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1. Introduction 

The physical and chemical properties of polymers depend on the nature, arrangement of 

chemical groups of their composition and the magnitude of intra or intermolecular forces i.e 

primary and secondary valence bonds present in the polymer. Degradation process occurs 

due to the influence of thermal, chemical, mechanical, radiative and biochemical factors 

occurring over a period of time resulting in deterioration of mechanical properties and 

colour of polymers. The degradation occurs due to changes accompanying with the main 

backbone or side groups of the polymer. Degradation is a chemical process which affects not 

only the chemical composition of the polymer but also the physical parameters such as 

colour of the polymer, chain conformation, molecular weight, molecular weight 

distribution, crystallinity, chain flexibility, cross-linking and branching. The nature of weak 

links and end groups in the polymers contribute to stability of polymers. The degradation 

process is initiated at the terminal units with subsequent depolymerization. For example 

paraformaldehyde with hydroxyl terminal starts to degrade at about 170°C whereas the 

same polymer with acetyl terminals decomposes at about 200°C [1]. Replacement of carbon 

main chain with hetero atoms like P, N, B increases the thermal stability e.g. PON polymers 

containing phosphorus, oxygen, nitrogen and silicon.  

The exposure of polymeric materials to environmental factors over a period of time will lead 

to deterioration of physical, chemical, thermal and electrical properties. The degree or 

measurability of deterioration of these properties depends on the extent of degradation, 

nature of chemical processes involved during the degradation. Degradation can be 

considered as a type of modification of polymer chain that may involve the main chain back 

bone or the side chain or groups. The modification could involve rupture of primary valence 

bonds leading to lowering of molecular weight, crosslinking, cyclisation and thus this type 
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of cleavage could be irreversible. There could be degradation involving secondary valence 

bonds within the polymer chain e.g. hydrogen bonds in proteins which are influenced by 

heat, pH changes , chemical agents etc. and such type of degradative process could be 

reversible. Since degradation is a chemical process it affects not only the chemical 

composition of the polymer but also various physical parameters such as chain 

conformation, molecular weight, molecular weight distribution, crystallinity, chain 

flexibility, crosslinking, branching, colour of the polymer, haziness etc. Different polyester 

compositions exhibit wide variation in their response to degradative agents depending on 

the nature of the repeating units, chemical composition and structure e.g branching, size, 

shape, crystallinity. 

2. Poly (ethylene terephthalate) 

Poly (ethylene terephthalate) known by the trade names Mylar, Decron , terylene, Recron, 

has high crystalline melting temperature (260°C), and the stiff polymer chains in the PET 

polymer imparts high mechanical strength, toughness and fatigue resistance up to 150-

175°C as well as good chemical, hydrolytic and solvent resistance. Poly (ethylene 

terephthalate) fiber has a very outstanding crease resistance, good abrasion resistance and 

can be treated with cross-linking resin to impart permanent wash and wear properties [2-4]. 

The fiber can be blended with cotton and other cellulosic fibers to give better feel and 

moisture permeation. Thus the fiber is used for applications such as wearing apparel, 

curtain, upholstery, thread, tire cord filaments, industrial fibers and fabric for industrial 

filtration. 

The polymer is also used for making blow molded bottles for soft drinks, beers, spirits, other 

food-products and pharmaceuticals. This is because of the outstanding barrier properties of 

poly(ethylene terephthalate) . The film applications include photographic, magnetic, X-ray 

films or tapes , metalized films and electrical insulation. PET also finds use as an 

engineering plastic where it replaces steel, aluminum and other metals in the manufacture 

of precision moldings for electrical and electronic devices, domestic and office appliances 

and automobile parts. In the engineering applications the polymer is reinforced with glass 

fiber or compounded with silicones, graphite or Teflon to improve strength and rigidity. 

The polymer reinforced with glass fiber are rated for continuous use at temperatures up to 

145-155°C. The properties and usefulness of the final polymer depends on controlling its 

structure by control of the process parameters during the polymerization and subsequent 

processing of the product.  

