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1. Introduction 

In order to realize comfort environment for sleeping, material property of fiber which 

consists bedclothes is very important. Compression property of fiber assembly is needed to 

support human body comfortable, and heat and water transport property is needed to keep 

micro climate in bedclothes comfortable. In Japan, “futon” has been used for bedclothes, and 

use of “futon” is divided into mattress to support human body (“shiki-futon” in Japanese) 

and quilt to cover human body (“kake-futon” in Japanese). Futon consists of futon wadding 

made from fiber assembly and shell fabrics which covers futon wadding. Cotton fiber has 

been used for futon wadding use, and wool fiber increases its use for futon wadding 

recently. Therefore, in Japan, many studies concerning compression properties of futon 

wadding made from natural fiber such as cotton or wool has been conducted [1-5]. Recently, 

use of synthetic fiber including polyester for wadding increases because it is light and 

warm, easy to handle and easy to attach many kinds of functionalities. However, a study on 

compression properties of synthetic fiber assembly has not been conducted so much. 

In this study, therefore, compression properties of fiber assembly made of synthetic and 

regenerated fiber for futon wadding will be investigated. The reason why we focus our 

study on compression properties is to explore feasibility of these materials as mattress use. 

In particular, compression viscoelastic properties such as stress relaxation and creep 

properties will be carried out in this study, because compression viscoelastic properties have 

not been carried out systematically in spite of its potential effect on sleeping comfort. 

In this paper, results of repeated compression-recovery test, compression stress relaxation 

test and compression creep test of synthetic and regenerated staple fiber assembly are 
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reported [6-9]. In addition, results of stress relaxation and creep behaviors of fiber 

assemblies are analyzed based on non-linear viscoelastic model. 

2. Samples of fibers used 

2.1. Fiber materials 

Twelve kinds of staple fiber materials are used for experiment such as three kinds of 

polyester fiber with round section, three kinds of polyester fiber with heteromorphic section 

(w-shaped), one kind of polyester fiber with hollow section, three kinds of Cupra fiber and 

one kind of Lyocell fiber. Sample code is shown in Table1, and the details of samples are 

shown in Table 2. Web made from raw fiber material which is subjected to opening and 

carding process is used. Fiber assembly is conditioned in constant temperature and 

humidity room (20℃, 65%RH) over 24 hrs and served for experiment. 

 

Table 1. Sample code 

2.2. Standard condition for the measurement  

Important measurement condition in compression test is fiber volume fraction and 

maximum compression stress. Standard values for fiber volume fraction and maximum 

compression stress are estimated as follows. Standard value for fiber volume fraction is 

0.025, of which value is estimated from standard size and wadding weight of futon 

commercially available in Japan. Standard value for maximum compression stress is 2352 

Pa, of which value is based on the data that average pressure applied to futon by male adult 

is about 2.3 kPa. Measurement condition used in this study is determined based on these 

values of standard condition. 

2.3. Sample preparation for fiber assembly 

In the case of repeated compression-recovery test and compression stress relaxation test, 

fiber assembly sample is prepared by filling staple fiber into cylindrical cell made of Acrylic 

Sample code Detail of sample

WPE-1

WPE-2

WPE-3

RPE-1

RPE-2

RPE-3

RPE-4 Polyester staple fiber with hollow section

PTT Polytrimethyleneterephtalate staple fiber 

CU-1

CU-2

CU-3

LY Lyocell staple fiber

Polyester staple fiber with w-shaped heteromorphic section 

Polyester staple fiber with round section

Cupra-ammonium (Cupra) staple fiber
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resin (inner diameter: 54mm, height: 100mm). In this case, setting of fiber volume fraction is 

important as one of the measurement conditions. Fiber volume fraction Φf in cylindrical cell 

is estimated as follows. 

 2
f 1.27 x W/ d h   (1) 

where, W: sample weight (g), ρ: specific gravity of fiber (n.d.), d: inner diameter of cell (cm), 

h: height of cell (cm). Amount of staple fiber estimated by equation (1) is filled uniformly 

into cylindrical cell, and plastic disk of diameter 50mm is put on the top of fiber assembly. 

