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1. Introduction

Research on control of non-linear systems over the years has produced many results: control
based on linearization, global feedback linearization, non-linear H∞ control, sliding mode
control, variable structure control, state dependent Riccati equation control, etc [5]. This
chapter will focus on fuzzy control techniques. Fuzzy control systems have recently shown
growing popularity in non-linear system control applications. A fuzzy control system is
essentially an effective way to decompose the task of non-linear system control into a group
of local linear controls based on a set of design-specific model rules. Fuzzy control also
provides a mechanism to blend these local linear control problems all together to achieve
overall control of the original non-linear system. In this regard, fuzzy control technique has its
unique advantage over other kinds of non-linear control techniques. Latest research on fuzzy
control systems design is aimed to improve the optimality and robustness of the controller
performance by combining the advantage of modern control theory with the Takagi-Sugeno
fuzzy model [7–10, 13, 14].

In this chapter, we address the non-linear state feedback control design of both
continuous-time and discrete-time non-linear fuzzy control systems using the Linear Matrix
Inequality (LMI) approach. We characterize the solution of the non-linear control problem
with the LMI, which provides a sufficient condition for satisfying various performance
criteria. A preliminary investigation into the LMI approach to non-linear fuzzy control
systems can be found in [7, 8, 13]. The purpose behind this novel approach is to convert
a non-linear system control problem into a convex optimization problem which is solved
by a LMI at each time. The recent development in convex optimization provides efficient
algorithms for solving LMIs. If a solution can be expressed in a LMI form, then there exist
optimization algorithms providing efficient global numerical solutions [3]. Therefore if the
LMI is feasible, then LMI control technique provides globally stable solutions satisfying the
corresponding mixed performance criteria [4, 6, 15–20]. We further propose to employ mixed
performance criteria to design the controller guaranteeing the quadratic sub-optimality with
inherent stability property in combination with dissipative type of disturbance attenuation.

©2012Wang et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2 Fuzzy Controllers

In the following sections, we first introduce the Takagi-Sugeno fuzzy modelling for non-linear
systems in both continuous time and discrete time. We then propose the general performance
criteria in section 3. Then, the LMI control solutions are derived to characterize the
optimal and robust fuzzy control of continuous time and discrete time non-linear systems,
respectively. The inverted pendulum system control is used as an illustrative example to
demonstrate the effectiveness and robustness of our proposed approaches.

The following notation is used in this work: x ∈ Rn denotes n-dimensional real vector with

norm ‖x‖ = (xT x)1/2 where (.)T indicates transpose. A ≥ 0 for a symmetric matrix denotes
a positive semi-definite matrix. L2 and l2 denotes the space of infinite sequences of finite

dimensional random vectors with finite energy, i.e.
∫ ∞

0 ‖xt‖
2
< ∞ in continuous-time, and

Σ∞
k=0‖xk‖

2
< ∞ in discrete-time, respectively.

2. Takagi-Sugeno system model

The importance of the Takagi-Sugeno fuzzy system model is that it provides an effective way
to decompose a complicated non-linear system into local dynamical relations and express
those local dynamics of each fuzzy implication rule by a linear system model. The overall
fuzzy non-linear system model is achieved by fuzzy “blending” of the linear system models,
so that the overall non-linear control performance is achieved. Both of the continuous-time
and the discrete-time system models are summarized below.

2.1. Continuous-time Takagi-Sugeno system model

The ith rule of the Takagi-Sugeno fuzzy model can be expressed by the following forms:

Model Rule i:
If ϕ1(t) is Mi1,ϕ2(t) is Mi2,... and ϕp(t) is Mip,
Then the input-affine continuous-time fuzzy system equation is:

ẋ(t) = Aix(t) + Biu(t) + Fiw(t)

y(t) = Cix(t) + Diu(t) + Ziw(t)

i = 1, 2, 3, ..., r (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, y(t) ∈ Rq is
the performance output vector, w(t) ∈ Rs is L2 type of disturbance, r is the total number of
model rules, Mij is the fuzzy set. The coefficient matrices are Ai ∈ Rn×n, Bi ∈ Rn×m, Fi ∈

Rn×s, Ci ∈ Rq×n, Di ∈ Rq×m, Zi ∈ Rq×s. And ϕ1, ..., ϕp are known premise variables, which
can be functions of state variables, external disturbance and time.

