biol. 300: 503–518. 

[70] Mendoza-Alvarez H, Alvarez-Gonzalez R (2001) Regulation of p53 sequence-specific 

DNA-binding by Covalent Poly(ADP--ribosyl)ation. J. biol. chem. 276: 36425–36430. 

[71] Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on 

cell growth and apoptosis. Nature 408: 377-381. 

[72] Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, Distefano PS, Huber LJ (2006) 

Inhibition of SIRT1 Catalytic Activity Increases p53 Acetylation but Does Not Alter Cell 

Survival following DNA Damage. Mol cell biol. 26: 28-38. 

[73] Friedman JS and Lowe SW (2003) Control of apoptosis by p53. Oncogene 22: 9030-9040. 

[74] Kam PC, Fersh NI (2000) Apoptosis: mechanisms and clinical applications. Anaesthesia 

55: 1081-1093. 

[75] Reed JC, Pellecchia M (2005) Apoptosis-based therapies for hematologic malignancies. 

Blood 106: 408-418. 

[76] Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X & Choi AMK (2007) 

Mechanisms of cell death in oxidative stress. Antioxid. redox sign. 9: 49-89. 

[77] Kelekar A & Thompson CB (1998) Bcl-2 family proteins: the role of the BH3 domain in 

apoptosis. Trends cell biol. 8: 324-330. 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 291 

[78] Bouillet P, Straser A (2002) BH3-only proteins-evolutionarily conserved pro-apoptotic 

Bcl-2 family members essential for initiating programmed cell death. J. cell sci. 115: 

1567-1574. 

[79] Packham G, Stevenson FK (2005) Bodyguards and assassins: Bcl-2 family proteins and 

apoptosis control in chronic lymphocytic leukaemia. Immunol. 114: 441-449. 

[80] Haupt S, Berger M, Goldberg Z and Haupt Y (2003) Apoptosis-the p53 network. J of 

Cell Science 116: 4077-4085.  

[81] Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T 

and Tanaka N (2000) Noxa, a BH3-only member of Bcl-2 family and candidate mediator 

of p53 induced apoptosis. Science 288: 1053-1058. 

[82] Thornborrow EC, Patel S, Mastropietro AE, Schwartzfarb EM and Manfredi JJA (2002) 

Conserved intronic response element mediates direct p53-dependent transcriptional 

activation of both the human and murine bax genes. Oncogene 21: 990-999.  

[83] Zhang WG, Li XW, Ma LP, Wang SW, Yang HY, Zhang ZY (1999) Wild-type p53 

protein potentiates phototoxicity of 2-BA-2-DMHA in HT29 cells expressing 

endogenous mutant p53. Cancer lett.138: 189-195. 

[84] Bouvard V, Zaitchouk T, Vacher M, Duthu A, Canivet M, Choisy-Rossi C, Nieruchalski 

M and May E (2000) Tissue and cell-specific expression of the p53-target genes: bax, fas, 

mdm2 and waf1/p21, before and following ionising irradiation in mice. Oncogene 19: 

649-660. 

[85] Skulachev, V. P. (1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS 

Lett. 423, 275-280. 

[86] Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M, Korsmeyer 

SJ and McKinnon PJ (2000) ATM and Bax cooperate in ionizing radiation-induced 

apoptosis in the central nervous system. Proc. natl. acad. sci. 97: 889-894. 

[87] McCurrach ME, Connor TM, Knudson CM, Korsmeyer SJ and Lowe SW (1997) Bax-

deficiency promotes drug resistance and oncogenic transformation by attenuating p53-

dependent apoptosis. Proc. natl. acad. sci. 94: 2345-2349. 

[88] Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW and Jacks T 

(2000). PERP, an apoptosis-associated target of p53, is a novel member of the PMP-

22/gas3 family. Genes dev. 14: 704-718. 

[89] Pritchard DM, Potten CS, Korsmeyer SJ, Roberts S and Hickman JA (1999) Damage-

induced apoptosis in intestinal epithelia from bcl-2- null and bax-null mice: 

investigations of the mechanistic determinants of epithelial apoptosis in vivo. Oncogene 

18: 7287-7293. 

[90] Yu J, Zhang L, Hwang P, Kinzler KW and Vogelstein B (2001) PUMA induces the rapid 

apoptosis of colorectal cancer cells. Mol. cell 7: 673-682. 

[91] Nakano K and Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by 

p53. Mol. cell 7: 683-694. 

[92] Yu J, Wang Z, Kinzler KW, Vogelstein B and Zhang L (2003) PUMA mediates the 

apoptotic response to p53 in colorectal cancer cells. Proc. natl. acad. sci. 100: 1931-1936. 

[93] Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ and El-Deiry WS (2002) BID 

regulation by p53 contributes to chemosensitivity. Nat. cell biol. 4: 842-849. 



 
Antioxidant Enzyme 292 

[94] Minn AJ, Rudin CM, Boise LH, Thompson CB (1995) Expression of bcl-xL can confer a 

multidrug resistance phenotype. Blood 86: 1903-1910. 