This cylindrical fiber assembly is served as samples to compression test. 

 

 

Table 2. Details of fiber samples 

In the case of compression creep test, fiber assembly of which shape is rectangular prism 

(10cm square base) is used as sample. Fiber volume fraction Φf in rectangular prism is 

estimated as follows. 

 2
f W/ a h   (2) 

where, W: sample weight (g), ρ: specific gravity of fiber (n.d.), a: length of base (cm), h: 

height of prism (cm). Amount of staple fiber assembly estimated by equation (2) is served as 

samples to compression creep test after pre-processing. 

24.22
*2

5.37×10
-5＊4

6.27
*3

2.41×10
-7＊5

24.31
*2

4.99×10
-5＊4

6.78
*3

3.01×10
-7＊5

29.06
*2

1.04×10
-4＊4

8.71
*3

8.39×10
-7＊5

RPE-1 1.3 38 12.76 1.38 26.70 412 5.36×10
-6

RPE-2 2.2 51 18.15 1.38 27.24 379 2.02×10
-5

RPE-3 6.6 51 29.17 1.38 33.33 262 9.31×10
-5

RPE-4 6.6 51 29.79 1.38 27.59 252 1.34×10
-3

PTT 1.7 51 15.02 1.38 15.43 154 3.85×10
-6

CU-1 1.4 38 11.84 1.50 8.79 645 6.22×10
-6

CU-2 1.4 51 13.73 1.50 15.06 639 1.11×10
-5

CU-3 2.2 76 15.46 1.50 20.51 475 1.33×10
-5

LY 7.0 64 33.56 1.50 14.62 359 2.23×10
-4

Fiber length

(mm)

14.80

34.71

28.29

318

291

297

1.38

1.38

1.38

38

51

B64
*1

1.4

1.4

2.2

WPE-1

WPE-2

WPE-3

Sample

code

Percentage

of crimp

(%)

Apparent young’s

modulus

(kg/mm
2
)

 Bending rigidity

（gf・c㎡）

Fineness

(dtex)

Fiber diameter

(μm）

Specific

gravity

（n.d.）
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3. Experimental measurements 

3.1. Repeated compression-recovery test 

Repeated compression-recovery behavior is measured using KES-G5 compression tester 

(Figure 1)(Kato Tech Co.)[6]. The movement of compression and recovery is applied to fiber 

assembly filled in cylindrical cell by metal plate with area 20cm2 with constant rate, 

1mm/sec. The displacement of metal plate is detected by potentiometer, and the movement 

is controlled by automatic control. Compression stress is measured by strain gauge attached 

to metal rod which is connected perpendicular to the metal plate. When compression stress 

reaches maximum value, Pmax, the compression movement is turned to recovery one. The 

test was carried out at four different level of Pmax, 784, 1176, 2352 and 3528 Pa. Number of 

repeating cycles of compression and recovery is 31 times. The output of electronic signal of 

the compression stress and the displacement of metal plate from amplifier is recorded by 

data logger with constant sampling time, 1 sec, and data processing is carried out using 

personal computer. 

 

Figure 1. KES-G5 Compression Tester  

3.2. Compression stress relaxation test 

Compression stress relaxation behavior is measured using KES-G5 compression tester (Kato 

Tech Co.) on stress relaxation mode [7,8]. Compression displacement is applied to fiber 

assembly filled in cylindrical cell by metal plate with area 20 cm2, and initial height of 
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sample is fixed at 10cm. Compression stress at this point is regarded as 0. Starting from this 

point, metal plate is driven downward with speed 5mm/sec to the initial compression 

displacement, and fixed. Compression stress change at constant displacement is measured 

from 0 to 104 sec with time elapsed. The initial compression displacement is set at five 

different levels (1, 2, 3, 4 and 5 cm). The output signal of compression stress change is 

recorded using data logger with sampling time, 1 sec, and the data processing is carried out 

by personal computer. 

