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1. Introduction 

Circulating lipoproteins perform vital functions, including the transport of fatty acids and 

cholesterol from intestine and liver throughout the body. However, in well-fed Western 

societies, elevated concentrations of lipoproteins in blood have long been recognized to 

convey increased risk for cardiovascular disease. High fat diets, obesity, and heredity can all 

contribute to hyperlipidemia. More recently, there has been concern for the possible effects 

of hyperlipidemia on risk for or progression of cancers, which have a far greater demand for 

lipids than normal tissues. For example, obesity is now an established risk factor for certain 

types of cancer and is also found to affect the prognosis for cancer patients (Calle and Kaaks 

2004; Cleary and Grossmann 2009). While the association of obesity with cancer is complex, 

higher circulating lipids may be a contributing element. Similarly type 2 diabetes, a 

condition of multiple co-morbidities including hyperlipidemia, is associated with the 

incidence of and mortality from cancer (Faulds and Dahlman-Wright 2012).   

 

Figure 1. Cytoplasmic lipid droplets consist of an oily core of TAG and CE surrounded by a 

phospholipid monolayer, specific coat proteins, and other proteins. 
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The association of hyperlipidemia with cancer began with early observations of an 

accumulation of cholesterol in tumors (reviewed,  (Mulas, Abete et al. 2011)). Higher levels 

of cholesterol and cholesteryl esters (CE) in malignant compared to less malignant tumors 

and normal tissues were first measured chemically (Yasuda and Bloor 1932). The 

accumulation of lipids in tumors was subsequently noted in tumor sections through 

histological examination and staining for lipid droplets (also called lipid bodies) (Freitas, 

Pontiggia et al. 1990). Lipid droplets are cellular organelles that store neutral lipids 

triacylglycerol (TAG) and CE (Fig. 1). Adipocytes store lipids in a single, large lipid droplet. 

Most other cell types have fewer, smaller lipid droplets except under pathological 

conditions when increased numbers and amounts of lipid may be present (Bozza and Viola 

2010). Lipid droplets were detected in vivo in tumors with proton magnetic resonance 

(Delikatny, Chawla et al. 2011), and more recently, in vivo and in vitro with coherent anti-

Stokes Raman scattering microscopy (Le, Huff et al. 2009). Unlike adipocyte lipid droplets, 

tumor cell lipid droplets contain significant quantities of CE (Tosi and Tugnoli 2005); 

therefore as these tumors grow and accumulate cholesterol, they may be expected to affect 

whole body cholesterol homeostasis and circulating cholesterol levels. 

The observation of changes in plasma cholesterol in cancer patients constitutes the second 

line of evidence in the association of lipoproteins with cancer. It appeared in multiple 

studies over many years that lower plasma cholesterol was associated with a higher risk of 

cancer (Rose and Shipley 1980). This was a concern because lowering plasma cholesterol is a 

goal in cardiovascular disease prevention. The relationship between plasma cholesterol and 

cancer was examined in many population-based studies. Although total plasma cholesterol 

(total-C) measurements were used in many studies, determinations of individual lipoprotein 

cholesterol fractions were increasingly included. Plasma cholesterol resides primarily in low 

density lipoproteins (LDL) and high density lipoproteins (HDL), the lipoproteins that 

transport cholesterol to cells and collect excess cholesterol from cells, respectively. High 

HDL-C is a protective factor against atherosclerosis, while high LDL-C is positively 

associated with risk of atherosclerosis. 

Two trends ultimately emerged from the data. First, total-C concentrations were lower two 

to six years prior to a cancer diagnosis, suggesting reverse causation: i.e., the early stages of 

the tumor led to lower circulating cholesterol (Sharp and Pocock 1997). Second, the plasma 

cholesterol fraction associated with tumor-caused decreases was primarily HDL-C, although 

the trend was detectable in total-C values also (Ahn, Lim et al. 2009). These conclusions 

were supported by data showing an increase in HDL-C when the patient was in remission 

(Dessi, Batetta et al. 1995). 

The observations above suggest that in some types of cancer, tumor cells accumulate 

cholesterol as CE in lipid droplets and efflux less cholesterol to HDL, resulting in lower 

circulating HDL-C, detectable even before the tumor can be diagnosed. There is also some 

indication that low HDL-C levels may contribute to the development of cancer (Mondul, 

Weinstein et al. 2011). HDL has antioxidant and anti-inflammatory properties in addition to 

its role in reverse cholesterol transport (Kwiterovich 2000), and low HDL-C is a defining 
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characteristic of the metabolic syndrome which has already been linked to cancer risk 

(Faulds and Dahlman-Wright 2012). Although lower HDL-C can have multiple etiologies, it 

can be one indicator of the presence of a tumor. If some tumors accumulate cholesterol, then 

it might be reasonable to ask if LDL-C fuels the development of this type of tumor. 

In this chapter, we will review the evidence that LDL-C, which is usually highly correlated 

to total-C, is positively associated with the risk of some types of cancer. We will also review 

the growing body of data on what mechanisms may be involved in tumor cholesterol 

accumulation and what markers may be useful to identify tumors that are stimulated by 

cholesterol. We will address the questions: does higher circulating cholesterol increase the 

risk of or prognosis for certain cancers, and should lowering LDL-C be a goal in the 

prevention or management of some types of cancer?  

2. Clinical and epidemiological evidence for an association of LDL with 

cancer 

The presence of cancer can affect whole body cholesterol homeostasis, leading to the 

observation of low plasma HDL-C in cancer patients as described above. Plasma LDL-C 

levels in cancer may be confounded by the increased catabolism of LDL by a known or 

undiagnosed tumor, leading to an apparent association of low LDL-C with some types of 

cancer (Vitols, Gahrton et al. 1985). These apparent interactions of synchronous lipoprotein 

levels with cancer make it difficult to distinguish a tumor-promoting effect of lipoproteins 

from a tumor-induced effect on lipoproteins. Prospective studies that include a baseline 

measurement of blood cholesterol levels and a sufficient follow-up period could reveal if 

there was a positive association of hypercholesterolemia with the incidence of cancer, or in 

cancer patients, with prognosis or survival. Such studies have been conducted and the 

results have been somewhat inconsistent, which may be partially explained by the fact that 

tumors vary greatly by tissue of origin and even by sub-types of tumor arising from the 

same tissue. 

Additional insight has been gained from studies of statins and statin users. Statins 

(inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR)), the rate limiting step 

in cholesterol biosynthesis) are considered to have pleiotropic effects against cancer due to 

the multiple biosynthetic products downstream of HMGCR (Gazzerro, Proto et al. 2012). 

However, pharmacokinetic data suggests that the peripheral tissues do not have access to 

high enough concentrations of therapeutic statins to effect other pathways and that the 

major effect of statins is through the reduction of cholesterol biosynthesis in the liver 

(Solomon and Freeman 2008). Statins lower plasma total-C, which reflects a large reduction 

in LDL-C (up to 50% or more), a lesser reduction of VLDL-C and minor effects on HDL-C. 

The reduction of circulating LDL-C, a major consequence of statin use, is likely the primary 

anti-cancer action of statins.  

The largest prospective study to date on cholesterol and cancer was done in Korean adults 

enrolled in the Korean National Health Insurance Corporation (NHIC); participants (n = > 

one million) underwent biennial medical evaluations where a baseline fasting total-C 
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measurement was obtained and follow-up data was collected for up to 14 years (Kitahara, 

Berrington de Gonzalez et al. 2011). The study identified cancer types that had a positive 

trend with quintiles of total-C in men (prostate, P = 0.002, and colon, P = 0.05) and women 

(breast, P = 0.003, and colon, P = 0.004), as well as those that had a negative trend in men 

(esophageal, stomach, liver, and lung) and women (liver). The results were adjusted for 

multiple factors including BMI, and excluded cancers diagnosed in the first 5 years of 

follow-up. This study identified the hormone-related cancers and colon cancer as having the 

greatest association with total-C.  These cancers are also the most heavily studied with 

respect to the effects of total-C, statins, or dietary fat.  

Prostate cancer. Early stage prostate cancer (PrC) is stimulated by circulating testosterone 

through over-expression of the androgen receptor (AR). AR signaling regulates the 

expression of the PrC marker prostate specific antigen (PSA); androgen-deprivation 

(castration) therapies block AR signaling, providing an effective treatment and reducing 

PSA levels. However, over time advanced PrC emerges which is resistant to castration 

therapies (androgen-independent), although the AR may still play a role in tumor 

progression (Taplin and Balk 2004). Testosterone is synthesized from cholesterol in the 

testes, but also in advanced prostate tumor cells, providing a rationale for an effect of 

cholesterol availability on prostate tumorigenesis (Mostaghel, Solomon et al. 2012). 

Several large prospective studies in the USA showed an association between higher baseline 

plasma total-C and the development of high-grade (Gleason sum ≥ 7), but not total or low-

grade PrC. In the Health Professionals Follow-Up Study, 18,018 men provided a baseline 

blood sample and were followed for up to 7 years (Platz, Clinton et al. 2008). Men with low 

total-C had a reduced incidence of high-grade PrC (odds ratio (OR) = 0.61, 95% CI, 0.39-

0.98), and the association persisted after excluding men who were diagnosed within 2 years 

of blood draw. In the Prostate Cancer Prevention Trial (7 years), 5586 men in the placebo 

arm with a lower baseline total-C measurement had a reduced incidence of Gleason 8-10 

PrC (OR = 0.41, 95% CI, 0.22-0.77) (Platz, Till et al. 2009). In the CLUE II study, 6816 men in 

Washington County, Maryland were followed for a mean of 12 years (Mondul, Clipp et al. 

2010). Those with a baseline total-C in the desirable or borderline range had a reduced 

incidence of high grade PrC (hazard ratio (HR) = 0.68, 95% CI, 0.40-1.18), which was more 

pronounced in men with a higher BMI (HR = 0.36, 95% CI, 0.16-0.79). Excluding users of 

cholesterol-lowering drugs or cases diagnosed within two years of follow-up did not change 

the results. 