It is assumed that the premises are not the function of the input vector u(t), which is needed
to avoid the defuzzification process of fuzzy controller. If we use ϕ(t) to denote the vector
containing all the individual elements ϕ1(t), ϕ2(t), ..., ϕp(t), then the overall fuzzy system is

ẋ(t) =
∑

r
i=1 gi(ϕ(t))[Aix(t) + Biu(t) + Fiw(t)]

∑
r
i=1 gi(ϕ(t))

=
r

∑
i=1

hi(ϕ(t))[Aix(t) + Biu(t) + Fiw(t)]

y(t) =
∑

r
i=1 gi(ϕ(t))[Cix(t) + Diu(t) + Ziw(t)]

∑
r
i=1 gi(ϕ(t))

=
r

∑
i=1

hi(ϕ(t))[Cix(t) + Diu(t) + Ziw(t)] (2)
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Fuzzy Control of Nonlinear Systems with General Performance Criteria 3

where

ϕ(t) = [ϕ1(t), ϕ2(t), ..., ϕp(t)] (3)

gi(ϕ(t)) =
p

∏
j=1

Mij(ϕj(t)) (4)

hi(ϕ(t)) =
gi(ϕ(t))

∑
r
i=1 gi(ϕ(t))

(5)

for all time t. The term Mij(ϕj(t)) is the grade membership function of φj(t) in Mij.

Since, the following properties hold

r

∑
i=1

gi(ϕ(t)) > 0

gi(ϕ(t)) ≥ 0, i = 1, 2, 3, ..., r (6)

We have

r

∑
i=1

hi(ϕ(t)) = 1

hi(ϕ(t)) ≥ 0, i = 1, 2, 3, ..., r (7)

for all time t.

It is assumed that the state feedback is available and the non-linear state feedback control
input is given by

u(t) = −
r

∑
i=1

hi(ϕ(t))Kix(t) (8)

Substituting this into the system and performance output equation, we have

ẋ(t) =
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))(Ai − BiKj)x(t) +
r

∑
i=1

hi(ϕ(t))Fiw(t)

y(t) =
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))(Ci − DiKj)x(k) +
r

∑
i=1

hi(ϕ(t))Ziw(t) (9)

Using the notation

Gij = Ai − BiKj

Hij = Ci − DiKj (10)

then the system equation becomes

ẋ(t) =
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Gijx(t) +
r

∑
i=1

hi(ϕ(t))Fiw(t)

y(t) =
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Hijx(t) +
r

∑
i=1

hi(ϕ(t))Ziw(t) (11)

121Fuzzy Control of Nonlinear Systems with General Performance Criteria



4 Fuzzy Controllers

2.2. Discrete-time Takagi-Sugeno system model

At time step k, the ith rule of the Takagi-Sugeno fuzzy model can be expressed by the following
forms:

Model Rule i:
If ϕ1(k) is Mi1,ϕ2(k) is Mi2,... and ϕp(k) is Mip,
Then the input-affine discrete-time fuzzy system equation is:

x(k + 1) = Aix(k) + Biu(k) + Fiw(k)

y(k) = Cix(k) + Diu(k) + Ziw(k)

i = 1, 2, 3, ..., r (12)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the control input vector, y(k) ∈ Rq is
the performance output vector, w(k) ∈ Rs is l2 type of disturbance, r is the total number of
model rules, Mij is the fuzzy set. The coefficient matrices are Ai ∈ Rn×n, Bi ∈ Rn×m, Fi ∈

Rn×s, Ci ∈ Rq×n, Di ∈ Rq×m, Zi ∈ Rq×s. And ϕ1, ..., ϕp are known premise variables which
can be functions of state variables, external disturbance and time.

It is assumed that the premises are not the function of the input vector u(k), which is needed
to avoid the defuzzification process of fuzzy controller. If we use ϕ(k) to denote the vector
containing all the individual elements ϕ1(k), ϕ2(k), ..., ϕp(k), then the overall fuzzy system is

x(k+1)=
∑

r
i=1 gi(ϕ(k))Aix(k)+Biu(k)+Fiw(k)

∑
r
i=1 gi(ϕ(k))

=
r

∑
i=1

hi(ϕ(k))Aix(k)+Biu(k)+Fiw(k)

y(k)=
∑

r
i=1 gi(ϕ(k))Cix(k)+Diu(k)+Ziw(k)

∑
r
i=1 gi(ϕ(k))

=
r

∑
i=1

hi(ϕ(k))Cix(k)+Diu(k)+Ziw(k) (13)

where

ϕ(k) = [ϕ1(k), ϕ2(k), ..., ϕp(k)] (14)

gi(ϕ(k)) =
p

∏
j=1

Mij(ϕj(k)) (15)

hi(ϕ(k)) =
gi(ϕ(k))

∑
r
i=1 gi(ϕ(k))

(16)

for all k. The term Mij(ϕj(k)) is the grade membership function of φj(k) in Mij.