 

Figure 2. Compression Creep Tester  

3.3. Compression creep test 

Compression creep behavior is measured using Compression Creep Tester (Figure 2) (Kato 

Tech Co.)[9]. Metal plate of 10 cm square loaded with constant compression weight is 

allowed to move downward slowly, and let the metal plate touch to the top of fiber 

assembly of rectangular prism with 10 cm square. The time when metal plate touches top of 

sample is taken as 0sec, and measurement of creep starts. Creep deformation is detected by 

the displacement of metal rod connected perpendicular to metal plate using differential 

transformer. Creep test is carried out at two different compression load level, 1176 and 2156 

Pa. The output signal of creep displacement is recorded by data logger with time elapsed, 

and data processing is carried out using personal computer. The measurement is carried out 

from t=0 to 104 sec. Compression creep rate, Rt (%) is defined as follows, 

  t t 0R /h 100 % .   (3) 

where, h0: sample height at t=0 (sec), εt: compression creep displacement (mm) at time t 

(sec). 
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4. Results and discussion 

4.1. Repeated compression-recovery test 

4.1.1. Evaluation method 

In general, evaluation of compression properties of fiber assembly (including fabrics) is 

conducted by characteristic parameters obtained from the measurement of compression-

recovery curve as shown in Figure 3. In the case of KES evaluation system, for example, 

following parameters are used for the evaluation of compression properties [10]. 

 

Figure 3. Compression-Recovery Curve  

WC: Compressional energy obtained from compression curve P (gf.cm/cm2) 

LC: Linearity of compression curve (n.d.) 

RC: Compressional resilience (%) 

Each parameter is defined as follows. 

 
0

WC
T

Tm

PdT   (4) 

 LC WC / WOC  (5) 

  RC WC / WC  x 100   (6) 

where, T: Thickness of sample (mm)  

T0: Thickness of sample at P=0.5gf/cm2 (mm) 
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Tm: Thickness of sample at maximum pressure, Pm (mm). 

 m 0 mWOC P (T T ) / 2 －  (7) 

WC′: Recovery energy obtained from recovery curve P′ 

 
0

WC '
T

Tm

P dT    (8) 

In the case of evaluating compression properties of fabrics, compression-recovery test is 

carried out only in one cycle. This is because that natural state of fabrics is generally defined 

clearly. In contrast, the natural state of three-dimensional fiber assembly is difficult to 

define, because it does not have specific shape. It is supposed that state of assemble is not 

uniform and residual stress is still remained for the bulk fiber sample filled in cylindrical 

cell. In this study, therefore, we try to trace the change of compression properties of sample 

by repeating a cycle of compression-recovery process for suitable number of cycles. After 

the investigation of property change with repeating cycles, we will decide in how many 

cycles are suitable for evaluating compression properties. 

 

Figure 4. Compression-recovery curve for sample WPE-1 

Figure 4 shows the compression-recovery curve in repeated compression test for the 

polyester staple fiber with heteromorphic section (sample: WPE-1). In this study, the 

measurement is carried out under the condition that initial fiber volume fraction is 0.0125 

(a) (b) (c) 
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for three different levels of maximum compressional stress (784, 1176, 2352 Pa). Each graph 

includes five cycles of repetition. The data are shown from 2nd cycle to 21st cycle 

considering nonuniformity of fiber density and residual stress at 1st cycle. Each 

compression-recovery curve can be distinguished up to 6th cycle, and thereafter the curves 

have a tendency to overlap each other, and finally difference between each curve is not 

recognized from 22nd to 21st cycles. 

In order to analyze the change of compression-recovery curve against repeating cycles, 

characteristic parameters, WC, WC’ and Tm－T0 per one cycle are obtained. Since WC’ and 

Tm－T0 have the same tendency as WC, results of WC for three samples are discussed in 

this section. 

Behavior of compression energy in compression process, WC is shown in Figures 5,6,7 

(sample: WPE-1, RPE-1, CU-1). Characteristic value, WC decreases with increasing 

repeating cycle, and the degree of decreasing is divided into three stages. At the first stage, 

from 2nd to 5th cycle, WC decreases rapidly with increasing number of cycles. At the second 

stage, from 6th to 20th cycles, decrease of WC becomes slowly. At the third stage, from 21st 

to 31st cycles, WC curve levels off and reaches equilibrium state. 