[95] Reed JC (2008) Bcl-2-family proteins and hematologic malignancies: history and future 

prospects. Blood 111: 3322-3330. 

[96] Sellers WR and Fisher DE (1999) Apoptosis and cancer drug targeting. J. clin. invest. 

104: 1655-1661. 

[97] Kang SJ, Kim BM, Lee YJ, Hong SH, Chung HW (2009) Titanium dioxide nanoparticles 

induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-

stimulated human lymphocytes. Biochem. biophys. res. commun. 386: 682-687. 

[98] Reed JC (1999) Fenretinide: the death of a tumor cell. J. natl. cancer inst. 91: 1099-1100. 

[99] Lauria F, Raspadori D, Rondelli D, Ventura MA, Fiacchini M, Visani G, Forconi F, Tura 

S (1997) High bcl-2 expression in acute myeloid leukemia cells correlates with CD34 

positivity and complete remission rate. Leukemia 12: 2075-2078.  

[100] Orian A, Whiteside S, Isssssrael A, Stancovski I, Scwartz AL and Ciechanover A (1995) 

Ubiquitin-Mediated Processing of NF-kB Transcriptional Activator Precursor p105. J. 

biol. chem. 270: 21707–21714. 

[101] Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV and 

Hershko A (1995) The cyclosome, a large complex containing cyclin-selective ubiquitin 

ligase activity, targets cyclins for destruction at the end of mitosis. Mol. biol. cell 6:185-

197. 

[102] Haas AL and Siepman TJ (1997) Pathways of ubiquitin conjugation. FASEB j. 14: 1257-

1268. 

[103] Zhang HG, Wang J, Yang X, Hsu HCh and Mountz JD (2004) Regulation of apoptosis 

proteins in cancer cells by ubiquitin. Oncogene. 23: 2009-2015.[ 

[104] Breitschopf K, Haendeler J, Malchov P, Zeiher AM and Dimmeler S (2000) 

Posttranslational Modyfication of Bcl-2 Facilitates its Proteosome Dependent 

Degradation: Molecular Characterization of the Involved Signaling Pathway. Mol. and 

cell biol. 10: 1886-1896.  

[105] Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R (2001) X-linked Inhibitor of 

Apoptosis Protein (XIAP) Inhibits Caspase-3 and -7 in Distinct Dodes. J. biol. chem. 276: 

27058–27063. 

[106] Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D Courtois G (2003) 

The tumor suppressorCYLD negativly regulates NF-kappaB signaling by 

deubiquitination. Nature 6950: 801-805. 

[107] Aklyama T, Bouillet P, Miyazaki T, Kadano Y, Chikuda H, Chung U, Fukuda A, 

Khiikita A, Seto H, Okada T (2003) Regulation of Apoptosis by Ubiquitlation of 

Proapoptotic BH3 only Bcl-2 Family Member Bim. EMBO j. 22: 6653-6664. 

[108] Beere HM (2004) The Stress of Dying: The Role of Heat Shock Proteins in The 

Regulation of Apoptosis. J. cell sci. 117: 2641-2651. 

[109] Kaźmierczuk A, Kiliańska ZM (2009) The Pleiotropic Activity of Heat-Shock Proteins. 

Postepy hig. med. dosw. 63: 502-521. 

[110] Morimoto RI (1993) Cells in Stress: Transcriptional Activation of Heat Shock Genes. 

Science 259: 1409–1410. 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 293 

[111] Charette SJ, Lavole JN, Lambert H and Landry J (2000) Inhibition of Daxx-Mediated 

Apoptosis by Heat Shock Protein 27. Mol. cell biol. 20: 7602-7612. 

[112] Thanner F, Sutterlin M, Kapp L, Rieger AK, Morr P, Kristen P, Dietl J, Gassel AM and 

Muller T (2005) Heat Shock Protein 27 is Associated with Decreased Survival Node-

Negative Breast cancer patients. Anticancer res. 25: 1649-1654.  

[113] Artsi HJG, Hollema H, Lemstra W, Wilemse PHB, DeVries EGE, Kampinga HH and 

Van der Zeee AGJ (1999) Heat Shock Protein 27(HSP27) Expression in Ovarian 

Carcinoma Relation in Response to Chemotherapy and Prognosis. Int. j. cancer 84: 234-

238.  

[114] Langdon SP, Rabiasz GJ, Hirst GL (1995) Expression of the Heat Shock Protein HSP27 

in Human Ovarian Cancer. Clin. cancer res. 1: 1603-1609. 

[115] Gabai VL, Mabuchi K, Mosser DD and Sherman NY (2002) Hsp 72 and Stress c-jun N-

terminal Kinase Regulate the Bid-Dependent Pathway in Tumor Necrosis Factor-

Induced Apoptosis. Mol. cell biol. 22: 3415-3424.  

[116] Paul C, Monero F, GoninS, Kretz –Remy C, Virot S and Arrigo AP (2002) Hsp 27as a 

Negative Regulator of Cytochrome c Release. Mol. cell biol. 22: 816-834. 