The polymer is generally obtained by melt –phase polymerization to get resins of inherent 

viscosity in the range of 0.5-0.7 dL/g. For getting polymer with higher molecular weight i.e. 

inherent viscosity greater than 0.7 dL/g, solid state polymerization (SSP) is carried out. The 

latter process involves heating of solid low molecular weight melt-phase polymer below its 

melting point but above its glass transition temperature (Tg). It is very difficult to 

polymerize higher IV polymer in the melt-phase because of the thermal degradation 

reactions occurring simultaneously and competing with the poly condensation reactions.  
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Polyethylene terephthalate (PET) is a semi crystalline polymer possessing excellent chemical 

resistance, melt mobility and spinnability [2-4]. The polymer is composed of repeating units 

as shown in the Figure 1. Each unit having a physical length of about 1.09 nm and a 

molecular weight of ~200. When it is produced from the reaction of terephthalic acid and 

ethylene glycol, it is capped on the left by H- and the right by –OH. Polymerization is thus 

accompanied by the production of water which is removed under elevated temperature and 

vacuum. Accordingly the presence of water in the molten state will rapidly depolymerize 

the structure so that thorough drying of the polymer prior to melt spinning of fibers is 

necessary.  

 

Figure 1. Structure of PET  

The aromatic ring coupled with short aliphatic chain makes the polymer a stiff molecule as 

compared to other aliphatic polymers such as polyolefin or polyamide. The lack of 

segmental mobility in the polymer chains results in relatively high thermal stability. A 

textile grade polymer will have an average number of 100 repeat units per molecule so that 

the extended length of the typical polymer chain is about 100nm with a molecular weight 

about 20,000. Higher levels of polymerization produces higher strength fibers but the melt 

viscosity and stability of the melt to even tiny amounts of moisture causes hydrolytic 

degradation. The measurement of average degree of polymerization is done either by 

molten viscosity (by measuring the pressure drop through a calibrated orifice) or the 

viscosity of the diluted polymer in an appropriate solvent [3]. The latter is measure of 

polymer chain length known as Intrinsic viscosity or IV and the value for a typical fiber 

grade polymer is 0.6 dl/g in 60/40 w/w mixture of phenol and tetrachloroethane solvent [2-

4]. The IV in the latter solvent is related to Mv (Viscosity average molecular weight) of the 

polymer by the Mark Howink equation (Equation 1) .  

  0.64847.44 * 10  η  vM     (1) 

It is very difficult to polymerize higher IV polymer in the melt-phase because of the thermal 

degradation reactions occurring simultaneously and competing with the poly condensation 

reactions. Thus during processing the polymer is subjected to temperatures in the range 280-

300°C, which results in various types of degradations. The main degradations that can occur 

include thermal degradation, oxidative degradation and hydrolytic degradation. Radiation 

induced or photo degradation leading to free radical reactions and enzymatic catalysed 

reactions leading to logical degradation are also possible. In addition to these there can be 

chemical degradation reaction of polyester initiated by specific chemicals like glycol, 

ammonia or amines or other such reagents. Besides these there can be weathering ageing 

which could be the combined effect of exposure to temperature, moisture, chemical, UV and 
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visible light and other conditions such as exposure to grease, oil. Polyester can also undergo 

stress induced degradation reactions when subjected to mechanical stress. The degradation 

of polyester can lead to several changes in the articles made out of the polymer. These 

changes include discoloration, chain scissions resulting in reduced molecular weight, 

formation of acetaldehyde and cross-links or gel formation and fish-eye formation in films. 

The thermal and thermo oxidative results in poor processibility and performance 

characteristics in the products. Discoloration is due to the formation of various 

chromophoric systems following prolonged thermal treatment at elevated temperatures. 

This becomes a problem when the optical requirements of the polymer are very high, such 

as in packaging applications. 