Figures 5,6,7 show results for three different levels of maximum compression stress, Pm, 

784, 1176 and 2352 Pa, respectively. From the graph, it is clear that maximum compression 

stress, Pm influences the relationship between samples in magnitude of WC. When Pm is 

784 Pa, WC of PET fiber with heteromorphic section and Cupra fiber is same level, and WC 

of PET fiber with round section is smaller compared to the others. When Pm is 1176 Pa, WC 

of Cupra fiber is largest for all cycles, and PET fiber with heteromorphic section follows, and 

PET fiber with round section is smallest. When Pm is 2352 Pa, magnitude of WC for three 

samples becomes of the same level for all cycles. 

 

Figure 5. WC vs. Compression number of cycles (784Pa) 

Sample: ●:WPE-1, ■: RPE-1, △:CU-1 
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Figure 6. WC vs. Compression number of cycles (1176Pa) 

 

Figure 7. WC vs. Compression number of cycles (2352Pa) 

The results show that, in repeated compression-recovery test for fiber assembly, the 

difference in mechanical parameters between samples appears in some cases or does not in 

other cases depending on maximum pressure condition. Therefore, in order to characterize 

the feature in compression properties of fiber assembly, suitable sampling condition in 

maximum compression pressure must be selected in carrying out compression test. 

4.1.2. Analysis by linearizing method 

It is confirmed that the feature of compression properties for each sample appears at the 6th 

cycle of repeated compression-recovery test under the condition of maximum compression 

pressure, Pm 1176 Pa and fiber volume fraction 0.0125 as discussed in the last section. In this 

study, the shape of the 6th cycle of repeated compression-recovery curve at the condition 

mentioned above is analyzed based on linearized method proposed by Kawabata [11]. 
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Figure 8. Compression-recovery curve at 6th cycle under the condition that volume fraction is 0.0125 

and maximum compression stress is 1176 Pa for three samples. 

Straight line: WPE-1 

Dotted line: RPE-1 

Dots and dashes: CU-1 

 

Figure 9. A plot of the relationship between the logarithm of compression stress and the logarithm of 

thickness change at 6th cycle.  

Straight line: WPE-1  

Dotted line: RPE-1 

Dots and dashes: CU-1 

The compression-recovery curves for three samples (WPE-1, RPE-1, CU-1) are shown in 

Figure 8. The ordinate is compression stress, Pc (Pa), and the abscissa is compression 

displacement, T (cm). A plot of logarithm of Pc against logarithm of T is shown in Figure 9. 

It is confirmed that the relationship between log Pc and log T is almost linear, and the line 

has inflexion point both in compression and recovery process. In other words, the 

relationship between log Pc and log T is divided into two stages at a certain point. The range 
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in which linear relationship holds is summarized in Table 3. The range in which linear 

relationship at lower stress holds is called as lower stress region, and that of higher stress is 

called as higher stress region. The relationship between log Pc and log T in compression and 

recovery process is expressed in the following way. 

 

Compression process Recovery process 

Code Low stress area High stress area Low stress area High stress area 

WPE-1 0～81.8 81.8～1176 0～27.4 27.4～1176 

RPE-1 0～63.7 63.7～1176 0～20.6 20.6～1176 

CU-1 0～70.1 70.1～1176 0～30.0 30.0～1176 

Table 3. The range where logPc-logT shows linear relationship (unit:Pa) 

Compression process Recovery process 

Parameter Code 
Low stress 

area 

High stress 

area 
Low stress area High stress area 

WPE-1 1.752 1.104 3.553 2.487 

n RPE-1 1.727 1.146 2.756 2.213 

CU-1 1.436 1.063 3.097 1.862 

WPE-1 2275 865 664 182 

A RPE-1 2313 984 470 272 

CU-1 1299 740 622 160 

Table 4. Parameters n and A 

 log Pc  log A  n log T   (9) 

where, A and n are constants determined by intersection and slope of the curves shown in 

Figure 9. The A and n depend on mechanical properties of sample, measurement condition 

and stress region. The values of A and n for three samples and compression and recovery 

process are summarized in Table 4. Taking equation (9) into account, relationship between 

compression stress, Pc (Pa) and compression displacement, T (cm) is expressed as follows, 

 nPc  A T .  (10) 

The feature of compression-recovery curve can be characterized by parameters A and n. 