[117] Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense 

under oxidative stress. The antioxidant responsive element. Biochemistry–Moscow 71: 

962-974. 

[118] Burlakova EB, Zhizhina GP, Gurevich SM, Fatkullina LD, Kozachenko AI, Nagler LG, 

Zavarykina TM, Kashcheev VV (2010) Biomarkers of oxidative stress and smoking in 

cancer patients. J. cancer res. ther. 6: 47-53. 

[119] Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem. j. 

401: 1-11. 

[120] Yuzhalin AE, Kutikhin AG (2012) Inherited variations in the SOD and GPX gene 

families and cancer risk. Free radic. res. Epub ahead of print. 

[121] Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and 

antioxidants in oxidative stress-induced cancer. Chem. biol. interact. 160:1-40. 

[122] Fridovich I (1986) Superoxide dismutases. Adv. Enzymol. relat. areas mol. biol. 58: 61-

97. 

[123] Ho YS, Crapo JD (1988) Isolation and characterization of complementary DNAs 

encoding human manganese-containing superoxide dismutase. FEBS lett. 229: 256-260. 

[124] Guidot DM, McCord JM, Wright RM, Repine JE (1993) Absence of electron transport 

(Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient 

Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major 

source of superoxide generation in vivo. J. biol. chem. 268: 26699-26703. 

[125] Gromer S, Eubel JK, Lee BL, Jacob J (2005) Human selenoproteins at a glance. Cell mol. 

life sci. 62: 2414-2437. 

[126] Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its 

implications for health. J. nutr. 134: 489-492. 

[127] Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione 

peroxidases. Free radic. biol. med. 27: 951-965. 



 
Antioxidant Enzyme 294 

[128] Forsberg L, de Faire U, Morgenstern R (1999) Low yield of polymorphisms from EST 

blast searching: analysis of genes related to oxidative stress and verification of the 

P197L polymorphism in GPX1. Hum. mutat. 13: 294-300. 

[129] Maiorino M, Thomas JP, Girotti AW, Ursini F(1991) Reactivity of phospholipid 

hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid 

hydroperoxides. Free radic. res. commun. 13: 131-135. 

[130] Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human 

diseases. Clin. biochem. 32: 595-603. 

[131] Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic 

implications. Drug resist. updat. 7: 97-110. 

[132] Xie J, Fan R, Meng Z (2007) Protein oxidation and DNA-protein crosslink induced by 

sulfur dioxide in lungs, livers, and hearts from mice. Inhal. toxicol. 19: 759-765. 

[133] Oberley TD, Oberley LW (1997) Antioxidant enzyme levels in cancer. Histol. 

histopathol. 12: 525-535. 

[134] Sato K, Ito K, Kohara H, Yamaguchi Y, Adachi K, Endo H (1992) Negative regulation 

of catalase gene expression in hepatoma cells. Mol. cell biol. 12: 2525-2533. 

[135] Li Y, Reuter NP, Li X, Liu Q, Zhang J, Martin RC (2010) Colocalization of MnSOD 

expression in response to oxidative stress. Mol. carcinog. 49: 44-53. 

[136] Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF (2007) 

Systemic effects of smoking. Chest 131: 1557- 66. 

[137] Stepovaya EA, Novitskii W, Ryazantseva NV, Goldberg VE, Tkachenko SB, Kolosova 

MV (2003) Structure and properties of lipid bilayer of erythrocyte membranes in 

patients with malignant tumors. Bull. exp. biol. med. 136: 490-3. 

[138] Yano T, Shoji F, Baba H, Koga T, Shiraishi T, Orita H, Kohno H (2009) Significance of 

the urinary 8-OHdG level as an oxidative stress marker in lung cancer patients. Lung 

cancer 63: 111-114. 

[139] Nowsheen S, Wukovich RL, Aziz K, Kalogerinis PT, Richardson CC, Panayiotidis MI, 

Bonner WM, Sedelnikova OA, Georgakilas AG (2009) Accumulation of oxidatively 

induced clustered DNA lesions in human tumor tissues. Mutat. res. 674: 131-136. 

[140] Paz-Elizur T, Sevilya Z, Leitner-Dagan Y, Elinger D, Roisman LC, Livneh Z (2008) 

DNA repair of oxidative DNA damage in human carcinogenesis: Potential application 

for cancer risk assessment and prevention. Cancer lett. 266: 60-72. 

[141] Beevi SS, Rasheed MH, Geetha A (2007) Evidence of oxidative and nitrosative stress in 

patients with squamous cell carcinoma. Clin. chim. acta. 375: 119-123. 

[142] Patel BP, Rawal UM, Rawal RM, Shukla SN, Patel PS (2008) Tobacco, antioxidant 

enzymes, oxidative stress, and genetic susceptibility in oral cancer. Am. j. clin. oncol. 31: 

454-459.  

[143] Yanbaeva DG, Wouters EF, Dentener MA, Spruit MA, Reynaert NL(2009) Association 

of glutathione -S-transferase omega haplotypes with susceptibility to chronic 

obstructive pulmonary disease. Free radic. res. 43: 738-743. 