The differential effects of total-C on high-grade PrC were supported in several studies 

conducted outside the USA. In the Alpha Tocopherol, Beta Carotene Cancer Prevention 

Study cohort, baseline fasting total-C and HDL-C were obtained for >29,000 Finnish male 

smokers who were enrolled between 1985 and 1988. After long-term follow-up (still 

ongoing) in 2006, and excluding the first 10 years from baseline, it was found that men with 

higher total-C had increased risk of overall (HR = 1.22, 95% CI, 1.03-1.44) and advanced (HR 

= 1.85, 95% CI, 1.13-3.03) PrC (Mondul, Weinstein et al. 2011). The Midspan studies (begun 

in the 1960s and 1970s in Scotland, UK) had a median follow-up period of 24 years after a 
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baseline plasma total-C measurement (Shafique, McLoone et al. 2012). In 12,926 men 

diagnosed with PrC >5 years after entry into the study (n = 650), the HR for the risk of high-

grade disease (Gleason score ≥ 8) in those with cholesterol levels in the second highest 

quintile or the highest two quintiles combined compared to the lowest quintile was 1.75 

(95% CI, 1.03-2.97) and 1.88 (95% CI, 1.08-3.27), respectively. The use of statins was not 

available. The Nijmegen Biomedical Study in the Netherlands reported that among 2118 

men followed for a median period of 6.7 years who had never used cholesterol-lowering 

drugs (and excluding those diagnosed in the first year), those with higher baseline total-C 

had increased risk for PrC (HR = 1.39, 95% CI,  1.03–1.88) and aggressive PrC (HR = 1.65, 

95% CI,  1.10–2.47 (Kok, van Roermund et al. 2011). An even stronger association was seen 

for LDL-C levels and PrC (HR = 1.42, 95% CI, 1.00–2.02) and aggressive PrC (HR = 1.83, 95% 

CI, 1.15–2.90). 

Some studies did not support a role for cholesterol in PrC. No association of baseline plasma 

total-C or HDL-C with incident, advanced, or fatal PrC was found in the HUNT 2 study 

where a cohort of 29,364 Norwegian men were followed for a mean 9.3 years (Martin, Vatten 

et al. 2009). A stated limitation of the study was the small number of advanced or fatal cases. 

Similarly, no association of total-C with incidence of PrC was found in the Apolipoprotein 

MOrtality RISk (AMORIS) study, which followed 200,660 Swedish men for a mean of 8 

years (Van Hemelrijck, Garmo et al. 2011). In this study no information was available on 

tumor severity, precluding a finding of a differential effect based on tumor grade. 

Other types of studies have contributed evidence for the effects of blood cholesterol on PrC. 

In a cross-sectional cohort study of 531 American men, the incidence of benign prostate 

hyperplasia was 4-fold greater in those with diabetes who were in the highest compared to 

the lowest quartile of LDL-C; this effect was not seen in those without diabetes (Parsons, 

Bergstrom et al. 2008). A positive diagnosis of PrC in African-American (AA) men (n = 521), 

but not non-AA men (n = 451), undergoing biopsy was >3-fold higher for those in the 

highest quartile of LDL-C compared to the lowest (Moses, Abd et al. 2009). In a case-control 

study in 1294 Italian men <75 years of age with incident PrC compared to 1451 men 

hospitalized with acute, non-neoplastic conditions, the odd ratio (OR) for prostate cancer 

was 1.54 (95% CI, 1.26-1.89) for those with hypercholesterolemia (Pelucchi, Serraino et al. 

2011). A post hoc analysis of the REDUCE study (which evaluated the anti-testosterone 

dutasteride in men with high prostate specific antigen (PSA) values but no PrC) examined 

the association of coronary artery disease (CAD) with PrC risk (Thomas, Gerber et al. 2012). 

In 6729 men who underwent at least one biopsy, those with CAD had an increased risk of 

PrC diagnosis (OR = 1.35, 95% CI, 1.08–1.67), suggesting common risk factors. 

The benefit of statins in PrC prevention or treatment is still under evaluation, but 

observational studies have demonstrated reduced risk of PrC in statin users (reviewed, 

(Solomon and Freeman 2008; Marcella, David et al. 2011)). Statin use was recently shown to 

reduce the risk if death from PrC in a case-control study; cases were residents of New Jersey, 

USA ages 55 to 79 years who died from PrC between 1997 and 2000 (n = 380) and controls 

from the population were matched by 5-year age group and race. The unadjusted OR for 
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death from PrC was 0.49 (95% CI, 0.34-0.70) for any exposure to statins and decreased to 0.37 

(P < .0001) after multivariate adjustment (Marcella, David et al. 2011). Users of high-potency 

statins had about 2.5 times more protection compared with users of low-potency statins; the 

authors suggest that this points to cholesterol-lowering as the mechanism of protection. A 

positive association between LDL-C and PSA was demonstrated in a longitudinal study of 

1214 American veterans undergoing statin treatment between 1990 and 2006 (Hamilton, 

Goldberg et al. 2008). After a relatively short period of statin use (< 1 year), there was a near-

linear relationship between changes in LDL-C and changes in PSA values. After adjustment 

for multiple factors, for every 10% change in LDL-C, PSA changed by 1.64% (95% CI, 0.64% 

to 2.65%, P = .001). This relationship held over increases or decreases in the values, although 

the mean and median changes in LDL and PSA were -26% and -4.1%, respectively 

(Hamilton, Goldberg et al. 2008). A subsequent study showed that statin use dose-

dependently lowered the risk of a PSA recurrence in men who underwent a radical 

prostectomy (n = 1319) (30% lower risk of PSA recurrence (HR = 0.70, 95% CI, 0.50-0.97) 

(Hamilton, Banez et al. 2010). Median follow-up time was 24 months for statin users (n = 

236, 18%), 36 months for non-users. 

Breast cancer. Epidemiological studies showing a higher incidence of breast cancer (BrC) in 

Westernized countries led to a focus on the role of dietary fat in BrC risk (Kelsey 1993). 

Although dietary fat may affect circulating cholesterol levels, the specific contribution of 

plasma lipoproteins to BrC has received less attention. In addition, the relationship between 

circulating cholesterol and BrC risk may be complicated by the fact that, as for testosterone, 

cholesterol is a biosynthetic estrogen precursor and structurally similar to estrogen. 

Estrogen lowers plasma LDL by increasing the expression of the LDLR (Kovanen, Brown et 

al. 1979; Hulley, Grady et al. 1998), but stimulates breast tumor growth through over-

expression of estrogen receptor alpha (herein referred to as ER). Obesity and menopausal 

status can affect circulating lipids, estrogen levels, and BrC risk.  

The Nurses’ Health Study of >70,000 female, married, American nurses used self-reported 

serum cholesterol levels to analyze the association of blood cholesterol with risk of invasive 

BrC during up to 12 years of follow-up (Eliassen, Colditz et al. 2005). In that study, BrC 

incidence was not affected by cholesterol levels or use of statins or other lipid-lowering 

drugs. In a 10-year follow-up of postmenopausal Korean women (n = 170,374), a positive 

trend for quartiles of baseline fasting serum total-C and BrC incidence was found (HR = 

1.31, 95% CI, 1.06-1.61); however, after adjustment for BMI the trend was no longer 

significant (Ha, Sung et al. 2009). In contrast,  157 of 5865 peri/postmenopausal Swedish 

women in the Malmö Preventive Project developed BrC over a mean of 6.6 years; relative 

risk was increased by quartiles of baseline fasting total-C (P for trend, 0.05) (Manjer, Kaaks 

et al. 2001). This effect was not seen among the 112/3873 premenopausal women who 

developed BrC over a mean of 9.6 yrs. BMI was not a factor in the risk of BrC in either 

group. 

Because BrC has multiple types with distinct and recognizable patterns of gene expression, 

different treatments and prognoses, it may be more useful to examine BrC types separately 
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(Hu, Fan et al. 2006). Expression of the ER is an important discriminating factor among BrC 

types, with ER- BrC having fewer treatment options and a worse prognosis. A number of 

studies have shown differences in cholesterol metabolism between ER+ and ER- BrC. LDLR 

and ER content were determined (by ligand binding) in tumors from 72 Swedish patients 

who had undergone mastectomy (Rudling, Stahle et al. 1986).  Interesting, LDLR content 

was negatively, while ER content was positively correlated with survival in months. LDLR 

content strongly and independently predicted a worse prognosis in these patients (Rudling, 

Stahle et al. 1986). This finding is consistent with more recent data on tumor gene 

expression, where LDLR mRNA expression was generally higher in ER- as compared to ER+ 

human breast tumors in multiple studies (P < 0.05, oncomine.org). 

Circulating cholesterol may affect severity, recurrence, or outcome of BrC. In a prospective 

study of Canadian women diagnosed with early stage BrC (n = 520) and followed for a median 

period of 8.7 years, a trend toward higher risk of recurrence was seen in women with a higher 

fasting baseline total-C or LDL-C (Bahl, Ennis et al. 2005). Unfortunately, women with 

preexisting hyperlipidemia were excluded from the study, leaving a population with a smaller 

range of cholesterol levels in the evaluation. In 24,329 Norwegian women, a higher baseline 

non-fasting total-C level was not associated with BrC incidence (Vatten and Foss 1990), but 

those in the highest quartile did have an increased the risk of death from BrC (HR = 2.0, 95% 

CI, 1.1 – 3.7) (Vatten, Foss et al. 1991). In the Women’s Intervention Nutrition Study (WINS), 

women with BrC counseled for a low-fat diet (20% of calories) and followed for a median 

period of 5 years had a 24% lower risk of recurrence (n = 96/975, HR = 0.76, 95% CI, 0.60 to 

0.98) as compared to the control group (n = 181/1462);  interestingly, the effect was even 

stronger in those whose tumor was ER- (n = 28/205, HR = 0.58, 95% CI, 0.37 to 0.91) as 

compared to those whose tumor was ER+ (n = 59/273) (Chlebowski, Blackburn et al. 2006). 