The effect of properties of fiber on the behavior of compression-recovery curve is 

investigated. The relationship between parameters A, n and fiber property is different for 

compression or recovery process and for lower stress region or higher stress region. In the 

compression process, A and n values depend on such parameter as number of crimp, 

percentage of crimp and apparent Young’s modulus. In the recovery process, A and n 

values depend on bending rigidity in addition to parameters mentioned above. This fact 

may support the supposition that the driving force in the recovery process may be bending 

recovery energy of fiber element. 
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4.2. Compression stress relaxation test 

4.2.1. Residual stress ratio and approximation equation 

In this section, functional form of compression stress relaxation behavior for fiber assembly 

is discussed.  

Residual stress ratio Sγ is defined as follows, 

 Y 0S  ,  ／  (11) 

where, σ: stress at time t (Pa), σ0: initial stress (stress at t=0) (Pa). 

Results of measurement of residual stress ratio for all samples are shown in Figures 10～12. 

Figure 10 shows the results of PET with heteromorphic section and PTT, Figure 11 shows 

that of PET with round and hollow sections, and Figure 12 shows that of Cupra and Lyocell 

fibers. In each figure, compression displacement is 5 cm. Ordinate is residual stress ratio SY 

(n.d.) in linear scale, and abscissa is natural logarithm of time t (s). As shown in figure, the 

curve can be approximated by linear function above t=102 sec for all the samples. Therefore, 

the curve of residual stress ratio SY for t>102 sec can be expressed approximately as follows, 

 Y 0S  K(a ln t) －   (12) 

where, t: time (s), K, a0: constants determined by sample type and measurement condition 

(n.d.). K and a0 were determined by least square method based on measurement curve. K 

values of regenerated fiber assembly are greater than that of synthetic fiber assembly for all 

displacement conditions. While K values of synthetic fiber range from 0.0075 to 0.0221, K 

values of regenerated fiber assembly range from 0.0354 to 0.0438. The smaller K value is, the 

slower compression relaxation speed becomes. It is supposed that synthetic fiber assembly 

has high sustainability of elasticity and high resistance to compression judging from its 

small K values. Summarizing these results, evaluation of compression relaxation by K value 

is very important from the viewpoint of performance in use such as sleeping comfort. It is 

conjectured that K value is influence by fiber material properties such as number of crimp, 

crimp percentage, apparent Young’s modulus, bending rigidity, inter-fiber friction and 

viscoelastic properties. 

4.2.2. Functional expression for compression stress relaxation of regenerated fiber assembly 

In this section, functional expression for compression stress relaxation of regenerated fiber 

assembly which holds all time regions in this measurement (0<t<104 sec) was discussed. 

Compression stress relaxation phenomena for regenerated fiber assembly including Cupra 

fiber is expressed in the following way [2]. 

  ao
YS  K ln coth{1 / 2 2e t  B }    

 (13) 
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where, K and a0 are constants determined from equation (2) (n.d.). Constant B can be 

obtained by substituting t=0 and σ=σ0 into equation (13). Functional expression (13) is 

derived from the nonlinear two-element viscoelastic model as shown in Figure 13 [12]. This 

model consists of an elastic element and a Non-Newtonian viscous element. Its viscous 

behavior is expressed as follows, 

  d / dt  K sinh f   (14) 

 

Figure 10. Compression relaxation curve (WPE-1,2,3, PTT, disp.=5cm) 

 

Figure 11. Compression relaxation curve (RPE-1,2,3,4, disp.=5cm) 
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Figure 12. Compression relaxation curve (CU-1,2,3,LY, disp.= 5cm) 

 

 

Figure 13. Nonlinear two element model  

where, dε/dt: strain rate, f: force, and K, α: constants concerning non-linear viscous element. 