[144] Fiaschi AI, Cozzolino A, Ruggiero G, Giorgi G (2005) Glutathione, ascorbic acid and 

antioxidant enzymes in the tumor tissue and blood of patients with oral squamous cell 

carcinoma. Eur rev. med. pharmacol. sci. 9: 361-7. 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 295 

[145] Patel BP, Rawal UM, Dave TK, Rawal RM, Shukla SN, Shah PM, Patel PS (2007) Lipid 

peroxidation, total antioxidant status, and total thiol levels predict overall survival in 

patients with oral squamous cell carcinoma. Integr. cancer ther. 6: 365-372. 

[146] Gokul S, Patil V, Jailkhani R, Hallikeri R, Kattappagari K (2010) Oxidant- antioxidant 

status in blood and tumor tissue of oral squamous cell carcinoma patients. Oral dis. 16: 

29-33. 

[147] Gargouri B, Lassoued S, Ayadi W, Karray H, Masmoudi H, Mokni N, Attia H, El Feki 

Ael F (2009) Lipid peroxidation and antioxidant system in the tumor and in the blood of 

patients with nasopharyngeal carcinoma. Biol. trace elem. res. 132: 27-34. 

[148] Grace Nirmala J, Narendhirakannan RT (2011) Detection and Genotyping of High-

Risk HPV and Evaluation of Anti-Oxidant Status in Cervical Carcinoma Patients in 

Tamil Nadu State, India - a Case Control Study. Asian pac. j. cancer prev. 12: 2689-2695. 

[149] Spychalowicz A, Wilk G, Sliwa T, Ludew D, Guzik TJ (2012) Novel therapeutic 

approaches in limiting oxidative stress and inflammation. Curr. pharm. biotechnol. 

Epub ahead of print. 

[150] Bedard K, Krause KH (2007) The NOX Family of ROS-Generating NADPH Oxidases: 

Physiology and Pathophysiology. Physiol. rev. 87: 245-313. 

[151] Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD (2009) Small-molecule NOX 

inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid. redox. 

signal. 11: 2535-2552. 

[152] Kikuchi H, Hikage M, Miyashita H, Fukumoto M (2000) NADPH oxidase subunit, 

gp91(phox) homologue, preferentially expressed in human colon epithelial cells. Gene 

254: 237–243. 

[153] Banfi B, Maturana A, Jaconi S, Arnaudeau S, Laforge T, Sinha B, Ligeti E, Demaurex N, 

Krause KH (2000) A mammalian H+ channel generated through alternative splicing of 

the NADPH oxidase homolog NOH-1. Science 287: 138–142. 

[154] Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR (2005) The 

contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. 

Cardiovasc. res. 65: 495–504. 

[155] Fu X, Beer DG, Behar J, Wands J, Lambeth D, Cao W (2006) cAMP response element 

binding protein (CREB) mediates acid-induced NADPH oxidase NOX5-S expression in 

Barrett's esophageal adenocarcinoma cells. J. biol. chem. 281: 20368-20382. 

[156] Gołąb J, Nowis D, Skrzycki M, Czeczot H, Barańczyk-Kuźma A, Wilczyński GM, 

Makowski M, Mróz P, Kozar K, Kamiński R, Jalili A, Kopeć M, Grzela T and Jakóbisiak 

M (2003) Antitumor Effects of Photodynamic Therapy Are Potentiated by 2-

Methoxyestradiol. J. biol. chem. 278: 407–414. 

[157] Hamblin MR, Mróz P (2008) History of PDT: the first hundred years. In: Hamblin 

M.R., Mróz P, editors. Advances in Photodynamic Therapy: Basic, Translational and 

Clinical. Boston-London: Artech House. pp. 1-12. 

[158] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng 

Q (1998) Photodynamic therapy. J. natl. cancer inst. 90: 889-905. 



 
Antioxidant Enzyme 296 

[159] Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D and Mittleman A 

(1978) Photoradiation therapy for the treatment of malignant tumors. Cancer res. 38: 

2628-2635. 

[160] Saczko J, Kulbacka J, Chwiłkowska A, Drąg-Zalesińska M, Wysocka T, Ługowski M & 

Banaś T (2005) The influence of photodynamic therapy on apoptosis in human 

melanoma cell line. Folia histochem. cyto. 43: 129-132. 

[161] MacCormack MA (2006) Photodynamic Therapy. Adv. dermatol. 22: 219-258. 

[162] Triesscheijn M, Baas P, Schellens JHM, Stewart FA (2006) Photodynamic Therapy in 

Oncology. Oncologist 11: 1034-1044. 

[163] Castano AP, Demidova T N, Hamblin MR (2005) Mechanisms in photodynamic 

therapy: part two - cellular signaling, cell metabolism and modes of cell death. 

Photodiag. photodyn. ther. 2: 1-23. 

[164] Ochsner M (1997) Photophysical and photobiological processes in the photodynamic 

therapy of tumours J. photochem. photobiol. b 39: 1-18. 