The initial stage of thermal degradation is a random scission of the in-chain ester linkage 

resulting in formation of a vinyl ester and carboxyl end groups. Transesterification of the 

vinyl ester then occurs to give the vinyl alcohol, which is transformed immediately to 

acetaldehyde. The polyester chain is thus regenerated and an average degree of 

polymerization maintained. The net result of such a reaction is the replacement of hydroxyl 

end-groups by carboxylic acid end- groups, producing in the process an equivalent amount 

of acetaldehyde. Hydrogen atom abstraction may also occur to some extent when impurities 

in the polymer generate macro-radical sites. These will react with oxygen, producing peroxy 

radicals and subsequently hydroperoxides, which are themselves thermally and 

photochemically unstable and will induce further breakdown. The presence of moisture and 

acid/alkaline impurities will affect hydrolysis. Polyethylene terephthalate is an essentially 

hydrophobic polymer and hence rate of hydrolysis is thought to be determined by the 

nature of its chain ends. An increase in the carboxyl end-group concentration will increase 

the rate of hydrolysis of the polymer. Thermal degradation is degradation induced by 

elevated temperatures in the absence of oxygen. The chemistry of thermal degradation is 

different from hydrolytic degradation [6].  

Thermal degradation results in different types of end-groups on the polymer chain. The 

initial step is the scission of the chain of the ester linkage resulting in a decrease in molecular 

weight either through random scission at the ester linkages or through chain ends and an 

increase in carboxyl end-groups. The methylene group which is located at the  position to 

the carbonyl group is the main point where the decomposition process is initiated. The main 

side reaction occurring is the  scission of the ester linkage results in the vinyl terminated 

carboxylate unit and carboxyl-terminated units as shown in Scheme 1.  

The formation of acetaldehyde is explained generally through a Mc Lafferty rearrangement 

involving a six membered transition state occurring through inter or intra molecular 

hydrogen shifts in the methylene group which is located at the  position to the carbonyl 

group , as shown below [7] :  

Apart from aldehyde CO, CO2, ethylene , benzene, biphenyl are also identified as 

degradation products and the degradation products are analyzed by sub-ambient thermal 

volatilization analysis (SATVA) and pyrolysis gas chromatographic methods. Mechanism of 

ethylene formation is explained by the Scheme 3 [8-11]. 
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Scheme 1. Mechanism of –scission followed by acetaldehyde formation 
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Scheme 3.  Mechanism of ethylene formation  

The overall degradation and cleavage can be represented by the following scheme 4 [12].  

 

Scheme 4. Overall Mechanism of thermal degradation  
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The thermooxidative degradation involves the reaction of oxygen at elevated temperatures. 

This starts with formation of hydroperoxide at the methylene group in the diester linkage of 

polyester chain. It is not completely understood and is believed to follow free radical 

mechanism involving formation of hydroperoxides as shown Scheme 5 [13]: 
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Scheme 5. Thermo oxidative degradation of polyester 

Photodegradation of PET occurs on exposure to near ultraviolet light, resulting in both chain 

scission by analogues of Norrish-type I and II processes shown in the reaction scheme or a 

photo-Fries-type reaction. This leads to cross-linking there by making the polymer films and 

fibers, brittle, and discolored. The films also develop crazed surfaces. PET when exposed to 

UV light degrades rather rapidly leading to deterioration in physical and mechanical 

properties and develops intense yellow colour [14]. Infrared and gas chromatographic 

analysis, GPC and colour measurements have shown large changes in hydroxylic region 

and broadening of carbonyl peaks . These are attributed to perester or anhydride formation. 

Both hydroxyl and carboxylic end-groups along with carbon monoxide and carbon dioxide 

are the main products of photodegradation [14]  

The rate of degradation under these conditions depends largely on the reaction temperature 

as well as of the kind and amount of metal compounds used for the tranesterification and 
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polycondensation catalysts. Thermal degradation of ultra high molecular weight 

polyethylene terephthalate having IV exceeding 2 dl/g has a greater degradation rate than 

the conventional PET with IV 0.6 dL/g5. The high degradation rate of the higher molecular 

weight polymer is interpreted by the difference in the terminal group concentrations. 

Zimmerman et al [15] have shown that rate of thermal degradation in the closed system is 

about three times higher than that in open system.  