The behavior of equation (14) when f →0 agrees with that of Newtonian viscosity. 

The comparison between calculated curves by equation (13) and measurement curves is 

shown in Figures 14 and 15. Figure 14 shows the result of Lyocell staple fiber assembly 

(7dtex, 64mm) (LY) for initial displacement 2 cm. Figure 15 shows the result of Cupra staple 

fiber assembly (CU-2) for initial displacement 2 cm. In each figure, calculated and 

measurement curves have good agreement for whole time region. It was known that 

equation (13) holds for compression stress relaxation phenomena of cotton fiber assembly by 

Nogai et al [2]. It is confirmed that equation (13) also holds for stress relaxation of cellulosic 

regenerated fiber assembly such as Cupra and Lyocell fibers in this study. 
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Figure 14. Comparison between experimental and calculated curves (LY) straight line: calculation, 

dotted line: experimental 

 

 

Figure 15. Comparison between experimental and calculated curves (CU-2) straight lime: calculation, 

dotted line: experimental 

4.2.3. Functional expression for compression stress relaxation of synthetic fiber assembly 

For synthetic fiber assembly, stress relaxation phenomena for whole time region (0<t<104 

sec) cannot be expressed by equation (13). This arises from the reason that coth type solution 

cannot be obtained because K values for synthetic fibers are smaller compared to 

regenerated fibers. 

Empirical equation to express compression stress relaxation behavior for synthetic staple fiber 

assembly is investigated. It is confirmed that linear relationship holds for all samples by bi-

logarithmic plot of stress-time curve. Therefore, the empirical equation is obtained as follows, 
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 t .    (15) 

where, σ: stress at time t (Pa), t: time (s), and α,β: constants determined by sample type and 

measurement condition. Agreement of compression stress relaxation curve for synthetic 

staple fiber assembly with empirical equation (15) is investigated. An example of α and β 

values for PET with heteromorphic section (1.4dtex, 51mm) and fiber volume fraction 0.0139 

(WPE-2) is substituted into equation (15). Following equation is obtained. 

 0.0164 4.68 t   (16) 

Comparison between calculated and measurement curves is shown in Figure 16. The 

agreement of curves calculated by equation (16) with measured curve (WPE-2) is good. As 

shown in Figure 16, calculated curves are in agreement with measurement curves very well 

for PET with heteromorphic section, PET with round section, PET with hollow section and 

PTT fibers. (It is hard to distinguish each curve, because the calculated and measured curves 

show good agreement.) 

 

 
 

Figure 16. Comparison between experimental and calculated curves using eq.(15) 

The relationship between α, β values and fiber volume fraction is shown in Figures 17 and 

18, respectively. α value is almost constant against fiber volume fraction. β values increase 

with increasing fiber volume fraction. β values of PET with round and hollow sections of 

which count is high and having a tendency to be large. 

In the case of synthetic staple fiber assembly, stress relaxation function has a form of 

decreasing power function with respect to time. This type of relaxation function does not 

have corresponding viscoelastic model. This is an empirical equation which holds when 

magnitude and rate in stress relaxation are very small (i.e. elastic deformation). 
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Figure 17. Relationship between α and volume fraction 

 

Figure 18. Relationship between β and volume fraction 

4.3. Compression creep test 

4.3.1. Results of compression creep test 

Compression creep test for twelve samples were carried out under low stress condition 

(1176 Pa) and high stress condition (2156 Pa). Examples of the results for low stress 

condition are shown in Figures 19～21. Figure 19 shows the result of PET with 

heteromorphic section and PTT, Figure 20 shows that of PET with round section and hollow 

section, and Figure 21 shows that of Cupra and Lyocell fibers. The ordinate is compression 

creep displacement εt(mm), and the abscissa is natural logarithm of time t(s). As seen from 

0.00

0.01

0.02

0.03

0.04

0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026

WPE-1 WPE-2 WPE-3

RPE-1 RPE-2 RPE-3

RPE-4 PTT

Volume fraction

α

0

10

20

30

40

50

0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026

WPE-1 WPE-2 WPE-3

RPE-1 RPE-2 RPE-3

RPE-4 PTT

Volume fraction

β



 
Polyester 332 

the figure, compression creep curve is almost linear against logarithm of time from 10 to 104 

sec. As for type of fiber material, compression creep displacement of regenerated fiber 

assembly such as Cupra and Lyocell fibers is greater than that of synthetic fiber assembly. 