Although neither total-C nor LDL-C were reported, serum fatty acid analysis showed a 

reduction in saturated fats in the diet group, and saturated fats are known to increase 

circulating cholesterol levels (Blackburn and Wang 2007). 

A number of clinical trials are underway to evaluate statins for the prevention or treatment 

of breast cancer. Large scale prospective studies on the association of statin use with risk of 

breast cancer have had mixed results (Cauley, McTiernan et al. 2006; Jacobs, Newton et al. 

2011), but beneficial effects of statins on disease recurrence have been documented. In a 

prospective cohort study of all female residents in Denmark diagnosed with stage I-III 

invasive BrC between 1996 and 2003 (n = 18,769), users of simvastatin (a lipophilic statin) 

had a 10% lower risk of recurrence (95% CI, -11% to -8%) as compared with nonusers of 

statins (Ahern, Pedersen et al. 2011). No reduced risk was observed in users of hydrophilic 

statins. In 703 American women treated for stage II/III breast cancer between 1999 and 2005 

and followed until 2008, users of statins (n = 156) had a reduced risk of recurrence in 

multivariate analysis (HR = 0.40, 95% CI, 0.24–0.67) (Chae, Valsecchi et al. 2011). No effect 

was seen on overall survival. Interestingly, a retrospective analysis of BrC patients in the 

Kaiser Permanente Cancer Registry in California (n = 2141) found that those who had used 

statins for one year or more had fewer aggressive ER-/PR- tumors and were more likely to 

have low grade and less invasive tumors (Kumar, Benz et al. 2008). 
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In a small study of women with newly diagnosed BrC (chemotherapy and radiotherapy 

naïve, n = 17) who were postmenopausal and normal weight, it was found that oxidized 

LDL (oxLDL) (P < 0.001), total-C (P = 0.001) and LDL-C (P = 0.001) were higher compared to 

a matched control group (n = 30) (Delimaris, Faviou et al. 2007). While LDL-C may 

contribute to cancer risk or prognosis, as in cardiovascular disease oxLDL may also play a 

role. OxLDL is present as a small percentage of total LDL in normal individuals, but the 

percentage of oxLDL may increase in pathological states (Holvoet, Lee et al. 2008; Mello, da 

Silva et al. 2011). An oxLDL receptor (OLR1) and was recently identified experimentally as 

part of gene signature responsible for transformation, tumor growth, and proliferation in 

multiple cancer cell lines (Hirsch, Iliopoulos et al. 2010). There is evidence that oxLDL is 

higher in hypercholesterolemic subjects, and that lowering total LDL with statins will result 

in lower oxLDL (Stojakovic, Claudel et al. 2010; Tavridou, Efthimiadis et al. 2010).  

Ovarian cancer. Ovarian cancer (OvC) has a much lower incidence than BrC, but is more 

deadly as most tumors are highly advanced at diagnosis. OvC is not stimulated by estrogen, 

but there is some evidence that circulating cholesterol affects outcomes. In a prospective 

study of 132 American women with stage III or IV OvC, serum banked at the time of 

diagnostic surgery was analyzed for total-C, HDL-C, and TAG (LDL was calculated; statin 

users were excluded) (Li, Elmore et al. 2010). Disease-specific survival was longer in patients 

with normal LDL as compared to those with elevated LDL-C (59 and 51 months, 

respectively, P = 0.04). In another study at the same site, statin use was found to be an 

independent positive prognostic factor in 126 women with stage III/IV OvC, 17 of whom 

were taking statins at the time of initial surgery (Elmore, Ioffe et al. 2008). Mean 

progression-free survival, as well as overall survival, was longer for statin users (24 months 

compared to 16 months, P = 0.007) as compared to statin non-users (62 months compared to 

46 months, P = 0.04). Serum was not available to determine actual levels of lipoproteins. In a 

small study, women with OvC (n = 15) compared to a matched control group (n = 30) had 

higher oxLDL (P = 0.006) and there was a trend toward higher LDL-C (P = 0.076) (Delimaris, 

Faviou et al. 2007). The women had not yet received any chemotherapy or radiotherapy at 

the time of blood collection.  

Colorectal cancer. Colon cancer risk was associated with baseline total-C in the Korean 

NHIC data (Kitahara, Berrington de Gonzalez et al. 2011). Other studies have had mixed 

results. In the European Prospective Investigation into Cancer and Nutrition, 1238 incident 

cases of colorectal cancer (CRC) and matched controls were analyzed for an association of 

CRC risk with serum lipoproteins (van Duijnhoven, Bueno-De-Mesquita et al. 2011). No 

significant trend for quintiles of total-C or LDL-C with CRC incidence was detected; a 

negative trend for HDL-C with colon cancer was seen, even when excluding the first two 

years of follow-up. No correction for the use of statins, aspirin or other medications was 

possible in this study. In the Japan Collaborative Cohort Study for Evaluation of Cancer 

Risk, the association of oxLDL and autoantibodies to oxLDL (oLAB) with the incidence of 

CRC was examined (Suzuki, Ito et al. 2004). A positive trend was found for oxLDL and 

CRC, even after multiple adjustments (P = 0.038, n = 119 cases, 316 controls); the trend for 

oLAB was not significant. The adjusted OR for the highest compared to the lowest quartile 
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of oxLDL was 3.10, 95% CI, 1.04-9.23. Although total-C was not different between cases and 

controls, oxLDL was strongly associated with total-C (P < 0.001, n = 304).  

Plasma cholesterol may affect the progression of colon cancer to a more aggressive disease. 

The fasting lipid profiles of Italian men and women with metastatic CRC (n = 22) had higher 

synchronous total cholesterol, LDL-cholesterol and LDL/HDL ratios compared to those 

without metastases (n = 62) (P = 0.03, 0.01, and 0.002, respectively) (Notarnicola, Altomare et 

al. 2005). These results were independent of BMI. The authors hypothesized that LDL is 

beneficial for the proliferation and invasion steps of tumor progression. The effect of statin 

use on CRC incidence is unsettled due to mixed results from several retrospective analyses 

(Poynter, Gruber et al. 2005; Flick, Habel et al. 2009; Singh, Mahmud et al. 2009). There is 

hopeful data that statins may lower the recurrence rate of CRC , and a large-scale clinical 

trial is currently examining the potential of statin therapy to reduce the relapse rate in colon 

cancer in patients who have had surgery for early stage colon cancer (Hede 2011). 

Other cancers. There is little consistent evidence to date from large prospective studies for 

the positive association of total-C or LDL-C with the incidence of other cancers. However, 

retrospective case control and observational studies showing a reduced risk of cancer in 

statin users are suggestive that lowering LDL-C may be an effective preventative strategy 

for a wider range of cancer types. For example, renal clear cell carcinoma (the most 

prevalent renal cell carcinoma) is known to accumulate large amounts of CE (Gebhard, 

Clayman et al. 1987), and a large case control study in American veterans (n = 1446 cases) 

found a 48% reduction in risk for this cancer in statin users (Khurana, Caldito et al. 2008). In 

the same population, a 55% reduction in the incidence of lung cancer in statin users 

compared to nonusers was found (n = 7280 cases) (Khurana, Bejjanki et al. 2007).  

The evidence cited in this section suggests that higher circulating cholesterol can have the 

strongest effects on more advanced tumors. The question of whether more advanced or 

aggressive tumors accumulate more cholesterol as compared to early stage tumors in vivo 

has not been specifically addressed, although there is some evidence to suggest that this is 

the case (Tosi and Tugnoli 2005). Experimental data in the next section provide more 

support for the association of exogenous cholesterol with more aggressive cancer, as well as 

insight into how and why cancer cells accumulate cholesterol against normal homeostatic 

mechanisms. 

3. Experimental and mechanistic evidence for role of LDL in cancer 

Cholesterol homeostasis. If cholesterol homeostasis is altered in cancer cells to meet a 

greater demand for cholesterol, an understanding of the mechanisms involved will open up 

new targets against cancer. In normal cells, free cholesterol in cells is closely regulated to 

maintain adequate membrane cholesterol but prevent free cholesterol toxicity. Excess 

cholesterol is stored in the form of neutral cholesteryl esters (CE) that are available to the cell 

through the CE cycle (Brown, Ho et al. 1980), or is effluxed to circulating HDL for transport 

back to the liver (Fielding and Fielding 2001). In cholesterol-accumulating tumors, there is 

more CE storage and less efflux of cholesterol to HDL. Is this cholesterol newly synthesized  
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Study 

(Country) 

Years of 

follow-

up

n

(n for 

cases)

Sex 
Type of 

cancer 

Association with risk of cancer for:
Reference 

 Total-C LDL-C HDL-C 

National Health 

Insurance Corp. 

enrollees (South 

Korea) 

Up to 14

1,189,719

(M:53,944

F: 24,475) 

M,F All 

Positive for PrC 

(M), BrC (F), CRC 

(M,F); negative for 

stomach, liver 

(M,F), lung (M) 

Not 

measured 

Not 

measured 

{Kitahara, 

2011} 

Health 

Professionals 

Follow-Up (USA) 

Up to 7 
18,018 

(698) 
M PrC 

Positive for high-

grade PrC 

Not 

measured 

Not 

measured 

{Platz, 

2008} 

Prostate Cancer 

Prevention Trial 

(USA) 

Up to 7 
5,586 

(1,251) 
M PrC 

Positive for high-

grade PrC 
  

{Platz, 

2009} 

CLUE II (USA) 
Mean of 

11.9 

6,816

(438) 
M PrC 

Positive for high-

grade PrC 

Not 

measured 

Not 

measured 

{Mondul, 

2010} 

Alpha-

Tocopherol, Beta-

Carotene Cancer 

Prevention 

(smokers, Finland) 