Measurement of carboxyl end-groups is one of the fundamental methods for measuring 

number average molecular weight of polymers. Pohl has shown as early as in 1954 that 

hydrolytic degradation of polyester chains can be studied by end-group measurements, 

which consists of dissolving the sample in benzyl alcohol at high temperature followed 

by titration using standard alkali [16,17]. There are reports on investigation of 

degradation using measurements of viscosity, optical microscopy, FTIR and UV methods 

[18-22]. W. Chaouch et al [23] have investigated the effects of hydrolytic aging of a series 

of PET vascular prostheses and compared their chemical properties between the virgin 

prosthesis using nuclear magnetic resonance spectroscopy (1H-NMR) and have used the 

latter technique to determine the OH group concentrations and the number average 

molecular weight of the polymer subjected to in-vitrio conditions and validated the data 

using the classical titration and viscosity methods. They have observed that the polyester 

yarns undergo chain rupture by hydrolytic and oxidative degradation during 

texturizing.  

If moisture is present before the polymer is melted hydrolytic degradation will occur. Each 

water molecule will break the chain so increasing the total number of chains by one. The 

effect on average molecular weight will be as shown in Equation (2) [3]: 

 

 '   

1  (  )  
1800

n
n

n

M
M

M
x


 
  

 

 (2) 

where Mn is the starting average molecular weight, '
nM  s the average molecular weight after 

reaction with water and x is the water content (weight %). This relationship can be used to 

determine effect of moisture on IV and melt viscosity. 

It can be seen from the above relationship that higher IV’s produce increased sensitivity of 

the polymer to hydrolytic degradation. Hydrolytic degradation of polyethylene 

terephthalate is an autocatalytic reaction, being catalysed by the resulting carboxyl end-

group. It is accompanied by an increase in hydroxyl end-groups and there is no 

discoloration of product and also there is no evolution of volatile products as shown in 

Scheme 6. This process is known to begin at temperatures ~100 °C. Hydrolytic 

degradation is reported to be 10,000 times faster than that of thermal degradation in the 

temperature range 100-120°C [13].  
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Scheme 6.  

Suppose we consider the equilibrium reaction [16] shown in Scheme 7  
 

-- COOH -- OH -- COO
-

+ +
H2O

k'

k' _1  

Scheme 7.  

k’ is the rate constant for the forward reaction and k’ -1 is the rate constant of the reverse or 

depolymerization or hydrolysis reaction. The ratio of k’ to k -1’ is K, the equilibrium 

constant for the above reaction.  
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 it is given by equation (3) ,  
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The values of K are in the range 0.1 to 1, for normal polyester formation. Hence the reversal 

of polymerization is a faster reaction and it will lead to degradation of the polyester. Under 

this conditions K is simplified as shown in Equation (4) 
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0 1

p H O
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 (4) 

where p is the extent of reaction16 , since Xn=1/(1-p), (Xn is degree of polymerization which is 

~90-100 for fiber grade polyester), it can be rewritten as shown in Equations (5) and (6).  
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square of Xn is inversely dependant on [H2O] i.e higher the water concentration the degree 

of polymerization will decrease much faster.  

2.1. Oligomer formation  

The other side reaction (shown in Scheme (8)) that can take place is the formation of cyclic 

oligomers, which can be a major nuisance during melt spinning and dyeing.  

C

O

O-

C

O

O-

C

O

O

-

-
(cyclic oligomer)

C

O

O

+

  

Scheme 8.  

The cyclic trimer exudes from the hot polymer surface and coats the spinnerrette plates on 

the melt spinning units. It can even build up enough to cause breakdown of the thread line. 

The cyclic trimer exudes form the fibers (which have high surface /volume ratio) during 

dyeing. The exuded cyclic trimer can float in the bath liquor and contaminate the dyeing 

equipment [4] depending on the dye bath temperature. 

2.2. Causes of discolouration in polyester  

The vinyl ester ends also act as cross-linkers and gelling agents. They polymerize and the 

polymers thermally degrade to give yellow or brown polyenes that discolour the final 

polymer. The formation highly conjugated species is catalysed by carboxyl groups. The 

formation of coloured species is followed by increase in more carboxyl terminated species. 

Hence the product having higher carboxyl value gives more yellowing. The mechanism is 

given in Scheme 9 [24]: 

 

Scheme 9. Formation of conjugated structures leading to coloured species 
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The carboxyl end-groups are formed by the random thermal cleavage of the chains and a 

formation of  double bonds.. The carboxyl groups catalyze the hydrolysis of ester groups 

i.e this can be auto catalytic. Intermolecular reaction leading to increase of acid value, 

ethylene formation and unsaturated species in the polymer backbone as explained in 

Scheme 9.  