Since, the following properties hold

r

∑
i=1

gi(ϕ(k)) > 0

gi(ϕ(k)) ≥ 0, i = 1, 2, 3, ..., r (17)

We have

r

∑
i=1

hi(ϕ(k)) = 1

hi(ϕ(k)) ≥ 0, i = 1, 2, 3, ..., r (18)
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for all k.

It is assumed that the state feedback is available and the non-linear state feedback control
input is given by

u(k) = −
r

∑
i=1

hi(ϕ(k))Kix(k) (19)

Substituting this into the system and performance output equation, we have

x(k + 1) =
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))(Ai − BiKj)x(k) +
r

∑
i=1

hi(ϕ(k))Fiw(k)

y(k) =
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))(Ci − DiKj)x(k) +
r

∑
i=1

hi(ϕ(k))Ziw(k) (20)

Using the notation

Gij = Ai − BiKj

Hij = Ci − DiKj (21)

then the system equation becomes

x(k + 1) =
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Gijx(k) +
r

∑
i=1

hi(ϕ(k))Fiw(k)

y(k) =
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Hijx(k) +
r

∑
i=1

hi(ϕ(k))Ziw(k) (22)

3. General performance criteria

In this section, we propose the general performance criteria for non-linear control design,
which yields a mixed Non-Linear Quadratic Regular (NLQR) in combination with H∞ or
dissipative performance index. The commonly used system performance criteria, including
bounded-realness, positive-realness, sector boundedness and quadratic cost criterion, become
special cases of the general performance criteria. Both the continuous-time and discrete-time
general performance criteria are given below:

3.1. Continuous-time general performance criteria

Consider the quadratic Lyapunov function

V(t) = xT(t)Px(t) > 0 (23)

for the following difference inequality

V̇(t) + xT(t)Qx(t) + uT(t)Ru(t) + αyT(t)y(t)− βyT(t)w(t) + γwT(t)w(t) ≤ 0 (24)

with Q > 0, R > 0 functions of x(t).
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6 Fuzzy Controllers

Note that upon integration over time from 0 to Tf , (24) yields

V(Tf ) +
∫ Tf

0
[(xT(t)Qx(t) + uT(t)Ru(t)]dt +

∫ Tf

0
[αyT(t)y(t)− βyT(t)w(t) + γwT(t)w(t)]dt ≤ V(0) (25)

By properly specifying the value of weighing matrices Q, R, Ci, Di, Zi and α, β, γ, mixed
performance criteria can be used in non-linear control design, which yields a mixed
Non-linear Quadratic Regulator (NLQR) in combination with dissipative type performance
index with disturbance reduction capability. For example, if we take α = 1, β = 0, γ < 0, (25)
yields

V(Tf ) +
∫ Tf

0
[(xT(t)Qx(t) + uT(t)Ru(t) + yT(t)y(t)]dt +

≤ V(0)− γ

∫ Tf

0
[wT(t)w(t)]dt (26)

which is a mixed NLQR − H∞ Design [16–18].

Other possible performance criteria which can be used in this framework with various design
parameters α, β, γ are given in Table.1. Design coefficients α and γ can be maximized or
minimized to optimize the controller behavior. It should also be noted that the satisfaction of
any of the criteria in Table 1 will also guarantee asymptotic stability of the controlled system.

3.2. Discrete-time general performance criteria

Consider the quadratic Lyapunov function

V(k) = xT(k)Px(k) (27)

for the following difference inequality

V(k + 1)− V(k) + xT(k)Qx(k) + uT(k)Ru(k) + αyT(k)y(k)− βyT(k)w(k) + γwT(k)w(k) ≤ 0
(28)

with Q > 0, R > 0 functions of x(k).

Note that upon summation over k, (28) yields

V(N) +
N−1

∑
k=0

(xT(k)Qx(k) + uT(k)Ru(k) + αyT(k)y(k)− βyT(k)w(k) + γwT(k)w(k)) ≤ V(0)

(29)
By properly specifying the value of weighing matrices Q, R, Ci, Di, Zi and α, β, γ, mixed
performance criteria can be used in non-linear control design, which yields a mixed
Non-linear Quadratic Regulator (NLQR) in combination with dissipative type performance
index with disturbance reduction capability. For example, if we take α = 1, β = 0, γ < 0, (29)
yields

V(N) +
N−1

∑
k=0

(xT(k)Qx(k) + uT(k)Ru(k) + αyT(k)y(k)) ≤ V(0)− γ
N−1

∑
k=0

wT(k)w(k) (30)
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Fuzzy Control of Nonlinear Systems with General Performance Criteria 7

which is a mixed NLQR− H∞ Design [16–18]. In (19), γ can be minimized to achieve a smaller
l2 − l2 or H∞ gain for the closed loop system.