>10 
29,093 

(2,041) 
M PrC 

Positive for 

aggressive and 

advanced PrC 

Not 

measured 

Negative 

trend 

{Mondul, 

2011} 

Midspan 

(Scotland, UK) 
Up to 37

12,926

(650) 
M PrC 

Positive for high-

grade PrC 

Not 

measured 

Not 

measured 

{Shafique, 

2012} 

Nijmegen 

Biomedical 

(Netherlands) 

Mean of 

6.6 

2,118 

(43) 
M PrC 

Positive for total 

and aggressive 

PrC 

Positive for 

total and 

aggressive 

PrC

Positive for 

non-

aggressive 

PrC 

{Kok, 2011} 

HUNT 2 (Norway) 
Mean of 

9.3 

29,364

(687) 
M PrC None 

Not 

measured 
None 

{Martin, 

2009} 

Apolipoprotein 

MOrtality RISk  

(Sweden) 

Mean of 

7.0 - 8.3 

200,660 

(5,112) 
M PrC None   

{Van 

Hemelrijck, 

2011} 

Nurses’ Health 

(self-reported 

serum chol-

esterol) (USA) 

6 - 12 
79,994 

(3177) 
F BrC None 

Not 

measured 

Not 

measured 

{Eliassen, 

2005} 

Postmenopausal 

public servants 

(South Korea) 

Up to 10
170,374 

(714) 
F BrC Positive trend 

Not 

measured 

Not 

measured 
{Ha, 2009} 

Malmö Preventive 

Project (Sweden) 
Up to 20

9,738 

(269) 
F BrC 

Positive for 

postmenopausal; 

none for 

premenopausal 

Not 

measured 

Not 

measured 

{Manjer, 

2001} 

National 

Health Screening 

Service (Norway) 

11 - 14 
24,329 

(242) 
F BrC 

Negative (pre-

menopausal); none 

(post-menopausal)

Not 

measured 

Not 

measured 

{Vatten, 

1990} 

EPIC and 

Nutrition (nested 

case-control) 

Mean of 

3.8 

521,448 

(1238) 
M,F CRC None 

Not 

measured 

Positive for 

colon cancer 

{van Duijn-

hoven, 

2011} 

Table 1. Large, prospective studies with a baseline total cholesterol measurement and long-term 

follow-up for cancer incidence. M, male; F, female; PrC, prostate cancer; BrC, breast cancer; CRC, 

colorectal cancer. 
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or obtained from LDL, and what determines this? Normal cells obtain cholesterol primarily 

through endocytosis of circulating LDL through the LDLR, but have the capacity for 

endogenous synthesis via the mevalonate pathway; both mechanisms are tightly controlled 

for cholesterol homeostasis (Goldstein, DeBose-Boyd et al. 2006). The expressions of both 

LDLR and HMGCR are regulated by the transcription factors sterol response element 

binding proteins (SREBP1/2), whose processing and maturation proceed in response to 

decreased intracellular cholesterol (Brown and Goldstein 1997). The observed accumulation 

of CE in some tumors, the positive association of total-C with the risk of some types of 

cancer, and the demand for cholesterol for membrane building in growing cells, all suggest 

that the expression of these proteins and other components of the cholesterol homeostatic 

response system are altered in cancer. 

Cholesterol biosynthesis in cancer. In order to obtain sufficient cholesterol, proliferating 

cells may accelerate the rate of cholesterol biosynthesis. Oncogenes that transform cells and 

dysregulate growth activate anabolic and biosynthetic pathways leading to de novo 

cholesterol and fatty acid synthesis. This is accomplished by a greatly increased flux of 

glucose into cells and through the glycolytic pathway to produce energy, and transport of 

TCA cycle citrate from the mitochondria to the cytosol for lipid biosynthesis (Vander 

Heiden, Cantley et al. 2009). The cytosolic enzyme ATP citrate lyase converts citrate to 

acetyl-CoA, the basic building block for both fatty acids and cholesterol. Growth factor 

activation of tyrosine kinase receptors and downstream PI3K/AKT and MAP-kinase 

signaling pathways increase expression and activation of the SREBPs (Kotzka, Muller-

Wieland et al. 2000; Porstmann, Griffiths et al. 2005; Krycer, Sharpe et al. 2010), which 

control many lipid biosynthetic enzymes. Interesting, it was recently demonstrated that a 

mutated form of the cell cycle regulator p53, common in many tumors, bound to the 

promoter regions of the SREBPs and increased the expression of mevalonate pathway genes 

in BrC cells (Freed-Pastor, Mizuno et al. 2012).  

A high enough rate of de novo biosynthesis may not always be possible; for example in solid 

tumors, expansion and insufficient vascularization may limit the delivery of glucose and 

oxygen. If oxygen is limited, activation of the hypoxia inducible factor 1 (HIF1) pathway can 

increase survival but divert pyruvate to lactate, reducing production of citrate (Gordan, 

Thompson et al. 2007). If glucose is limited, reducing ATP production, the AMP activated 

protein kinase (AMPK) pathway can inactivate key biosynthetic enzymes by 

phosphorylation (Shackelford and Shaw 2009). If biosynthesis becomes constrained, cells 

would have an advantage by being able to obtain lipids exogenously from circulating 

lipoproteins.  

Cholesterol uptake in cancer. Uptake of cholesterol from LDL is primarily through the 

LDLR, although several scavenger receptors may also contribute. Over-expression of LDLR 

without feedback regulation by cholesterol has been observed in many types of cancer cells 

(Chen, Li et al. 1988; Hirakawa, Maruyama et al. 1991; Chen and Hughes-Fulford 2001; 

Antalis, Uchida et al. 2011). Although the role of SREBPs in feedback regulation of LDLR 

expression is well understood (Goldstein, DeBose-Boyd et al. 2006), there is evidence that 
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cell signaling pathways also contribute to LDLR up-regulation in cancer. In BrC cells, LDLR 

mRNA expression was 3-5-fold higher in ER- as compared to ER+ cell lines; PKC activation 

was strongly associated with increased LDLR expression in ER+ BrC cells, and to a lesser 

extent, even in ER- cells (Stranzl, Schmidt et al. 1997). Activation of the p42/44 (MAPK) 

cascade was sufficient to induce LDLR transcription in human hepatoma HepG2 cells 

expressing oncogenic Raf-1 kinase (Kapoor, Atkins et al. 2002). In glioblastoma cells, chronic 

activation of the EGF receptor tyrosine kinase, or other mechanisms which ultimately 

activated the PI3K/AKT pathway, led to increased expression of SREBP1 and the LDLR and 

to LDL-responsive proliferation (Guo, Reinitz et al. 2011). 

Increased dietary cholesterol has been shown to promote tumorigenesis in animal models. A 

Western-type high cholesterol diet compared to a chow diet increased tumor incidence and 

metastasis in a mouse model of PrC (Llaverias, Danilo et al. 2010). The same group, using 

similar diets, showed an increase in tumor formation and more aggressive tumors in a 

mouse model of BrC (Llaverias, Danilo et al. 2011). In both studies, plasma total-C was 

reduced following tumor development, suggesting utilization of circulating cholesterol by 

the tumor and similarity to what is observed in people with cancer. 

Role of cholesterol esterification. Whether tumor cells obtain the needed cholesterol 

endogenously or exogenously, it would be imperative to have a way to manage the 

increased flux of cholesterol so as to meet the dual goals of ensuring a ready supply and 

avoiding toxicity. Cholesterol toxicity is prevented by effluxing the excess free cholesterol to 

an extracellular acceptor or converting free cholesterol to non-toxic esters of fatty acids. The 

observed low HDL-C in cancer patients, combined with the observed increased cholesterol 

content in tumors suggest that efflux mechanisms are reduced and esterification is 

increased. Synthesis and storage of CE in lipid droplets not only reduces toxicity but 

provides an accessible depot of cholesterol for future cell needs.  

The enzyme responsible for cholesterol esterification is acyl-CoA:cholesterol acyltransferase 

1 (ACAT1/SOAT1), a constitutive resident of the endoplasmic reticulum. ACAT1 esterifies 

cholesterol obtained from LDL and also from endogenous synthesis (Chang, Li et al. 2009). 

ACAT1 is frequently found to be over-expressed in cancer vs. normal tissues in human 

tumor gene expression analyses, including cancers of brain, breast, cervix, esophagus, head 

and neck, kidney, and testis (P < 0.05, oncomine.org). Over-expression of ACAT1 has been 

specifically associated with cholesterol accumulation in renal clear cell carcinoma, a tumor 

type characterized by 35-fold more CE as compared to normal kidney (Gebhard, Clayman et 

al. 1987). 

ACAT activity has been associated with proliferation in cancer cells. The CE content of 

lymphocytes from patients with acute or chronic lymphocytic leukemia (n = 30) was 6-fold 

higher as compared to lymphocytes from healthy age-matched controls (n = 15), and plasma 

HDL was >40% reduced in the leukemia patients compared to the controls (Mulas, Abete et 

al. 2011). Phytohemaglutinin (PHA)-stimulated proliferation of the isolated leukemic cells 

was positively correlated to esterification of oleate to cholesterol, and inhibition of ACAT 

greatly reduced PHA-induced proliferation (Mulas, Abete et al. 2011). Cholesterol 
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esterification and ACAT1 expression were also studied in leukemia cell lines. Cells with a 

greater ability to esterify cholesterol and with lower cholesterol efflux (CEM) had a higher 

rate of proliferation as compared to cells with a greater ability to synthesize cholesterol de 

novo (MOLT4) (Dessi, Batetta et al. 1997). Further work demonstrated that the faster-

growing CEM cells expressed more ACAT1 and less HMGCR mRNA as compared to the 

slower-growing MOLT4 cells (Batetta, Pani et al. 1999).  