2.3. Experimental studies on degradation reactions  

In our experimental studies on thermal degradation of PET having cationic dyeable 

comonomer units viz. 5-sulphoisophthalate moieties are tracked by measuring the 

mechanical properties of the textured yarns produced from the partially oriented yarn 

(POY) spun at different residence times [11]. The surface properties of the POY spun at 

different times are also examined by SEM studies. The degradation reactions of 

homopolymer, polyethylene terephthalate (Polyester A.) shown in Figure 2 is compared 

with that of cationic dyeable polyester containing 5-sulphoisophthalate comonomer units 

(SIPM) that shown in Figure 3 (Polyester B).  

 

 

Figure 2. Structure of homopolymer (polyethylene terephthalate) 

 

 

Figure 3. Structure of 5-sodiumsulphonato isophthalic acid copolymer of PEt 

Sulphonate groups present in Polyester B contributes to ionomer interaction and steric 

hindrance thereby increasing the melt viscosity [25,26]. During the melt polymerization  

of polyethylene terephthalate (PET) there occurs an unavoidable side reaction due to 

coupling of the hydroxyl end-groups by dehydration forming diethylene glycol (DEG) units 

in the chain as shown in the following Scheme 10. [24] In the Scheme 10, the intermediate 

(A) gives acetaldehyde. The cyclic intermediate shown in Scheme 10 C, leads to both 

hydroxyl terminated intermediates (B) and polyester having diethylene glycol units in the 

backbone (D). 
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Scheme 10. Mechanism of DEG formation 

The presence of DEG units depresses the melting point (Tm) which is given by the 

empirical rule based on Van’t Hoff equation given by Tm = -2.2 m °C (where m is the molar 

percentage of DEG) . The Tm is measured accurately by differential scanning calorimetry 

(DSC). The presence of DEG units in the polymer reduces crystallinity, lowers softening 

point, thermal and hydrolytic stability. About 1 to 1.5 mole % of DEG is always present in 

PET homopolymer4. Hence DEG content of the polymer becomes an important parameter to 

be defined. Kinetic studies [11] of polyester containing 5-sulphoisophthalate units indicate 

that the copolymer degrades faster than homo PET. The rate of degradation depends on the 
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residence time and temperature to which the molten polymer is subjected Rate of 

degradation of polymer melts is generally represented [27] by the equation (7) 

  0 
0

1 1
  e – E / RT k t

N N
   (7) 

where, N and N0 are the final and initial number average degree of polymerization 

respectively. Where, k0 is a constant, E is activation energy, R is the universal gas constant, T 

is temperature in Kelvin, t is time in minutes. 

The degree of polymerization is not an easily measured variable. More commonly, polymer 

properties are measured in terms of intrinsic viscosity and the degradation equation will 

have to be written using this variable. The intrinsic viscosity, η can be related to degree of 

polymerization by the Mark Howink equation given by equation (8). 

 βη bN  (8) 

where, η is intrinsic viscosity, b and β are constants depending on the type of polymer. 

Substituting equation (7) in equation (8), the rate of degradation of polymer melts can be 

written as equation (9) , where η and η0 are final and initial intrinsic viscosities 

  ( / )( / ) ( / ) ( / )/  /  /              
1 β1 β 1 β E RT

0 01 η 1 η k 1 b exp t  (9) 

The activation energies for the degradation are estimated from the kinetic data using the 

equation (9) are found to be 128.94 kJ mole-1 for Polyester A and 59.22 kJ mole-1 for Polyester 

B. These values indicate that the co-polymer is more prone to thermal degradation as 

compared to the homo-polymer. Holland and Hay [28] have shown by Thermal analysis and 

FTIR spectroscopy the average activation energy for the  C-H transfer process (loss of 

1960,1730 and 1255 cm-1 bands in FTIR) was 23010 kJ mole-1 and 25010 kJ mole-1 for PET 

modified by DEG co polymerization and PET modified with both DEG and isophthalic acid 

IPA copolymerization respectively. They have also shown that the activation energy for the 

loss of -O-CH2-CH2-OH i.e. ethylene glycol derived end groups (loss of 3440 cm-1 in FTIR ) 

was ~ 16010kJ mole-1. Loss of ethylene glycol end-groups leads to the formation of a 

carboxyl end-groups, which promotes intra-molecular backbiting reactions. The favourable 

angle of 1,3 structure in the isophthalate unit of the 5- sulphoisophthalate co-monomer unit, 

facilitates the degradation process easily. The presence of bulky sulphonato group causes 

disorders in the fine structure of polyester fibre thereby lowering the hydrolytic and thermal 

stability [29].  