Compression creep displacement ratio Rt(%) for different fiber material is investigated. 

Compression creep displacement ratio Rt at t=104 sec of regenerated fiber assembly is 

greater than that of synthetic fiber assembly. 

Rt at 104 sec for low stress condition is as follows. PET with heteromorphic section (WPE-1, 

2, 3) : 0.5 ～ 1.2%, PET with round section (RPE-1, 2, 3) : 1.1～3.2%, PET with hollow section 

(RPE-4): 1.5%, PTT: 0.8%, Cupra (CU-1, 2, 3): 7.0～8.7% and Lyocell (LY): 10.1%. 

 

 

Figure 19. Compressive displacement curve (WPE-1,2,3, PTT) 

 

Figure 20. Compressive displacement curve (RPE-1,2,3,4) 
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Figure 21. Compressive displacement curve (CU-1,2,3, LY) 

Rt at 104 sec for high stress condition is as follows. PET with heteromorphic section (WPE-1, 

2, 3) : 1.2 ～ 2.2%, PET with round section (RPE-1, 2, 3) : 2.6～4.2%, PET with hollow section 

(RPE-4): 4.1%, PTT: 1.1%, Cupra (CU-1, 2, 3): 4.9～9.7% and Lyocell (LY): 9.1%. 

Creep displacement ratio Rt of samples that have same fineness and same fiber length (1.3 

or 1.4 dtex and 38mm) are compared. Rt of Cupra (CU-1) is largest, PET with round section 

(RPE-1) follows, and PET with heteromorphic section (WPE-1) is smallest. Creep 

displacement ratio Rt of samples that have same fineness and same fiber length (6.6 dtex 

and 55mm) are also compared. Rt of PET with round section (RPE-3) is larger than that of 

PET with hollow section (RPE-4). 

In the next place, compression stress dependence of creep displacement is examined. Figure 

22 shows Rt values at t=103 sec for low stress condition (1176 Pa) and high stress condition 

(2156 Pa). Samples of which Rt at high stress condition are larger than that of low stress 

condition are as follows; WPE-1, WPE-2, RPE-1, RPE-3 RPE-4 and CU-1. Samples of which 

stress level dependence is not observed are as follows; WPE-3, RPE-2 and PTT. Samples of 

which Rt at high stress condition is lower than that of low stress condition are as follows; 

CU-2, CU-3 and LY. As a result, the behavior of stress level dependence shows different 

types for different samples. It is conjectured that this phenomena may be arisen from 

nonlinear viscoelastic behavior in compression creep of fiber assembly. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10
ln（ｔ ）

C
o

m
p

re
ss

iv
e 

cr
ee

p
 d

is
p

la
ce

m
en

t 
(m

m
)

CU-1

CU-2

LY

CU-3



 
Polyester 334 

 

Figure 22. Compressive displacement rate at t=1000s 

4.3.2. Functional expression for compression creep behavior 

In this section, the equation for compression creep behavior is discussed. Nogai and 

Narumi[3] showed that following equation holds good for compression creep behavior of 

cotton fiber mass. 

  t 0 Y ln vt  1    (17) 

where, εt: compression displacement (mm), Y0(mm) and v(s-1) are constants determined by 

material properties, measurement condition and compression stress. Equation (17) is 

derived from non-linear three element viscoelastic model including Eyring viscous element 

(Figure 23) [12]. In this study, equation (17) is applied to analyze compression creep curve of 

synthetic and regenerated fiber assembly. 