In BrC, we showed that more aggressive basal-like ER- BrC cells had more lipid droplets 

and a much higher ratio of CE to TAG in stored neutral lipids as compared to less 

aggressive ER+ BrC cells; this was associated with higher expression of ACAT1 (Antalis, 

Arnold et al. 2010). The cell line differences were mirrored in gene expression analyses of 

human breast tumors, where higher expression of ACAT1/SOAT1 is characteristic of basal-

like ER- tumors (Antalis, Arnold et al. 2010). We further showed that ER- cells took up more 

LDL as compared to ER+ cells, and that LDL dose-responsively increased proliferation only 

of ER- cells and in an ACAT-sensitive manner. In a follow-up study, we examined the effect 

of lipoprotein deprivation on chemotactic migration of the highly motile basal-like ER- cell 

line MDA-MB-231. We showed that lipid droplets were depleted and migration was 

reduced 85% when cells were grown in medium without lipoproteins, and that adding back 

LDL or fatty acids restored migration in an ACAT-sensitive manner (Antalis, Uchida et al. 

2011). In addition, LDLR expression in these cells was not affected by exogenous LDL but 

was reduced 75% in the presence of an ACAT inhibitor, suggesting that high ACAT1 

expression permitted continued high expression of the LDLR.    

What mediates the over-expression of ACAT1 in cancer is not completely understood. 

Although ACAT1 is a critical component of intracellular cholesterol homeostasis, its 

expression is not known to be regulated by the SREBPs (Goldstein, DeBose-Boyd et al. 2006). 

In monocytes and macrophages, ACAT1 expression was up-regulated by interferon γ and 

all-trans-retinoic acid via STAT1 (Yang, Duan et al. 2001) and by dexamethasone via a 

glucocorticoid response element in its promoter (Yang, Yang et al. 2004). ACAT1 has also 

been shown to have an NFκB binding element in its proximal promoter and to be up-

regulated in response to TNFα signaling through NFκB (Lei, Xiong et al. 2009). Cholesterol 

acts as an allosteric activator of ACAT1 activity (Liu, Chang et al. 2005).  

The LXR pathway. The transcription factor LXR is a major regulator of fatty acid and 

cholesterol metabolism in cells. When cellular free cholesterol levels are high, some 

cholesterol is oxidized to form oxysterols, which act as endogenous ligands for LXR; thus 

LXRs are considered “cholesterol sensors”(Tontonoz 2011). LXR has an absolute 

requirement for RXR as a dimerization partner. RXR expression is highly regulated by 

both transcription and protein degradation (Boudjelal, Wang et al. 2000; Lefebvre, Benomar 

et al. 2010). RXR availability is also affected by competition with its other binding partners, 

including PPAR, RAR, VDR, TR and FXR. LXR/RXR is a permissive heterodimer, being 

stimulated by agonists of either partner (Tontonoz 2011). 

LXR signaling is known to have dual roles: up-regulation of genes of fatty acid biosynthesis 

(including fatty acid synthase and stearoyl-CoA desaturase 1/2) and repression of NFκB 
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controlled inflammatory genes (including IL-6, COX-2, and nitric oxide synthase) (Joseph, 

Castrillo et al. 2003). In addition, LXR/RXRα controls the transcription of key genes in 

cholesterol homeostasis: MYLIP/IDOL, the E3-ligase that ubiquitinates the LDLR leading to 

its degradation, ABCA1 and ABCG1, transporters involved in cholesterol efflux to APOA1 

and HDL, and others (Tontonoz 2011). The demonstrated control of ACAT1 by NFκB 

suggests that its transcription could be antagonized by LXR activity. LXR signaling may 

have the ability to mediate the balance between lipid biosynthesis/efflux mechanisms and 

uptake/storage mechanisms. Fig. 2 and Fig. 3 illustrate how key factors in cellular 

cholesterol homeostasis may be affected by the activity of LXR and its target genes.  

The uptake of exogenous LDL through LDLR leads to increased cellular free cholesterol, 

reduced maturation of SREBPs and reduced transcription of LDLR. When LXR/RXR is 

active (Fig. 2), LDLR protein is degraded by MYLIP and cholesterol efflux mechanisms are 

increased (Beltowski 2008). ACAT1 transcription may be reduced by the inhibitory effect of 

LXR/RXRon NFB transactivation activity, blocking cholesterol accumulation. Similarly 

ApoA1, the apolipoprotein acceptor for cholesterol efflux, which under some conditions is 

repressed by NFB, could be increased (Mogilenko, Dizhe et al. 2009). As a result, normal 

cellular cholesterol homeostasis is enforced. 

When LXR/RXRα is less active (Fig. 3), and under the influence of cytokines, a different 

pattern of gene expression predominates. Cholesterol efflux is reduced and thus free 

cholesterol is maintained at a high enough level in bilayer membranes that maturation of 

SREBPs is not triggered. More free cholesterol is esterified and stored in lipid droplets, due 

to a possible induction of ACAT1. LDLR protein degradation is reduced, allowing the cell to 

maintain high LDLR expression and unrestrained uptake of LDL. In this way, cellular 

cholesterol homeostasis is perturbed in the direction of LDL uptake and cholesterol 

accumulation. 

The pathways described in Figs. 2 and 3 are hypothesized to explain the observed 

cholesterol accumulation in some tumors and cancer cell lines. LDLR is placed at the center 

of the process of LDL uptake and accumulation, with LXR pathway inactivation being the 

key factor allowing cholesterol accumulation. No doubt the situation is more complicated 

than shown, as it does not account for scavenger receptor participation. However, the 

central role of LXR makes it a potential target in cancer. 

LXR agonists have been tested in experimental models of cancer. In glioblastoma cells over-

expressing the EGFR, EGF stimulated PI3K/Akt-driven up-regulation of SREBP1 and LDLR 

(Guo, Reinitz et al. 2011). An LXR agonist induced MYLIP/IDOL-mediated degradation of 

LDLR, ABCA1-mediated cholesterol efflux, and cell death both in vitro and in an animal 

model. In OvC cells, oxLDL stimulated proliferation and secretion of the cytokine 

cardiotrophin 1 (Scoles, Xu et al. 2010). An LXR agonist blocked both the cytokine secretion 

and the proliferation induced by oxLDL; the authors attribute the response to increased 

cholesterol efflux and decreased inflammatory effects of the LXR agonist. In an athymic 

model of PrC, progression of androgen-dependent tumors to androgen-independent tumors 

after castration was accompanied by decreases in expression of LXR target genes in the 
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tumor, and treatment with an LXR agonist delayed the progression for about 4 weeks 

(Chuu, Hiipakka et al. 2006). 

 

Figure 2. LXR transcriptional targets control intracellular cholesterol concentrations. Dotted line 

indicates pathways not proven. 

 

Figure 3. Reduced LXR signaling allows increased LDL uptake and intracellular cholesterol 

accumulation. Dotted line indicates pathways not proven. 

Cholesterol and tumorigenesis. The question remains as to the role that CEs may play in 

the survival, proliferation and metastasis of cancer cells. We and others have proposed that 

accumulation of CE spares energy needed for de novo sterol synthesis, allowing greater 
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proliferation and migration and perhaps a quicker return to growth after a period of stasis 

(Batetta, Pani et al. 1999; Antalis, Arnold et al. 2010; Antalis, Uchida et al. 2011). The process 

of cholesterol esterification was linked to proliferation in multiple studies in different cancer 

cell lines (Batetta, Pani et al. 1999; Peiretti, Dessi et al. 2007; Paillasse, de Medina et al. 2009; 

Antalis, Arnold et al. 2010; Mulas, Abete et al. 2011), implying a complex network of 

signaling pathways and gene expression that ties cholesterol accretion to tumorigenesis. 

However, the exact role of CE in tumorigenesis remains to be determined.    

PrC is a unique case considering the slow growth characteristics of this malignancy. The 

lipid raft concept has been proposed to account for the tumorigenic effects of cholesterol 

(Freeman, Cinar et al. 2007), and a higher level of cholesterol in PrC cells has been linked to 

membrane lipid raft-induced oncogenic cell signaling (Hager, Solomon et al. 2006). A 

connection between LXR signaling and lipid raft-associated signaling was demonstrated in 

androgen-responsive LnCAP cells, where an LXR agonist down-regulated Akt signaling in a 

cholesterol- and lipid raft-dependent manner, resulting in apoptosis of cells and xenograft 

tumors (Pommier, Alves et al. 2010). In addition, a relationship between androgens and 

cholesterol metabolism was demonstrated in PrC cells. It was first noted that androgen 

stimulation caused a dramatic increase in lipid droplets in LNCap cells. The induced neutral 

lipids included both TAG (33-fold) and CE (7-fold increase), most of which originated from 

new lipid synthesis (Swinnen, Van Veldhoven et al. 1996). This was later found to be due to 

an up-regulation of the SREBPs and lipid biosynthetic genes (Nelson, Clegg et al. 2002). The 

androgen-independent PC-3 cells had a higher content of CE and but not higher ACAT1 

activity or expression as compared to LNCap cells (Locke, Wasan et al. 2008). In both an 

androgen-independent cell line and a mouse xenograft model of PrC progression, changes 

in cholesterol metabolism and homeostasis were associated with initiation of tumoral 

androgen production and expression of the AR and PSA (Locke, Wasan et al. 2008; Leon, 

Locke et al. 2010). These data, along with the clinical data cited in Section 2, suggest that in 

PrC cholesterol accumulation may be important for androgen synthesis, which is closely 

involved with PrC progression even under castration therapy. 

Another function of LDL and other lipoproteins is the provision of essential fatty acids. 

Mammalian cells are not able to make polyunsaturated fatty acids; the essential n-6 and n-3 

fatty acids are derived from the diet and carried to cells by lipoproteins. Human glioma, one 

of the deadliest types of cancer, was found to contain up to 100-fold more CE compared to 

control tissue, and the fatty acid composition of the tumor CEs indicated an LDL origin 

(Nygren, von Holst et al. 1997). The n-6 fatty acid arachidonic acid is necessary for synthesis 

of second messengers such as the prostaglandin PGE2, a tumor promoter (Wang and Dubois 

2006). In androgen-independent PrC PC-3 cells, PGE2 production increased >3-fold in 

response to LDL (Chen and Hughes-Fulford 2001). Thus the fatty acids esterified to 

cholesterol and other lipids may be important for the effect of LDL on cancer cells. 