Yarn produced with higher residence time has poor mechanical properties The SEM images 

of the yarn samples indicate that as the residence time in a particular temperature is 

increased more number of particles of degraded products are formed and they have the 

tendency to grow larger in size, as shown in figures 4a, 4b and 4c.  
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Figure 4.  

The degradation results in highly crystalline trimers and oligomers having carboxyl 

terminals, which occurs by three different routes involving the hydroxyl end-groups or 
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vinyl end-groups or by the inexhaustible mid chain scission route [7,12]. Based on the 

mechanism of end-group scission of hydroxyl and/or vinyl end-groups and that of mid 

chain occurring simultaneously during thermal degradation, the by-product formed has two 

carboxyl terminals, indicating higher acid value in the resulting product. The proposed 

mechanism for degradation is given in Scheme 11. 
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Scheme 11.  Mechanism of degradation of polymer containing  

The EDX analysis of these particles indicate presence of more organic material (i.e low 

molecular weight oligomers of larger particle size.) along with some external metallic 

impurities like Si, Fe, Ti etc. The particles as seen by EDX are organic and are due to more 

crystalline species. This is separately confirmed by measuring the surface cyclic trimers 

(shown in Table 1) in the yarn samples produced with different residence times.  

 

S.N. Residence time (min) Cyclic trimer (parts per 106 parts (ppm) 

1 8 195 

2 40 221 

3 65 366 

Table 1. Amount of cyclic trimer in the polyester Yarn [11] 

When the yarn was washed with methanol, some of the particles gets washed off as seen by 

the SEM of the washed material in Figures 5a and b indicating the oligomers and cyclic 

trimers get washed off, with methanol. This confirms that the particles seen in the surface 

are due to surface cyclic trimers. 
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Figure 5. a and b : SEM picture of POY B (residence time 65 min) after washing with methanol. 

2.4. Effect of thermal stabilizer on the thermal degradation 

Phosphoric acid is added as thermal stabilizer to reduce the extent of degradation. It is 

reported that phosphoric acid interact with the polycondensation catalysts thereby 

modifying the catalyst [30-33]. Since the same catalyst catalyses the thermal degradation 

addition of phosphoric acid mitigates degradation reactions. The mechanical properties of 

the polyester textured yarn (PTY) produced with different amounts of phosphoric acid is 

given Table 2.  

 

Quantity of Phosphoric acid 

added 

(parts per 106g )(ppm) 

Tensile strength (g /d ) Elongation (%) 

0 2.61 12.6 

50 2.84 19.6 

110 2.89 20.6 

125 2.90 22.1 

150 3.0 23.7 

Table 2. Effect of phosphoric acid on the mechanical properties of the PTY  

The data in Table 2 indicate that addition of phosphoric acid improves the mechanical 

properties of the yarn. But caution is needed on the amount of phosphoric acid used. Figure 

6a and Figure.6 b show the SEM pictures of the polyester yarn prepared with different 

concentration of phosphoric acid in the polymer. The pictures indicated that when 

phosphoric acid is 125 ppm it causes more agglomerate formation, indicating that higher 

amounts of phosphoric acid results in more agglomerate formation which get oozed out to 

surface. 
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Figure 6. a SEM of polyester yarn with 110ppm H3PO4 Figure. 6 b SEM of polyester yarn 125 ppm 

H3PO4  

2.5. Degradation studies on penta containing polyester 

Degradation measurements were done on the polymer containing small amounts of 

pentaerithritol as a comonomer (to an extent of 0.15 % by weight). Figures 7 a-b, give the 

variation IV and carboxyl value for the polyester having penta erithritol units (Polymer C), 

when the dry polymer chips are melted and kept at temperatures 272°C, 278°C and at 285°C, 

in inert atmosphere at different times. The results indicate a drop in IV by 0.026 units at 

272°C compared to 0.042 units at 285°C over the 15 min. & COOH end-group is increased 

more at 285°C(18 meq/Kg) compared 12 meq/kg at 272°C. Degradation involves the terminal 

hydroxyl groups having pentaerithritol moieties as shown Scheme 12. This process gets 

more easily facilitated in presence of alkali. In this process loss of two formaldehyde 

molecules and a ketene take place resulting in loss of pentaerithritol [34].  