[165] Pospíšil P. (2012) Molecular mechanisms of production and scavenging of reactive 

oxygen species by photosystem II. Biochim biophys acta. 1817(1):218-231 

[166] Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic 

therapy: part one - photosensitizers, photochemistry and cellular localization. 

Photodiagn. photodyn. ther. 4: 279-293. 

[167] Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MRL and Chaplin DJ (2000) 

Nitric oxide production by tumour tissue: impact on the response to photodynamic 

therapy. Br j. cancer 82: 1835-1843. 

[168] Kuroda M, Himei K, St Clair DK, Urano M, Yoshino T, Akagi T, Asaumi J, Akaki S, 

Takeda Y, Kanazawa S, Hiraki Y (2000) Overexpression of manganese superoxide 

dismutase gene suppresses spontaneous apoptosis without a resultant alteration in in 

vivo growth of the mouse fibrosarcoma, FSa-II. Anticancer res. 20: 7-10. 

[169] Zhao Y, Kiningham KK, Lin SM, St Clair DK (2001) Overexpression of MnSOD 

protects murine fibrosarcoma cells (FSa-II) from apoptosis and promotes a 

differentiation program upon treatment with 5-azacytidine: involvement of MAPK and 

NFkappaB pathways. Antioxid. redox signal. 3: 375-386. 

[170] Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase 

as a target for the selective killing of cancer cells. Nature 6802: 390-395. 

[171] Kliukiene R, Maroziene A, Nivinskas H, Cenas N, Kirveliene V, Juodka B (1997) The 

protective effects of dihydrolipoamide and glutathione against photodynamic damage 

by Al-phtalocyanine tetrasulfonate. Biochem. mol. biol. int. 41: 707-713. 

[172] Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B (2005) Photodynamic treatment 

with fractionated light decreases production of reactive oxygen species and cytotoxicity 

in vitro via regeneration of glutathione. Photochem. photobiol. 81: 609-613. 

[173] Nowis D, Legat M, Grzela T, Niderla J, Wilczek E, Wilczyński GM, Głodkowska E, 

Mrówka P, Issat T, Dulak J, Józkowicz A, Waś H, Adamek M, Wrzosek A, Nazarewski 

S, Makowski M, Stokłosa T, Jakóbisiak M and Gołąb J (2006) Heme oxygenase-1 

protects tumor cells against photodynamic therapy-mediated cytotoxicity. Oncogene 25: 

3365–3374.  



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 297 

[174] Wagener FA, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG 

(2003) Different faces of the heme-heme oxygenase system in inflammation. Pharmacol 

rev. 55: 551-571. 

[175] Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an 

antioxidant of possible physiological importance. Science 235:1043–1046. 

[176] Kapitulnik J (2004) Bilirubin: an endogenous product of heme degradation with both 

cytotoxic and cytoprotective properties. Mol. pharmacol. 66: 773–779. 

[177] Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme 

oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. pharmacol. 80: 

1895-1903. 

[178] Kocanova S, Buytaert E, Matroule JY, Piette J, Gołąb J, Witte P, Agostinis P (2007) 

Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and 

suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. 

Apoptosis 12: 731–741. 

[179] Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, 

LaMotte F, Gaziano JM, Ridker PM, Willett W, Peto R (1996) Lack of effect of long-term 

supplementation with beta carotene on the incidence of malignant neoplasms and 

cardiovascular disease. N. engl. j. med. 334: 1145-1149. 

[180] Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A, Keogh JP, 

Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S (1996) Effects of a 

combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. 

N. engl. j. med. 334: 1150-1155. 

[181] The Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group, (1994) The 

effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers 

in male smokers N. engl. j. med. 330: 1029. 

[182] Crabtree DV, Adler AJ (1997) Is β-carotene an antioxidant? Med. hypoth. 48: 183. 

[183] Zhang P, Omaye ST (2001) Antioxidant and prooxidant roles for β-carotene, α- 

tocopherol and ascorbic acid in human lung cells. Toxicol. in vitro, 15: 13. 

[184] Kim KN, Pie JE, Park JH, Park YH, Kim HW, Kim MK (2006) Retinoic acid and 

ascorbic acid act synergistically in inhibiting human breast cancer cell proliferation. J 

Nutr Biochem. Jul;17(7): 454-62. Epub 2005 Nov 15. 

[185] Burton GW, Ingold KU (1984) β-carotene: an unusual type of lipid antioxidant. 

Science. 224: 569. 

[186] Zhang P Omaye ST (2000) β-carotene and protein oxidation: effects of ascorbic acid 

and α-tocopherol. Toxicology. 146: 37. 

[187] Astorg P (1997) Food carotenoids and cancer prevention: an overview of current 

research. Trends food sci. Technol. 8: 406. 

[188] Nishino H (1998) Cancer prevention by carotenoids. Mutat. res. 402: 159. 

[189] Nishino H, Murakosh M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada 

S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer 

chemoprevention. Cancer Mmetastasis Rev. 21: 257. 