 

Figure 23. Non-linear three element model  
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between calculated and measured curves is shown in Figures 24～26. Figure 24 shows the 

result of PET with heteromorphic section (WPE-1), Figure 25 shows that of PET with hollow 

section (RPE-4), and Figure 26 shows that of Cupra fiber (CU-2). The ordinate in Figures 24～

26 is compression displacement εt (mm), and the abscissa is time t (s). In each graph, the curves 

for low stress condition (1176 Pa) and high stress condition are included. Y0 and v values are 

obtained as follows. Measured value of εt at t=103 s and t=104 s are substituted into equation 

(17), and Y0 and v are obtained by solving simultaneous equations for t=103 s and t=104 s.  

As seen from Figures 24～26, the agreement between calculated and measured curves is 

very well for all samples used in this experiment. Therefore, it is concluded that 

compression creep behavior of synthetic and regenerated fiber assembly can be well 

explained by non-linear three element viscoelastic model. 

 

Figure 24. Comparison between experimental and calculated curves using eq(17) (WPE-1) 

 

Figure 25. Comparison between experimental and calculated curves using eq(17) (RPE-4) 
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Figure 26. Comparison between experimental and calculated curves using eq(17) (CU-2) 

In order to find the relationship between Y0 ,v values and material properties of fiber, linear 

regression analysis is carried out. Y0 has good correlation with apparent Young’s modulus, 

number of crimp and crimp ratio. In particular, correlation between Y0 and apparent 

Young’s modulus is strong (R=0.8). v has good correlation with bending rigidity (R=0.95～ 

0.98). 

5. Conclusion 

In this study, investigation on compression properties of three-dimensional fiber assembly 

for futon wadding use is presented. Twelve kinds of synthetic staple fiber assembly and 

regenerated staple fiber assembly were investigated. KES-G5 compression tester (Kato Tech 

Co.) is used for the measurement. Repeated compression-recovery test, compression stress 

relaxation test and compression creep test are carried out. Compression stress relaxation and 

creep properties of fiber assembly are analyzed based on viscoelastic model. Results are 

obtained as follows. 

i. Repeated Compression-Recovery Test 

In order to characterize compression properties of fiber assembly, compression-recovery test 

with constant strain rate is carried out, and characteristic parameters derived from 

measured curves are used for evaluation of compression properties. As for the compression 

measurement of three-dimensional fiber assembly, attention must be paid because fiber 

assembly does not have specific shape in natural state. To find sampling conditions suitable 

for characterizing fiber properties, repeated compression-recovery test was carried out for 

three different levels of maximum compression stress. As a result of sampling, compression-

recovery curve at 6th cycles under maximum stress 1176 Pa is selected for the analysis. 

Linearizing method is applied to the analysis to characterize compression-recovery curve. 

Functional expression (Pc=ATn) and characteristic parameters A and n are obtained. 
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ii. Compression Stress Relaxation Test 

Two different types of expression for compression stress relaxation function are obtained, 

approximate expression which holds for long term region and strict expression which holds 

for whole time region, respectively. Approximate expression of stress relaxation which 

holds when t>102 sec is obtained as follows, SY=K(a0 – ln t). Stress relaxation rate K of 

regenerated fiber assembly is larger than that of synthetic fiber assembly. Strict equation of 

stress relaxation function for whole time region (0<t<104 sec) has two different expressions 

for regenerated and synthetic fiber assemblies, respectively. In the case of regenerated fiber 

assembly, strict equation is expressed as follows, SY = K ln[coth{1/2(2e-a0t + B)}]. Stress 

relaxation function of coth type is derived from nonlinear two element model including 

Eyring viscous element. In the case of synthetic fiber assembly, strict equation is expressed 

as follows, σ = βt-α.  

iii. Compression Creep Test 

The degree of creep deformation is estimated by creep displacement ratio, Rt (%) at definite 

time. Rt of regenerated fiber assembly is larger than that of synthetic fiber assembly. The 

equation for creep displacement, εt is obtained as follows, εt = Y0 ln(vt + 1). Creep 

compliance of ln type is derived from nonlinear three element model including Eyring 

viscous element. 

The results obtained in this study will be the basic information to design and evaluate fiber 

materials for futon wadding use with regard to sleeping comfort. Analysis of heat and water 

transport properties of futon wadding concerning micro climate will be also needed for 

sleeping thermal comfort. 
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