Other possible performance criteria which can be used in this framework with various design
parameters α, β, γ are given in Table.1. Design coefficients α and γ can be maximized or
minimized to optimize the controller behavior. It should also be noted that the satisfaction of
any of the criteria in Table 1 will also guarantee asymptotic stability of the controlled system.

α β γ Performance Criteria

1 0 <0 NLQR −H∞ Design
0 1 0 NLQR − Passivity Design
0 1 >0 NLQR − Input Strict Passivity Design

>0 1 0 NLQR − Output Strict Passivity Design
>0 1 >0 NLQR − Very Strict Passivity

Table 1. Various performance criteria in a general framework

4. Fuzzy LMI control of continuous time non-linear systems with general

performance criteria

The main results of this chapter are summarized in section 4 and section 5. The following
theorem provides the fuzzy LMI control to the continuous time non-linear systems with
general performance criteria.

Theorem 1 Given the system model and performance output (2) and control input (8), if there
exist matrices S = P−1

> 0 for all t ≥ 0, such that the following LMI holds:

⎡

⎢

⎢

⎢

⎢

⎣

Λ11 Λ12 Λ13 Λ14 Λ15

∗ Λ22 Λ23 0 0
∗ ∗ I 0 0

∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ I

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0 (31)

where

Λ11 = −
1

2
[SAT

i − MjB
T
i + SAT

j − MT
i BT

j + AiS − Bi Mj + AjS − Bj Mi]

Λ12 = −
1

2
(Fi + Fj) +

β

4
[SCT

i − MjD
T
i + SCT

j − MT
i DT

j ]

Λ13 =
1

2
α1/2[SCT

i − MjD
T
i + SCT

j − MT
i DT

j ]

Λ14 =
1

2
(MT

i + MT
j )

Λ15 = SQT/2

Λ22 = −γI +
1

2
β(Zi + Zj)

T

Λ23 =
1

2
α1/2[Zi + Zj]

T (32)
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8 Fuzzy Controllers

using the notation

Mi = KiP
−1 = KiS (33)

then inequality (24) is satisfied.

Proof
By applying system model and performance output (2)(11), and state feedback input (8), the
performance index inequality (24) becomes

[
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Gijx(t) +
r

∑
i=1

hi(ϕ(t))Fiw(t)]T Px(t) +

xT(t)P[
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Gijx(t) +
r

∑
i=1

hi(ϕ(t))Fiw(t)] +

xT(t)Qx(t) + [−
r

∑
i=1

hi ϕ(t)Kix(t)]
T R[−

r

∑
i=1

hi ϕ(t)Kix(t)]

α[
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Hijx(t) +
r

∑
i=1

hi(ϕ(t))Ziw(t)]T

×[
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Hijx(t) +
r

∑
i=1

hi(ϕ(t))Ziw(t)]

−β[
r

∑
i=1

r

∑
j=1

hi(ϕ(t))hj(ϕ(t))Hijx(t) +
r

∑
i=1

hi(ϕ(t))Ziw(t)]T × w(t)

+γwT(t)w(t) ≤ 0 (34)

Inequality (34) is equivalent to

[

xT(t) wT(t)
]

×

[

Δ11 Δ12

∗ Δ22

]

×

[

x(t)
w(t)

]

≤ 0 (35)

where

Δ11 = (∑
i

∑
j

hihjGij)
T P + P(∑

i
∑

j

hihjGij) + Q + [∑
i

hiKi]
T R[∑

i

hiKi] +

α[∑
i

∑
j

hihj Hij]
T [∑

i
∑

j

hihj Hij]

Δ12 = P(∑
i

hiFi) + α[∑
i

∑
j

hihj Hij]
T [∑

i

hiZi]−
β

2
[∑

i
∑

j

hihj Hij]
T

Δ22 = γI + α[∑
i

hiZi]
T [∑

i

hiZi]− β[∑
i

hiZi]
T (36)

Inequality (35) can be rewritten as

[

Θ11 Θ12

∗ Θ22

]

− α

[

[∑i ∑j hihj Hij]
T

[∑i hiZi]
T

]

×
[

[∑i ∑j hihj Hij] [∑i hiZi]
]

≥ 0 (37)
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where

Θ11 = −(∑
i

∑
j

hihjGij)
T P − P(∑

i
∑

j

hihjGij)− Q − [∑
i

hiKi]
T R[∑

i

hiKi]