 
Antioxidant Enzyme 298 

[190] Landrum JT, Bone RA, Herrero C (2002) Astaxanthin, β-cryptoxanthin, lutein, and 

zeaxanthin, in Phytochemicals in Nutrition and Health. Meskin, M.S. et al., Eds., CRC 

Press, Boca raton, Florida, chap. 12. 

[191] Polaczek-Krupa B, Czechowicz-Janicka K (2004) Rola antyoksydantów w profilaktyce i 

leczeniu chorób oczu. (The role of antioxidants in the prevention and treatment of eye 

diseases) Ordynator leków. 4.  

[192] Head K (2001) Natural therapies for ocular disorders, part 2: cataract and glaucoma. 

Altern. med. rev. 6: 141. 

[193] Ball S (2001) Antyoksydanty w medycynie i zdrowiu człowieka (Antioxidants in 

medicine and human’s health). Medyk, Warszawa. 

[194] Chan PH, Kinouchi H, Epstein CJ, Carlson E, Chen SF, Imaizumi S, Yang GY (1993) 

Role of superoxide dismutase in ischemic brain injury: reduction of edema and 

infarction in transgenic mice following focal cerebral ischemia. Prog. brain res. 96: 97-

104. 

[195] Kleszczewska E (2002) Witamina C jako naturalny antyoksydant.(Vitamin C as a 

natural antioxidant) Farm. pol. 58: 913. 

[196] Khassaf M, McArdle A, Esanu C, Vasilaki A, McArdle F, Griffiths RD, Brodie DA, 

Jackson MJ (2003) Effect of vitamin C supplements on antioxidant defence and stress 

proteins in human lymphocytes and skeletal muscle. J physiol, 549.2, pp. 645–652. 

[197] Chan AC. (1993) Partners in defense, vitamin E and vitamin C. Can j physiol 

pharmacol 71(9): 725-731. 

[198] Liu C, Russell RM, Wang XD (2004) a-Tocopherol and ascorbic acid decrease the 

production of h-apo-carotenals and increase the formation of retinoids from h-carotene 

in the lung tissues of cigarette smoke-exposed ferrets in vitro. J nutr. 134: 426– 30. 

[199] Chorvatovicova D, Ginter E, Kosinova A, Zloch Z (1991) Effect of vitamins C and E on 

toxicity and mutagenicity of hexavalent chromium in rat and guinea pig. Mutat. res. 

262:41– 6. 

[200] Kim KN, Pie JE, Park JH, Park YH, Kim HW, Kim MK (2006) Retinoic acid and 

ascorbic acid act synergistically in inhibiting human breast cancer cell proliferation. J 

nutr biochem. 17(7): 454-62.  

[201] You WC, Zhang L, Gail MH, Chang YS, Liu WD, Ma JL, Li JY, Jin ML, Hu YR, Yang 

CS, Blaser MJ, Correa P, Blot WJ Fraumeni JF, Xu GW (2000) Gastric cancer: 

Helicobacter pylori, serum Vitamin C, and other risk factors. J. natl. cancer inst. 92: 

1607–1612. 

[202] Knekt P, Jarvinen R, Seppanen R, Rissanen A, Aromaa A, Heinonen OP, Albanes D, 

Heinonen M, Pukkala E, Teppo L (1991) Dietary antioxidants and the risk of lung-

cancer. Am. j. epidemiol. 134: 471–479. 

[203] Van Poppel G, van den Berg H (1997) Vitamins and cancer. Cancer lett. 114(1-2): 195-

202. 

[204] Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic 

implications for antioxidant treatment. Drugs aging. 18: 685-716. 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 299 

[205] Nea M, Jarmo V, MiKKo V, Demetrius A (1999) The effect of α-tocopherol and β 

carotene supplementation on colorectal adenomas in middle aged male smokers. 

Cancer epidemiol. 8: 489–493. 

[206] Gail ME, Catherine H, Vartouhi J, Elizabeth BS, Peter D, Robert WB (1988) A 

randomized trial of vitamins C and E in the prevention of recurrence of colorectal 

polyps. Cancer res. 48: 4701– 4705. 

[207] Robert S, Zygmunt G, Yousif S, Godwin BE, Maciej S (2005) Cysteine peptidase and its 

inhibitor activity levels and vitamin E concentration in normal human serum and 

colorectal carcinomas. World j gastroentnol. 11(6): 850–853. 

[208] White E, Shannon JS, Patterson RE (1997) Relationship between vitamin and calcium 

supplement use and colon cancer. Cancer epidemiol. biomark. prev. 6: 769–774. 

[209] Bhagat Sonali S, Ghone Rahul A, Suryakar Adinath N, Hundekar Prakash S (2011) 

Lipid peroxidation and antioxidant vitamin status in colorectal cancer patients. Indian j 

physiol pharmacol. 55 (1): 72–76.  

[210] Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in 

randomized trials of antioxidant supplements for primary and secondary prevention: 

systematic review and meta-analysis, JAMA, 297 (8), 842-857. 

[211] Greenberg ER, Baron JA, Tosteson TD, Freeman DH, Beck GJ, Bond JH (1994) Clinical-

trial of antioxidant vitamins to prevent colorectal adenoma. N. engl. j. med. 331: 141–

147. 