Finally, although lower plasma HDL-C in cancer patients may be due to reduced efflux of 

cholesterol to HDL from the tumor, there is evidence that some cancer cells can take up CE 

from circulating HDL, providing another explanation for low HDL. Recent investigations 

with the CEM-CCRF lymphoblastic cell line into the source of intracellular CE showed that 
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HDL-CE were taken up and stored without hydrolysis and re-esterification, while LDL-CE 

were hydrolyzed and re-esterified (Uda, Accossu et al. 2012). Although the mechanism was 

not clear, the data implied that HDL as well as LDL could be a source of CE for leukemic 

cells. A previous study in BrC cells showed that either HDL or LDL dose-dependently 

stimulated proliferation of ER- cell lines, but only HDL had the effect on ER+ cells lines 

(Rotheneder and Kostner 1989). In an animal model of PrC, a diet high in fat and cholesterol 

resulted in increased tumor incidence and increased tumor expression of scavenger receptor 

B1, the receptor responsible for selective uptake of HDL-C (the major form of circulating 

cholesterol in mice) by cells (Llaverias, Danilo et al. 2010). The question of whether HDL can 

supply cholesterol to tumor cells in vivo in humans remains open.    

4. Conclusions and future directions 

The heterogeneous nature of cancer and the changes that accompany tumor progression 

make it very difficult to draw overall conclusions about the effects of circulating cholesterol 

on cancer incidence or progression. However, large scale prospective studies have shown 

that higher plasma total-C and LDL-C can increase the risk for some cancers, with the 

hormone-related cancers in men and women being especially affected. Data also point to a 

more potent effect of exogenous cholesterol on more aggressive cancers. These conclusions 

are supported by data on the effect of statins, which have been shown to reduce both the 

risk and the progression of some cancers. As more clinical trial data emerges, we will have a 

clearer picture of the usefulness of cholesterol reduction and statins in cancer and what 

types of cancer respond to these therapies. 

Individualized approaches are the future for cancer therapy. Gene and protein expressions 

may serve as biomarkers to identify tumors that are stimulated by LDL. The genes/proteins 

expected to be more expressed as a result of LXR/RXRα pathway activation, i.e. MYLIP and 

ABCA1, and those expected to be more expressed as a result of LXR/RXRα pathway 

inactivation, i.e. ACAT1/SOAT1 and LDLR, may be used to distinguish tumors that are 

cholesterol-accumulating. The cholesterol and CE content of tumor biopsies determined by 

chemical or enzymatic methods could also be used as biomarkers. Imaging methods such as 

magnetic resonance (Delikatny, Chawla et al. 2011) and coherent anti-Stokes Raman 

scattering (Le, Huff et al. 2009) have the potential to allow in vivo visualization of lipids in 

tumors. These kinds of data will help to substantiate and clarify the association of CE 

accumulation with types of cancer. 

If it can be shown that a tumor has the markers of higher cholesterol uptake and 

accumulation, treatments to lower circulating lipids and affect intracellular cholesterol 

homeostasis are available. Existing drugs developed for prevention or treatment of 

cardiovascular disease or metabolic syndrome, such as statins and metformin (an AMPK 

activator), are being “repurposed” for the treatment of cancer. ACAT inhibitors that did not 

have the expected result of reducing atherosclerotic plaques in clinical trials may find a new 

use in cholesterol-accumulating cancers. A new ACAT1-specific inhibitor was effective in 

killing glioma cells in in vitro studies (Bemlih, Poirier et al. 2010). LXR pathway modulators 
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that can increase cholesterol efflux and HDL-C levels without stimulating lipid biosynthesis 

in the liver, needed to treat cardiovascular disease and metabolic syndrome, may also be 

useful in cancer (Ratni, Blum-Kaelin et al. 2009). Dietary regimens targeting fat and 

cholesterol reduction in those with hyperlipidemia, with known benefits in preventing and 

treating heart disease, may be recommended to decrease the risk or recurrence of some 

types of cancer. 

Author details 

Caryl J. Antalis and Kimberly K. Buhman 

Indiana University School of Medicine & Purdue University, USA 

5. References 

Ahern, T. P., L. Pedersen, et al. (2011). "Statin prescriptions and breast cancer recurrence risk: a 

Danish nationwide prospective cohort study." J Natl Cancer Inst 103(19): 1461-1468. 

Ahn, J., U. Lim, et al. (2009). "Prediagnostic total and high-density lipoprotein cholesterol 

and risk of cancer." Cancer Epidemiol Biomarkers Prev 18(11): 2814-2821. 

Antalis, C. J., T. Arnold, et al. (2010). "High ACAT1 expression in estrogen receptor negative 

basal-like breast cancer cells is associated with LDL-induced proliferation." Breast 

Cancer Res Treat 122(3): 661-670. 

Antalis, C. J., A. Uchida, et al. (2011). "Migration of MDA-MB-231 breast cancer cells 

depends on the availability of exogenous lipids and cholesterol esterification." Clin Exp 

Metastasis 28(8): 733-741. 

Bahl, M., M. Ennis, et al. (2005). "Serum lipids and outcome of early-stage breast cancer: 

results of a prospective cohort study." Breast Cancer Res Treat 94(2): 135-144. 

Batetta, B., A. Pani, et al. (1999). "Correlation between cholesterol esterification, MDR1 gene 

expression and rate of cell proliferation in CEM and MOLT4 cell lines." Cell Prolif 32(1): 

49-61. 

Beltowski, J. (2008). "Liver X receptors (LXR) as therapeutic targets in dyslipidemia." 

Cardiovasc Ther 26(4): 297-316. 

Bemlih, S., M. D. Poirier, et al. (2010). "Acyl-coenzyme A: cholesterol acyltransferase 

inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines." Cancer 

Biol Ther 9(12): 1025-1032. 

Bjorge, T., A. Lukanova, et al. (2011). "Metabolic risk factors and ovarian cancer in the 

Metabolic Syndrome and Cancer project." Int J Epidemiol 40(6): 1667-1677. 

Blackburn, G. L. and K. A. Wang (2007). "Dietary fat reduction and breast cancer outcome: results 

from the Women's Intervention Nutrition Study (WINS)." Am J Clin Nutr 86(3): s878-881. 

Boudjelal, M., Z. Wang, et al. (2000). "Ubiquitin/proteasome pathway regulates levels of 

retinoic acid receptor gamma and retinoid X receptor alpha in human keratinocytes." 

Cancer Res 60(8): 2247-2252. 

Bozza, P. T. and J. P. Viola (2010). "Lipid droplets in inflammation and cancer." 

Prostaglandins Leukot Essent Fatty Acids 82(4-6): 243-250. 



 
Lipoproteins and Cancer 641 

Brown, M. S. and J. L. Goldstein (1997). "The SREBP pathway: regulation of cholesterol 

metabolism by proteolysis of a membrane-bound transcription factor." Cell 89(3): 331-340. 

Brown, M. S., Y. K. Ho, et al. (1980). "The cholesteryl ester cycle in macrophage foam cells. 

Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters." J Biol Chem 

255(19): 9344-9352. 

Calle, E. E. and R. Kaaks (2004). "Overweight, obesity and cancer: epidemiological evidence 

and proposed mechanisms." Nat Rev Cancer 4(8): 579-591. 

Cauley, J. A., A. McTiernan, et al. (2006). "Statin use and breast cancer: prospective results 

from the Women's Health Initiative." J Natl Cancer Inst 98(10): 700-707. 

Chae, Y. K., M. E. Valsecchi, et al. (2011). "Reduced risk of breast cancer recurrence in 

patients using ACE inhibitors, ARBs, and/or statins." Cancer Invest 29(9): 585-593. 

Chang, T. Y., B. L. Li, et al. (2009). "Acyl-coenzyme A:cholesterol acyltransferases." Am J 

Physiol Endocrinol Metab 297(1): E1-9. 

Chen, J. K., L. Li, et al. (1988). "Altered low density lipoprotein receptor regulation is 

associated with cholesteryl ester accumulation in Simian virus 40 transformed rodent 

fibroblast cell lines." In Vitro Cell Dev Biol 24(4): 353-358. 

Chen, Y. and M. Hughes-Fulford (2001). "Human prostate cancer cells lack feedback regulation of 

low-density lipoprotein receptor and its regulator, SREBP2." Int J Cancer 91(1): 41-45. 

Chlebowski, R. T., G. L. Blackburn, et al. (2006). "Dietary fat reduction and breast cancer 

outcome: interim efficacy results from the Women's Intervention Nutrition Study." J 

Natl Cancer Inst 98(24): 1767-1776. 

Chuu, C. P., R. A. Hiipakka, et al. (2006). "Inhibition of tumor growth and progression of 

LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist." 

Cancer Res 66(13): 6482-6486. 

Cleary, M. P. and M. E. Grossmann (2009). "Minireview: Obesity and breast cancer: the 

estrogen connection." Endocrinology 150(6): 2537-2542. 

Delikatny, E. J., S. Chawla, et al. (2011). "MR-visible lipids and the tumor 

microenvironment." NMR Biomed 24(6): 592-611. 

Delimaris, I., E. Faviou, et al. (2007). "Oxidized LDL, serum oxidizability and serum lipid 

levels in patients with breast or ovarian cancer." Clin Biochem 40(15): 1129-1134. 

Dessi, S., B. Batetta, et al. (1997). "Role of cholesterol synthesis and esterification in the 

growth of CEM and MOLT4 lymphoblastic cells." Biochem J 321 ( Pt 3): 603-608. 

Dessi, S., B. Batetta, et al. (1995). "Clinical remission is associated with restoration of normal 

high-density lipoprotein cholesterol levels in children with malignancies." Clin Sci 

(Lond) 89(5): 505-510. 

Eliassen, A. H., G. A. Colditz, et al. (2005). "Serum lipids, lipid-lowering drugs, and the risk 

of breast cancer." Arch Intern Med 165(19): 2264-2271. 