Θ12 = −P(∑
i

hiFi) +
β

2
[∑

i
∑

j

hihj Hij]
T

Θ22 = −γI + β[∑
i

hiZi]
T (38)

By applying Schur complement to inequality (37), we have

⎡

⎣

Θ11 Θ12 α1/2[∑i ∑j hihj Hij]
T

∗ Θ22 α1/2[∑i hiZi]
T

∗ ∗ I

⎤

⎦ ≥ 0 (39)

Similarly, inequality (39) can also be written as

⎡

⎣

Φ11 Φ12 α1/2[∑i ∑j hihj Hij]
T

∗ Φ22 α1/2[∑i hiZi]
T

∗ ∗ I

⎤

⎦−

⎡

⎣

[∑i hiKi]
T

0
0

⎤

⎦ R
[

[∑i hiKi] 0 0
]

≥ 0 (40)

where

Φ11 = −(∑
i

∑
j

hihjGij)
T P − P(∑

i
∑

j

hihjGij)− Q

Φ12 = −P(∑
i

hiFi) +
β

2
[∑

i
∑

j

hihj Hij]
T

Φ22 = −γI + β[∑
i

hiZi]
T (41)

By applying Schur complement again to (40), we have

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Φ11 Φ12 α1/2[∑i ∑j hihj Hij]
T [∑i hiKi]

T

∗ Φ22 α1/2[∑i hiZi]
T 0

∗ ∗ I 0

∗ ∗ ∗ R−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 (42)

Equivalently, we have

∑
i

∑
j

hihj ×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Γ11 Γ12 Γ13 Γ14

∗ Γ22 Γ23 0

∗ ∗ I 0

∗ ∗ ∗ R−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 (43)
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10 Fuzzy Controllers

where

Γ11 = −
1

2
[(Ai − BiKj) + (Aj − BjKi)]

T P −
1

2
P[(Ai − BiKj) + (Aj − BjKi)]− Q

Γ12 = −
1

2
P(Fi + Fj) +

β

4
[(Ci − DiKj) + (Cj − DjKi)]

T

Γ13 = −
1

2
α1/2[(Ci − DiKj) + (Cj − DjKi)]

T

Γ14 = −
1

2
(Ki + Kj)

T

Γ22 = −γI +
1

2
β(Zi + Zj)

T

Γ23 =
1

2
α1/2(Zi + Zj)

T (44)

Therefore, we have the following LMI

⎡

⎢

⎢

⎣

Γ11 Γ12 Γ13 Γ14

∗ Γ22 Γ23 0
∗ ∗ I 0

∗ ∗ ∗ R−1

⎤

⎥

⎥

⎦

≥ 0 (45)

By multiplying both sides of the LMI above by the block diagonal matrix diag{S, I, I, I}, where
S = P−1, and using the notation

Mi = KiP
−1 = KiS (46)

we obtain
⎡

⎢

⎢

⎣

X11 X12 X13 X14

∗ X22 X23 0
∗ ∗ I 0

∗ ∗ ∗ R−1

⎤

⎥

⎥

⎦

≥ 0 (47)

where

X11 = −
1

2
[SAT

i − MjB
T
i + SAT

j − MT
i BT

j + AiS − Bi Mj + AjS − Bj Mi]− SQS

X12 = −
1

2
(Fi + Fj) +

β

4
[SCT

i − MT
j DT

i + SCT
j − MT

i DT
j ]

X13 =
1

2
α1/2[SCT

i − MT
j DT

i + SCT
j − MT

i DT
j ]

X14 =
1

2
(MT

i + MT
j )

X22 = −γI +
1

2
β(Zi + Zj)

T

X23 =
1

2
α1/2(Zi + Zj)

T (48)
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By applying Schur complement again, the final LMI is derived

⎡

⎢

⎢

⎢

⎢

⎣

Λ11 Λ12 Λ13 Λ14 Λ15

∗ Λ22 Λ23 0 0
∗ ∗ I 0 0

∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ I

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0 (49)

where

Λ11 = −
1

2
[SAT

i − MjB
T
i + SAT

j − MT
i BT

j + AiS − Bi Mj + AjS − Bj Mi]

Λ12 = −
1

2
(Fi + Fj) +

β

4
[SCT

i − MjD
T
i + SCT

j − MT
i DT

j ]

Λ13 =
1

2
α1/2[SCT

i − MjD
T
i + SCT

j − MT
i DT

j ]

Λ14 =
1

2
(MT

i + MT
j )

Λ15 = SQT/2

Λ22 = −γI +
1

2
β(Zi + Zj)

T

Λ23 =
1

2
α1/2[Zi + Zj]

T (50)

Hence, if the LMI (49) holds, inequality (24) is satisfied. This concludes the proof of the
theorem.