[212] Manashi B, Milnes M, Williams C, Balmoori J, Ye X, Stohs S, Bagchi D (1999) Acute 

and chronic stress-induced oxidative gastrointestinal injury in rats, and the protective 

ability of a novel grape seed proanthocyanidin extract. Nutrition research. 19 (8): 1189–

1199.  

[213] Block G, Patterson B, Subar A (1992) Fruit, vegetables and cancer prevention: a review 

of the epidemiological evidence. Nitr cancer, 18: 1-29. 

[214] Willett WC (2002) Balancing life-style and genomics research for disease prevention. 

Science. 296: 695-698. 

[215] Eberhardt MV, Lee CY, Liu RH (2000) Antioxidant activity of fresh apples. Nature. 

405: 903-904. 

[216] Liu RH, Liu J, Chen B (2005) Apples prevent mammary tumors in rats. J agric food 

chem. 53: 2341-2343. 

[217] Way TD, Lee HH, Kao MC, Lin JK (2004) Black tea polyphenol theaflavins inhibit 

aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human 

breast cancer cells through tyrosine kinase suppression. Eur j cancer. 40: 2165-2174. 

[218] Czeczot H (2003) Antyoksydacyjne działanie glutationu (Antioxidant activity of 

glutathione). Farm. pol. 59: 4. 

[219] Kałużny J, Jurgowiak M (1996) Udział reaktywnych form tlenu w patogenezie 

wybranych chorób oczu. (Participation of reactive oxygen species in the pathogenesis of 

eye diseases) Klin. ocz. 98: 145.  

[220] Dringen R (2000) Metabolism and functions of glutathione in brain. Prog. Neurobiol. 

62: 649-671. 



 
Antioxidant Enzyme 300 

[221] Park (2009) The effects of N-acetyl cysteine, buthionine sulfoximine, 

diethyldithiocarbamate or 3-amino-1,2,4-triazole on antimycin A-treated Calu-6 lung 

cells in relation to cell growth, reactive oxygen species and glutathione. Oncology 

reports. 385–391.  

[222] Chow HH, Hakim IA, Vining DR, Crowell JA, Tome ME, Ranger-Moore J, Cordova 

CA, Mikhael DM, Briehl MM, Alberts DS (2007) Modulation of Human Glutathione S-

Transferases by Polyphenon E Intervention. Cancer epidem biomark & prev, 16 (8): 

1662–1666. 

[223] Verma AS, Dwivedi PD, Mishra A, Ray PK. (1999) Glutathione reduces the toxicity 

associated with antitumor therapy of ascites fluid adsorbed over Staphylococcus aureus 

Cowan I in tumor bearing mice. Toxicol lett.106(2-3):119-127. 

[224] Avinash SS, Anitha M, Vinodchandran, Gayathri M. Rao, Sudha K. Beena V. Shetty 

(2009) Advanced oxidation protein products and total antioxidant activity in colorectal 

carcinoma. Indian j physiol pharmacol. 53 (4): 370–374. 

[225] Knekt P, Marniemi J, Teppo L, Heliövaara M, Aromaa A (1998) Is low selenium status 

a risk factor for lung cancer? Am j epidemiol. 148 (10): 975-982. 

[226] Rayman MP (2005) Selenium in cancer prevention:review of the evidence and 

mechanism of action. Proc nutr soc. 64: 527-542 

[227] Yan Yin, Qing-Xiao Wang, Xu Chen, Jing Xing, Yan-Rong Fan, Zhi-Wei Wu,Jian-Jun 

Wang, Gen-Xing Xu (2011) Antitumor efficacy of Bifidobacterium longum carrying 

endostatin gene enriched with selenium and the distribution of selenium. Afr j 

microbiol res. 5(31): 5615-5621. 

[228] Jun-Ying Y, Cun-Shuan X (2009) Antitumor effects of a selenium heteropoly complex 

in K562 cells. Pharmacol rep. 61(2): 288-95. 

[229] Fakih M, Cao S, Durrani FA, Rustum YM (2005) Selenium protects against toxicity 

induced by anticancer drugs and augments antitumor activity: a highly selective, new, 

and novel approach for the treatment of solid tumors. Clin colorectal cancer. 5(2): 132-

135. 

[230] Batist G (1988) Selenium. Preclinical studies of anticancer therapeutic potential. Biol 

trace elem res. 15:223-229.  

[231] D'Atri LP, Malaver E, Romaniuk MA, Pozner RG, Negrotto S, Schattner M, Nitric 

oxide: news from stem cells to platelets. Curr med chem. 2009;16(4):417-429. 

[232] Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, 

Peccatori F, Martinelli G, Fiorentini C, Cipolla CM. (2004) Prognostic value of troponin I 

in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. 

Circulation. 109(22):2749-2754 

[233] Sousa MS, Latini FR, Monteiro HP, Cerutti JM. (2010) Arginase 2 and nitric oxide 

synthase: Pathways associated with the pathogenesis of thyroid tumors. Free radic biol 

med. 49(6):997-1007 

[234] Huang YJ, Zhang BB, Ma N, Murata M, Tang AZ, Huang GW. (2011) Nitrative and 

oxidativeDNA damage as potential survival biomarkers for nasopharyngeal carcinoma. 