Elmore, R. G., Y. Ioffe, et al. (2008). "Impact of statin therapy on survival in epithelial 

ovarian cancer." Gynecol Oncol 111(1): 102-105. 

Faulds, M. H. and K. Dahlman-Wright (2012). "Metabolic diseases and cancer risk." Curr 

Opin Oncol 24(1): 58-61. 

Fielding, C. J. and P. E. Fielding (2001). "Cellular cholesterol efflux." Biochim Biophys Acta 

1533(3): 175-189. 



 

Lipoproteins – Role in Health and Diseases 642 

Flick, E. D., L. A. Habel, et al. (2009). "Statin use and risk of colorectal cancer in a cohort of 

middle-aged men in the US: a prospective cohort study." Drugs 69(11): 1445-1457. 

Freed-Pastor, W. A., H. Mizuno, et al. (2012). "Mutant p53 disrupts mammary tissue 

architecture via the mevalonate pathway." Cell 148(1-2): 244-258. 

Freeman, M. R., B. Cinar, et al. (2007). "Transit of hormonal and EGF receptor-dependent 

signals through cholesterol-rich membranes." Steroids 72(2): 210-217. 

Freitas, I., P. Pontiggia, et al. (1990). "Histochemical probes for the detection of hypoxic 

tumour cells." Anticancer Res 10(3): 613-622. 

Gazzerro, P., M. C. Proto, et al. (2012). "Pharmacological actions of statins: a critical 

appraisal in the management of cancer." Pharmacol Rev 64(1): 102-146. 

Gebhard, R. L., R. V. Clayman, et al. (1987). "Abnormal cholesterol metabolism in renal clear 

cell carcinoma." J Lipid Res 28(10): 1177-1184. 

Goldstein, J. L., R. A. DeBose-Boyd, et al. (2006). "Protein sensors for membrane sterols." Cell 

124(1): 35-46. 

Gordan, J. D., C. B. Thompson, et al. (2007). "HIF and c-Myc: sibling rivals for control of 

cancer cell metabolism and proliferation." Cancer Cell 12(2): 108-113. 

Guo, D., F. Reinitz, et al. (2011). "An LXR agonist promotes GBM cell death through inhibition 

of an EGFR/AKT/SREBP-1/LDLR-dependent pathway." Cancer Discov 1(5): 442-456. 

Ha, M., J. Sung, et al. (2009). "Serum total cholesterol and the risk of breast cancer in 

postmenopausal Korean women." Cancer Causes Control 20(7): 1055-1060. 

Hager, M. H., K. R. Solomon, et al. (2006). "The role of cholesterol in prostate cancer." Curr 

Opin Clin Nutr Metab Care 9(4): 379-385. 

Hamilton, R. J., L. L. Banez, et al. (2010). "Statin medication use and the risk of biochemical 

recurrence after radical prostatectomy: results from the Shared Equal Access Regional 

Cancer Hospital (SEARCH) Database." Cancer 116(14): 3389-3398. 

Hamilton, R. J., K. C. Goldberg, et al. (2008). "The influence of statin medications on 

prostate-specific antigen levels." J Natl Cancer Inst 100(21): 1511-1518. 

Hede, K. (2011). "Hints that statins reduce colon cancer risk finally being put to the test." J 

Natl Cancer Inst 103(5): 364-366. 

Hirakawa, T., K. Maruyama, et al. (1991). "Massive accumulation of neutral lipids in cells 

conditionally transformed by an activated H-ras oncogene." Oncogene 6(2): 289-295. 

Hirsch, H. A., D. Iliopoulos, et al. (2010). "A transcriptional signature and common gene 

networks link cancer with lipid metabolism and diverse human diseases." Cancer Cell 

17(4): 348-361. 

Holvoet, P., D. H. Lee, et al. (2008). "Association between circulating oxidized low-density 

lipoprotein and incidence of the metabolic syndrome." JAMA 299(19): 2287-2293. 

Hu, Z., C. Fan, et al. (2006). "The molecular portraits of breast tumors are conserved across 

microarray platforms." BMC Genomics 7: 96. 

Hulley, S., D. Grady, et al. (1998). "Randomized trial of estrogen plus progestin for 

secondary prevention of coronary heart disease in postmenopausal women. Heart and 

Estrogen/progestin Replacement Study (HERS) Research Group." JAMA 280(7): 605-613. 

Jacobs, E. J., C. C. Newton, et al. (2011). "Long-term use of cholesterol-lowering drugs and 

cancer incidence in a large United States cohort." Cancer Res 71(5): 1763-1771. 



 
Lipoproteins and Cancer 643 

Joseph, S. B., A. Castrillo, et al. (2003). "Reciprocal regulation of inflammation and lipid 

metabolism by liver X receptors." Nat Med 9(2): 213-219. 

Kapoor, G. S., B. A. Atkins, et al. (2002). "Activation of Raf-1/MEK-1/2/p42/44(MAPK) 

cascade alone is sufficient to uncouple LDL receptor expression from cell growth." Mol 

Cell Biochem 236(1-2): 13-22. 

Kelsey, J. L. (1993). "Breast cancer epidemiology: summary and future directions." Epidemiol 

Rev 15(1): 256-263. 

Khurana, V., H. R. Bejjanki, et al. (2007). "Statins reduce the risk of lung cancer in humans: a 

large case-control study of US veterans." Chest 131(5): 1282-1288. 

Khurana, V., G. Caldito, et al. (2008). "Statins might reduce risk of renal cell carcinoma in 

humans: case-control study of 500,000 veterans." Urology 71(1): 118-122. 

Kitahara, C. M., A. Berrington de Gonzalez, et al. (2011). "Total cholesterol and cancer risk in 

a large prospective study in Korea." J Clin Oncol 29(12): 1592-1598. 

Kok, D. E., J. G. van Roermund, et al. (2011). "Blood lipid levels and prostate cancer risk; a 

cohort study." Prostate Cancer Prostatic Dis. 

Kotzka, J., D. Muller-Wieland, et al. (2000). "Sterol regulatory element binding proteins 

(SREBP)-1a and SREBP-2 are linked to the MAP-kinase cascade." J Lipid Res 41(1): 99-108. 

Kovanen, P. T., M. S. Brown, et al. (1979). "Increased binding of low density lipoprotein to 

liver membranes from rats treated with 17 alpha-ethinyl estradiol." J Biol Chem 254(22): 

11367-11373. 

Krycer, J. R., L. J. Sharpe, et al. (2010). "The Akt-SREBP nexus: cell signaling meets lipid 

metabolism." Trends Endocrinol Metab 21(5): 268-276. 

Kumar, A. S., C. C. Benz, et al. (2008). "Estrogen receptor-negative breast cancer is less likely 

to arise among lipophilic statin users." Cancer Epidemiol Biomarkers Prev 17(5): 1028-1033. 

Kwiterovich, P. O., Jr. (2000). "The metabolic pathways of high-density lipoprotein, low-

density lipoprotein, and triglycerides: a current review." Am J Cardiol 86(12A): 5L-10L. 

Le, T. T., T. B. Huff, et al. (2009). "Coherent anti-Stokes Raman scattering imaging of lipids in 

cancer metastasis." BMC Cancer 9: 42. 

Lefebvre, B., Y. Benomar, et al. (2010). "Proteasomal degradation of retinoid X receptor alpha 

reprograms transcriptional activity of PPARgamma in obese mice and humans." J Clin 

Invest 120(5): 1454-1468. 

Lei, L., Y. Xiong, et al. (2009). "TNF-alpha stimulates the ACAT1 expression in differentiating 

monocytes to promote the CE-laden cell formation." J Lipid Res 50(6): 1057-1067. 

Leon, C. G., J. A. Locke, et al. (2010). "Alterations in cholesterol regulation contribute to the 

production of intratumoral androgens during progression to castration-resistant 

prostate cancer in a mouse xenograft model." Prostate 70(4): 390-400. 

Li, A. J., R. G. Elmore, et al. (2010). "Serum low-density lipoprotein levels correlate with 

survival in advanced stage epithelial ovarian cancers." Gynecol Oncol 116(1): 78-81. 

Liu, J., C. C. Chang, et al. (2005). "Investigating the allosterism of acyl-CoA:cholesterol 

acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies." 

Biochem J 391(Pt 2): 389-397. 

Llaverias, G., C. Danilo, et al. (2011). "Role of cholesterol in the development and 

progression of breast cancer." Am J Pathol 178(1): 402-412. 



 

Lipoproteins – Role in Health and Diseases 644 

Llaverias, G., C. Danilo, et al. (2010). "A Western-type diet accelerates tumor progression in 

an autochthonous mouse model of prostate cancer." Am J Pathol 177(6): 3180-3191. 

Locke, J. A., K. M. Wasan, et al. (2008). "Androgen-mediated cholesterol metabolism in 

LNCaP and PC-3 cell lines is regulated through two different isoforms of acyl-

coenzyme A:Cholesterol Acyltransferase (ACAT)." Prostate 68(1): 20-33. 

Manjer, J., R. Kaaks, et al. (2001). "Risk of breast cancer in relation to anthropometry, blood 

pressure, blood lipids and glucose metabolism: a prospective study within the Malmo 

Preventive Project." Eur J Cancer Prev 10(1): 33-42. 

Marcella, S. W., A. David, et al. (2011). "Statin use and fatal prostate cancer: A matched case-

control study." Cancer. 

Martin, R. M., L. Vatten, et al. (2009). "Components of the metabolic syndrome and risk of 

prostate cancer: the HUNT 2 cohort, Norway." Cancer Causes Control 20(7): 1181-1192. 

Mello, A. P., I. T. da Silva, et al. (2011). "Electronegative low-density lipoprotein: origin and 

impact on health and disease." Atherosclerosis 215(2): 257-265. 

Mogilenko, D. A., E. B. Dizhe, et al. (2009). "Role of the nuclear receptors HNF4 alpha, PPAR 

alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I 

gene expression in HepG2 cells." Biochemistry 48(50): 11950-11960. 