Remark 1: For the chosen performance criterion, the LMI (49) need to be solved at each time
to find matrices S, M, by using relation (33), we can find the feedback control gain, therefore,
the feedback control can be found to satisfy the chosen criterion.

5. Fuzzy LMI control of discrete time non-linear systems with general

performance criteria

This section summarizes the main results for fuzzy LMI control of discrete time non-linear
systems with general performance criteria:

Theorem 2: Given the closed loop system and performance output (13), and control input
(19), if there exist matrices S = P−1

> 0 for all k ≥ 0, such that the following LMI holds:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16

∗ Ξ22 Ξ23 Ξ24 0 0
∗ ∗ S 0 0 0
∗ ∗ ∗ I 0 0

∗ ∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ ∗ I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 (51)
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where

Ξ11 = S

Ξ12 =
β

4
(CiS − DiYj + CjS − DjYi)

T

Ξ13 =
1

2
(AiS − BiYj + AjS − BjYi)

T

Ξ14 =
1

2
α1/2(CiS − DiYj + CjS − DjYi)

T

Ξ15 =
1

2
(Yi + Yj)

T

Ξ16 = SQT/2

Ξ22 = −γI +
β

2
(Zi + Zj)

T

Ξ23 =
1

2
α1/2(Fi + Fj)

T

Ξ24 =
1

2
α1/2(Zi + Zj)

T (52)

and
S(k + 1) > S(k) (53)

where S(k) = P−1(k), then (28) is satisfied with the feedback control gain being found by

K(k) = Y(k)P(k) (54)

Proof
The performance index inequality (28) can be explicitly written as

[
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Gijx(k) +
r

∑
i=1

hi(ϕ(k))Fiw(k)]T

×P × [
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Gijx(k) +
r

∑
i=1

hi(ϕ(k))Fiw(k)]

−xT(k)Px(k) + xT(k)Qx(k) + [−
r

∑
i=1

hi(ϕ(k))Kix(k)]
T R[−

r

∑
i=1

hi(ϕ(k))Kix(k)] +

α[
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Hijx(k) +
r

∑
i=1

hi(ϕ(k))Ziw(k)]T

×[
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Hijx(k) +
r

∑
i=1

hi(ϕ(k))Ziw(k)]

−β[
r

∑
i=1

r

∑
j=1

hi(ϕ(k))hj(ϕ(k))Hijx(k) +
r

∑
i=1

hi(ϕ(k))Ziw(k)]T × w(k)

+γwT(k)w(k) ≤ 0 (55)
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Equivalently,

[

xT(k) wT(k)
]

[

−P + Q 0
0 γI

] [

x(k)
w(k)

]

+

[

xT(k) wT(k)
] [

(∑i ∑j hihjGij) (∑i hiFi)
]T

× P ×
[

(∑i ∑j hihjGij) (∑i hiFi)
]

[

x(k)
w(k)

]

+

+xT(k)[∑
i

hiKi]
T R[∑

i

hiKi]x(k) +

α
[

xT(k) wT(k)
] [

(∑i ∑j hihj Hij) (∑i hiZi)
]T

×
[

(∑i ∑j hihj Hij) (∑i hiZi)
]

[

x(k)
w(k)

]

+

−β
[

xT(k) wT(k)
] [

(∑i ∑j hihj Hij) (∑i hiZi)
]T

w(k) ≤ 0

(56)

which can be written, after collecting terms, as

[

xT(k) wT(k)
]

[

Υ11 Υ12

∗ Υ22

] [

x(k)
w(k)

]

+

[

xT(k) wT(k)
] [

(∑i ∑j hihjGij) (∑i hiFi)
]T

× P ×
[

(∑i ∑j hihjGij) (∑i hiFi)
]

[

x(k)
w(k)

]

+

α
[

xT(k) wT(k)
] [

(∑i ∑j hihj Hij) (∑i hiZi)
]T

×
[

(∑i ∑j hihj Hij) (∑i hiZi)
]

[

x(k)
w(k)

]

≥ 0

(57)

where

Υ11 = P − Q − [∑
i

hiKi]
T R[∑

i

hiKi]

Υ12 =
β

2
[∑

i
∑

j

hihj Hij]
T

Υ22 = −γI + β[∑
i

hiZi]
T (58)

Equivalently, we have

[

Υ11 Υ12

∗ Υ22

]