Med. oncol. 28(1):377-384 



 
Apoptosis, Free Radicals and Antioxidant Defense in Antitumor Therapy 301 

[235] Yang SR, Rahman I, Trosko JE, Kang KS. (2011) Oxidative stress-induced biomarkers 

for stem cell-based chemical screening. Prev med. Dec. 8 [Epub ahead of print] 

[236] Vaya J. (2012) Exogenous markers for the characterization of human diseases 

associated with oxidative stress. Biochimie. Mar 10. [Epub ahead of print] 

[237] Bhagat SS, Ghone RA, Suryakar AN, Hundekar PS. (2011) Lipid peroxidation and 

antioxidant vitamin status in colorectal cancer patients. Indian j physiol pharmacol. 

55(1):72-77 

[238] Skrzydlewska E, Sulkowski S, Koda M, Zalewski B, Kanczuga-Koda L, Sulkowska M. 

(2005) Lipid peroxidation and antioxidant status in colorectal cancer. World j 

gastroenterol. 11(3):403-406 

[239] Gago-Dominguez M, Jiang X, Castelao JE. (2007) Lipid peroxidation, oxidative stress 

genes and dietary factors in breast cancer protection: a hypothesis. Breast cancer 

res.9(1):201.  

[240] Gerber M, Astre C, Segala C, Saintot M, Scali J, Simony-Lafontaine J, Grenier J, Pujol 

H: (1997) Tumor progression and oxidant-antioxidant status. Cancer lett, 114:211-214.  

[241] Saintot M, Astre C, Pujol H, Gerber M: (1996) Tumor progression and oxidant-

antioxidant status. Carcinogenesis, 17:1267-1271.  

[242] Gerber M, Richardson S, Crastes de Paulet P, Pujol H, Crastes de Paulet A: (1989) 

Relationship between vitamin E and polyunsaturated fatty acids in breast cancer. 

Nutritional and metabolic aspects. Cancer, 64:2347-2353 

[243] van der Logt EM, Roelofs HM, Wobbes T, Nagengast FM, Peters WH. (2005) High 

oxygen radical production in patients with sporadic colorectal cancer. Free radic biol 

med. 39(2):182-187. 

[244] Saygili EI, Konukoglu D, Papila C, Akcay T. (2003) Levels of plasma vitamin E, 

vitamin C, TBARS, and cholesterol in male patients with colorectal tumors. 

Biochemistry (Mosc).68(3):325-328. 

[245] Saczko J, Kulbacka J, Chwiłkowska A, Lugowski M, Banaś T. (2004) Levels of lipid 

peroxidation in A549 cells after PDT in vitro. Rocz akad med bialymst.49 Suppl 1:82-84. 

[246] Radak Z, Zhao Z, Goto S, Koltai E. (2011) Age-associated neurodegeneration and 

oxidative damage to lipids, proteins and DNA. Mol aspects med. 32(4-6):305-315. 

[247] Ozben T. (2007) Oxidative stress and apoptosis: impact on cancer therapy. J pharm sci. 

96(9):2181-2196. 

[248] Yue J, Lu H, Liu J, Berwick M, Shen Z. (2012) Filamin-A as a marker and target for 

DNA damage based cancer therapy. DNA repair (Amst).11(2):192-200. 

[249] Polanski M, Anderson NL. (2007) A list of candidate cancer biomarkers for targeted 

proteomics. Biomark insights.;1:1-48. 

[250] Gumulec J, Sochor J, Hlavna M, Sztalmachova M, Krizkova S, Babula P, Hrabec R, 

Rovny A, Adam V, Eckschlager T, Kizek R, Masarik M. (2012) Caveolin-1 as a potential 

high-risk prostate cancer biomarker. Oncol rep. 27(3):831-841. 

[251] Freeman MR, Yang W, Di Vizio D. (2012) Caveolin-1 and prostate cancer progression. 

Adv exp med biol.729:95-110. 

[252] Mercier I, Lisanti MP. (2012) Caveolin-1 and breast cancer: a new clinical perspective. 

Adv exp med biol.729:83-94. 



 
Antioxidant Enzyme 302 

[253] Ługowski M, Saczko J, Kulbacka J, Banaś T. (2011) [Reactive oxygen and nitrogen 

species]. Pol merkur lekarski. 31(185):313-317. 

[254] Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O, 

Pappa A, Panayiotidis MI. (2010) The role of reactive oxygen species and oxidative 

stress in environmental carcinogenesis and biomarker development. Chem Biol 

Interact.188(2):334-339. 

[255] Samra ZQ, Pervaiz S, Shaheen S, Dar N, Athar MA. (2011) Determination of oxygen 

derived free radicals producer (xanthine oxidase) and scavenger (paraoxonase1) 

enzymes and lipid parameters in different cancer patients. Clin lab.57(9-10):741-747 