Mondul, A. M., S. L. Clipp, et al. (2010). "Association between plasma total cholesterol 

concentration and incident prostate cancer in the CLUE II cohort." Cancer Causes Control 

21(1): 61-68. 

Mondul, A. M., S. J. Weinstein, et al. (2011). "Serum total and HDL cholesterol and risk of 

prostate cancer." Cancer Causes Control 22(11): 1545-1552. 

Moses, K. A., T. T. Abd, et al. (2009). "Increased low density lipoprotein and increased 

likelihood of positive prostate biopsy in black americans." J Urol 182(5): 2219-2225. 

Mostaghel, E. A., K. R. Solomon, et al. (2012). "Impact of circulating cholesterol levels on 

growth and intratumoral androgen concentration of prostate tumors." PLoS One 7(1): 

e30062. 

Mulas, M. F., C. Abete, et al. (2011). "Cholesterol esters as growth regulators of lymphocytic 

leukaemia cells." Cell Prolif 44(4): 360-371. 

Nelson, P. S., N. Clegg, et al. (2002). "The program of androgen-responsive genes in 

neoplastic prostate epithelium." Proc Natl Acad Sci U S A 99(18): 11890-11895. 

Notarnicola, M., D. F. Altomare, et al. (2005). "Serum lipid profile in colorectal cancer 

patients with and without synchronous distant metastases." Oncology 68(4-6): 371-374. 

Nygren, C., H. von Holst, et al. (1997). "Increased levels of cholesterol esters in glioma tissue 

and surrounding areas of human brain." Br J Neurosurg 11(3): 216-220. 

Paillasse, M. R., P. de Medina, et al. (2009). "Signaling through cholesterol esterification: a 

new pathway for the cholecystokinin 2 receptor involved in cell growth and invasion." J 

Lipid Res 50(11): 2203-2211. 

Parsons, J. K., J. Bergstrom, et al. (2008). "Lipids, lipoproteins and the risk of benign prostatic 

hyperplasia in community-dwelling men." BJU Int 101(3): 313-318. 

Peiretti, E., S. Dessi, et al. (2007). "Modulation of cholesterol homeostasis by antiproliferative 

drugs in human pterygium fibroblasts." Invest Ophthalmol Vis Sci 48(8): 3450-3458. 



 
Lipoproteins and Cancer 645 

Pelucchi, C., D. Serraino, et al. (2011). "The metabolic syndrome and risk of prostate cancer 

in Italy." Ann Epidemiol 21(11): 835-841. 

Platz, E. A., S. K. Clinton, et al. (2008). "Association between plasma cholesterol and prostate 

cancer in the PSA era." Int J Cancer 123(7): 1693-1698. 

Platz, E. A., C. Till, et al. (2009). "Men with low serum cholesterol have a lower risk of high-

grade prostate cancer in the placebo arm of the prostate cancer prevention trial." Cancer 

Epidemiol Biomarkers Prev 18(11): 2807-2813. 

Pommier, A. J., G. Alves, et al. (2010). "Liver X Receptor activation downregulates AKT 

survival signaling in lipid rafts and induces apoptosis of prostate cancer cells." Oncogene 

29(18): 2712-2723. 

Porstmann, T., B. Griffiths, et al. (2005). "PKB/Akt induces transcription of enzymes 

involved in cholesterol and fatty acid biosynthesis via activation of SREBP." Oncogene 

24(43): 6465-6481. 

Poynter, J. N., S. B. Gruber, et al. (2005). "Statins and the risk of colorectal cancer." N Engl J 

Med 352(21): 2184-2192. 

Ratni, H., D. Blum-Kaelin, et al. (2009). "Discovery of tetrahydro-cyclopenta[b]indole as 

selective LXRs modulator." Bioorg Med Chem Lett 19(6): 1654-1657. 

Rose, G. and M. J. Shipley (1980). "Plasma lipids and mortality: a source of error." Lancet 

1(8167): 523-526. 

Rotheneder, M. and G. M. Kostner (1989). "Effects of low- and high-density lipoproteins on 

the proliferation of human breast cancer cells in vitro: differences between hormone-

dependent and hormone-independent cell lines." Int J Cancer 43(5): 875-879. 

Rudling, M. J., L. Stahle, et al. (1986). "Content of low density lipoprotein receptors in breast 

cancer tissue related to survival of patients." Br Med J (Clin Res Ed) 292(6520): 580-582. 

Scoles, D. R., X. Xu, et al. (2010). "Liver X receptor agonist inhibits proliferation of ovarian 

carcinoma cells stimulated by oxidized low density lipoprotein." Gynecol Oncol 116(1): 

109-116. 

Shackelford, D. B. and R. J. Shaw (2009). "The LKB1-AMPK pathway: metabolism and 

growth control in tumour suppression." Nat Rev Cancer 9(8): 563-575. 

Shafique, K., P. McLoone, et al. (2012). "Cholesterol and the risk of grade-specific prostate 

cancer incidence: evidence from two large prospective cohort studies with up to 37 

years' follow up." BMC Cancer 12: 25. 

Sharp, S. J. and S. J. Pocock (1997). "Time trends in serum cholesterol before cancer death." 

Epidemiology 8(2): 132-136. 

Singh, H., S. M. Mahmud, et al. (2009). "Long-term use of statins and risk of colorectal 

cancer: a population-based study." Am J Gastroenterol 104(12): 3015-3023. 

Solomon, K. R. and M. R. Freeman (2008). "Do the cholesterol-lowering properties of statins 

affect cancer risk?" Trends Endocrinol Metab 19(4): 113-121. 

Stojakovic, T., T. Claudel, et al. (2010). "Low-dose atorvastatin improves dyslipidemia and 

vascular function in patients with primary biliary cirrhosis after one year of treatment." 

Atherosclerosis 209(1): 178-183. 

Stranzl, A., H. Schmidt, et al. (1997). "Low-density lipoprotein receptor mRNA in human 

breast cancer cells: influence by PKC modulators." Breast Cancer Res Treat 42(3): 195-205. 



 

Lipoproteins – Role in Health and Diseases 646 

Suzuki, K., Y. Ito, et al. (2004). "Serum oxidized low-density lipoprotein levels and risk of 

colorectal cancer: a case-control study nested in the Japan Collaborative Cohort Study." 

Cancer Epidemiol Biomarkers Prev 13(11 Pt 1): 1781-1787. 

Swinnen, J. V., P. P. Van Veldhoven, et al. (1996). "Androgens markedly stimulate the 

accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP." 

Endocrinology 137(10): 4468-4474. 

Taplin, M. E. and S. P. Balk (2004). "Androgen receptor: a key molecule in the progression of 

prostate cancer to hormone independence." J Cell Biochem 91(3): 483-490. 

Tavridou, A., A. Efthimiadis, et al. (2010). "Simvastatin-induced changes in circulating 

oxidized low-density lipoprotein in different types of dyslipidemia." Heart Vessels 25(4): 

288-293. 

Thomas, J. A., 2nd, L. Gerber, et al. (2012). "Prostate Cancer Risk in Men with Baseline 

History of Coronary Artery Disease: Results from the REDUCE Study." Cancer Epidemiol 

Biomarkers Prev. 

Tontonoz, P. (2011). "Transcriptional and Posttranscriptional Control of Cholesterol 

Homeostasis by Liver X Receptors." Cold Spring Harb Symp Quant Biol. 

Tosi, M. R. and V. Tugnoli (2005). "Cholesteryl esters in malignancy." Clin Chim Acta 359(1-

2): 27-45. 

Uda, S., S. Accossu, et al. (2012). "A lipoprotein source of cholesteryl esters is essential for 

proliferation of CEM-CCRF lymphoblastic cell line." Tumour Biol 33(2): 443-453. 

van Duijnhoven, F. J., H. B. Bueno-De-Mesquita, et al. (2011). "Blood lipid and lipoprotein 

concentrations and colorectal cancer risk in the European Prospective Investigation into 

Cancer and Nutrition." Gut 60(8): 1094-1102. 

Van Hemelrijck, M., H. Garmo, et al. (2011). "Prostate cancer risk in the Swedish AMORIS 

study: the interplay among triglycerides, total cholesterol, and glucose." Cancer 117(10): 

2086-2095. 

Vander Heiden, M. G., L. C. Cantley, et al. (2009). "Understanding the Warburg effect: the 

metabolic requirements of cell proliferation." Science 324(5930): 1029-1033. 

Vatten, L. J. and O. P. Foss (1990). "Total serum cholesterol and triglycerides and risk of breast 

cancer: a prospective study of 24,329 Norwegian women." Cancer Res 50(8): 2341-2346. 

Vatten, L. J., O. P. Foss, et al. (1991). "Overall survival of breast cancer patients in relation to 

preclinically determined total serum cholesterol, body mass index, height and cigarette 

smoking: a population-based study." Eur J Cancer 27(5): 641-646. 

Vitols, S., G. Gahrton, et al. (1985). "Hypocholesterolaemia in malignancy due to elevated 

low-density-lipoprotein-receptor activity in tumour cells: evidence from studies in 

patients with leukaemia." Lancet 2(8465): 1150-1154. 

Wang, D. and R. N. Dubois (2006). "Prostaglandins and cancer." Gut 55(1): 115-122. 

Yang, J. B., Z. J. Duan, et al. (2001). "Synergistic transcriptional activation of human Acyl-

coenzyme A: cholesterol acyltransterase-1 gene by interferon-gamma and all-trans-

retinoic acid THP-1 cells." J Biol Chem 276(24): 20989-20998. 

Yang, L., J. B. Yang, et al. (2004). "Enhancement of human ACAT1 gene expression to 

promote the macrophage-derived foam cell formation by dexamethasone." Cell Res 

14(4): 315-323. 

Yasuda, M. and W. R. Bloor (1932). "Lipid Content of Tumors." J Clin Invest 11(4): 677-682. 