−
[

(∑i ∑j hihjGij) (∑i hiFi)
]T

× P ×
[

(∑i ∑j hihjGij) (∑i hiFi)
]

−

α
[

(∑i ∑j hihj Hij) (∑i hiZi)
]T

×
[

(∑i ∑j hihj Hij) (∑i hiZi)
]

≥ 0

(59)

By applying Schur complement, we obtain

⎡

⎣

Υ11 Υ12 (∑i ∑j hihjGij))
T

∗ Υ22 (∑i hiFi)
T

∗ ∗ P−1

⎤

⎦− α
[

(∑i ∑j hihj Hij) (∑i hiZi)
]T

×
[

(∑i ∑j hihj Hij) (∑i hiZi)
]

≥ 0

(60)
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By applying Schur complement again, we obtain

⎡

⎢

⎢

⎣

Υ11 Υ12 (∑i ∑j hihjGij))
T α1/2(∑i ∑j hihj Hij)

T

∗ Υ22 (∑i hiFi)
T α1/2(∑i hiZi)

T

∗ ∗ P−1 0
∗ ∗ ∗ I

⎤

⎥

⎥

⎦

≥ 0

(61)

Equivalently, the following inequality holds

⎡

⎢

⎢

⎣

Ψ11 Ψ12 (∑i ∑j hihjGij))
T α1/2(∑i ∑j hihj Hij)

T

∗ Ψ22 (∑i hiFi)
T α1/2(∑i hiZi)

T

∗ ∗ P−1 0
∗ ∗ ∗ I

⎤

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

(∑i hiKi)
T

0
0
0

⎤

⎥

⎥

⎦

× R ×
[

(∑i hiKi) 0 0 0
]

≥ 0

(62)

where

Ψ11 = P − Q

Ψ12 =
β

2
[∑

i
∑

j

hihj Hij]
T

Ψ22 = −γI + β[∑
i

hiZi]
T (63)

By applying Schur complement one more time, we have

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ψ11 Ψ12 (∑i ∑j hihjGij))
T α1/2(∑i ∑j hihj Hij)

T (∑i hiKi)
T

∗ Ψ22 (∑i hiFi)
T α1/2(∑i hiZi)

T 0

∗ ∗ P−1 0 0

∗ ∗ ∗ I 0

∗ ∗ ∗ ∗ R−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0

(64)

By factoring out the ∑i ∑j hi(ϕk)hj(ϕk) term, we have

⎡

⎢

⎢

⎢

⎢

⎣

Ω11 Ω12 Ω13 Ω14 Ω15

∗ Ω22 Ω23 Ω24 0

∗ ∗ P−1 0 0
∗ ∗ ∗ I 0

∗ ∗ ∗ ∗ R−1

⎤

⎥

⎥

⎥

⎥

⎦

≥ 0

(65)

132 Fuzzy Controllers – Recent Advances in Theory and Applications



Fuzzy Control of Nonlinear Systems with General Performance Criteria 15

where

Ω11 = P − Q

Ω12 =
β

4
[Hji + Hij]

T

Ω13 =
1

2
(Gji + Gij))

T

Ω14 =
1

2
α1/2(Hij + Hji)

T

Ω15 =
1

2
(Ki + Kj)

T

Ω22 = −γI +
β

2
(Zi + Zj)

T

Ω23 =
1

2
(Fi + Fj)

T

Ω24 =
1

2
α1/2(Zi + Zj)

T

(66)

By pre-multiplying and post-multiplying the matrix with the block diagonal matrix
diag(S, I, I, I, I) , where S = P−1, and applying Schur complement again, the following LMI
result is obtained

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16

∗ Ξ22 Ξ23 Ξ24 0 0
∗ ∗ S 0 0 0
∗ ∗ ∗ I 0 0

∗ ∗ ∗ ∗ R−1 0
∗ ∗ ∗ ∗ ∗ I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≥ 0 (67)

where

Ξ11 = S

Ξ12 =
β

4
(CiS − DiYj + CjS − DjYi)

T

Ξ13 =
1

2
(AiS − BiYj + AjS − BjYi)

T

Ξ14 =
1

2
α1/2(CiS − DiYj + CjS − DjYi)

T

Ξ15 =
1

2
(Yi + Yj)

T

Ξ16 = SQT/2

Ξ22 = −γI +
β

2
(Zi + Zj)

T

Ξ23 =
1

2
α1/2(Fi + Fj)

T

Ξ24 =
1

2
α1/2(Zi + Zj)

T (68)
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where S(k) = P−1(k), then (28) is satisfied with the feedback control gain being found by

K(k) = Y(k)P(k) (69)

6. Application to the inverted pendulum system

The inverted pendulum on a cart problem is a benchmark control problem used widely to test
control algorithms. A pendulum beam attached at one end can rotate freely in the vertical
2-dimensional plane. The angle of the beam with respect to the vertical direction is denoted
at angle θ. The external force u is desired to set angle of the beam θ (x1) and angular velocity
θ̇ (x2) to zero while satisfying the mixed performance criteria. A model of the inverted
pendulum on a cart problem is given by [1, 9]:

ẋ1 = x2 + ǫ1w

ẋ2 =
gsin(x1)− amLx2

2sin(2x1)/2 − acos(x1)u

4L/3 − amLcos2(x1)
+ ǫ2w (70)

where x1 is the angle of the pendulum from vertical direction, x2 is the angular velocity of the
pendulum, g is the gravity constant, m is the mass of the pendulum, M is the mass of the cart,
L is the length of the center of mass (the entire length of the pendulum beam equals 2L), u is
the external force, control input to the system, w is the L2 type of disturbance, a = 1

m+M is a
constant, and ǫ1.ǫ2 is the weighing coefficients of disturbance.

Due to the system non-linearity, we approximate the system using the following two-rule
fuzzy model:

continuous-time fuzzy model

Rule 1: If |x1(t)| is close to zero,
Then ẋ(t) = A1x(t) + B1u(t) + F1w(t)

Rule 2: If |x1(t)| is close to π/2,
Then ẋ(t) = A2x(t) + B2u(t) + F2w(t)

where

A1 =

[

0 1
g

4L/3−amL 0

]

B1 =

[

0
− a

4L/3−amL

]

F1 =

[

ǫ1

ǫ2

]

A2 =

[

0 1
2g

π(4L/3−amLδ2)
0

]

B1 =

[

0

− aδ
4L/3−amLδ2

]

F1 =

[

ǫ1

ǫ2

]

with δ = cos(80o) (71)

discrete-time fuzzy model

Rule 1: If |x1(k)| is close to zero,
Then x(k + 1) = A1x(k) + B1u(k) +F1w(k)

Rule 2: If |x1(k)| is close to π/2,
Then x(k + 1) = A2x(k) + B2u(k) +F2w(k)
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where

A1 =

[

1 T
gT

4L/3−amL 1

]

B1 =

[

0

− aT
4L/3−amL

]

F1 =

[

ǫ1T
ǫ2T

]

A2 =

[

1 T
2gT

π(4L/3−amLδ2)
1

]

B2 =

[

0

− aδT
4L/3−amLδ2

]

F2 =

[

ǫ1T
ǫ2T

]

with δ = cos(80o), Sampling time T = 0.001 (72)

The following values are used in our simulation:

M = 8kg, m = 2kg, L = 0.5m, g = 9.8m/s2, ǫ1 = 1, ǫ2 = 0

and the initial condition of x1(0) = π/6, x2(0) = −π/6. The membership function of Rule 1
and Rule 2 is shown below in Fig.1.

Figure 1. Membership functions of Rule 1 and Rule 2.

Figure 2. Angle trajectory of the inverted pendulum.

The feedback control gain can be found from (31)(51) by solving the LMI at each time. The
following design parameters are chosen to satisfy:

Mixed NLQR −H∞ criteria:

C = [1 1], D = [1], Q = diag[1001], R = 1, α = 1, β = 0, γ = −5

Mixed NLQR − passivity criteria:

C = [1 1], D = [1], Q = diag[1001], R = 1, α = 1, β = 5, γ = 0
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Figure 3. Angular velocity trajectory of the inverted pendulum.

Figure 4. Control input applied to the inverted pendulum.

The mixed criteria control performance results are shown in the Figs.2-4. From these figures,
we find that the novel fuzzy LMI control has satisfactory performance. The mixed NLQR −
H∞ criteria control has a smaller overshoot and a faster response than the one with passivity
property. The new technique controls the inverted pendulum very well under the effect of
finite energy disturbance. It should also be noted that the LMI fuzzy control with mixed
performance criteria satisfies global asymptotic stability.

7. Summary

This chapter presents a novel fuzzy control approach for both of continuous time and discrete
time non-linear systems based on the LMI solutions. The Takagi-Sugeno fuzzy model is
applied to decompose the non-linear system. Multiple performance criteria are used to design
the controller and the relative weighting matrices of these criteria can be achieved by choosing
different coefficient matrices. The optimal control can be obtained by solving LMI at each
time. The inverted pendulum is used as an example to demonstrate its effectiveness. The
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simulation studies show that the proposed method provides a satisfactory alternative to the
existing non-linear control approaches.
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