 

 

 
 

Figure 7.   
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Scheme 12. Mechanism of Degradation in polyester containing penta erithritol moieties 

The hydroxyl groups of the partly reacted penta units could become a chain scission source. 

This results in loss of molecular weight (decrease of IV) and increase in carboxyl terminated 

by products which is seen by increase in carboxyl value and decrease in IV. The loss of 

carbon in the samples were seen by EDX analysis in our earlier studies also confirms this 

mechanism. This also accounts for the loss of pentaerithritol [34]. IV decreases with time 

reaches an asymptotic behavior because of the result of equilibrium established in the 

molten polymer. The decrease of IV depends on how the equilibrium is established and how 

the hydroxyl terminals take part in the Mc Leferty type of fragmentation leading to 

formaldehyde and ketene loss as shown in Scheme 12. This depends on the residence time 

the molten polymer was kept at the particular temperature. This gets more aggravated in 

presence of alkali. Hence pentaerithritol containing polymer degrades more easily in 

presence of alkali.  

From the degradation results it is clear that the higher residence time and temperature has 

caused degradation of the chips. The pentaeithritol units having unreached hydroxyl groups 

could become an easy source for initiating the thermal degradation. The hydroxyl terminals 

could have also formed due to hydrolysis by the moisture present in the system. It is 

reported that [16] hydrolytic degradation of polyester causes increase of elongation at break 

due to more chain scissions excepting samples degraded at higher temperature for more 

than 20 days in which elongation at break will decrease due to more weak points. Also, 
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thermal degradation of samples will decrease elongation at break, because of the annealing 

process. 

2.6. Effect of pentaerithritol units on alkali hydrolysis of polyester 

Adding small amounts of multifunctional monomers results in cross-linking or branching of 

the main polymer chain [2,3,16]. However, randomly branched (hyper branched) polymers 

are formed [35] due to high reactivity of pentaerithritol, perfect branching is not achieved 

and additional linear units are present in the molecule. The extensive branching in the 

randomly branched polymer prevents crystallisation and results in amorphous material. 

They are generally brittle with low melt viscosity due to lack of long chains to form 

entanglements. Partial hydrolysis of branch sites in presence of alkali gives more conducive 

environment for getting randomly branched or hyper branched structures which are highly 

amorphous and makes the alkali penetrate the polymer structure easily and degrade it 

faster. It is known that hydrolysis of PET under room temperature conditions is an 

extremely a slow reaction. Incorporation of small amounts of pentaerithritol segments in the 

main chain of PET exerts a profound effect in the hydrolytic susceptibility of PET. 

Pentaerithritol containing units makes the polymer more susceptible to hydrolytic attack. In 

contrast, a higher degree of crystallinity hinders the reaction because the crystalline phase is 

inaccessible to water.  

Hydrolytic attack on polyesters involves scission of an ester linkage in the main chain by 

water. Each chain scission uses up one water molecule and creates one carboxyl group and 

one hydroxyl end-group. In solid state the hydrolysis process depends on chain mobility 

and flexibility. A reduction in Tg of the polyester enhances the susceptibility of attack by 

water . The lower Tg also increases chain mobility and reduces energy required to achieve 

the transition state. Cagiao et al [36] have shown by wide angle X ray (WAX) studies that 

initial hydrolytic attack could be restricted to amorphous regions and crystallite edges, 

although lamellar stacks themselves are attacked. It is also known that chain scission of tie 

segments between crystallites results in further crystallization of amorphous phase giving 

rise to apparent increase in crystallinity, which could lead to decrease of tenacity. If the 

polymer is kept in the aqueous alkali bath for longer time, this becomes more degraded, as 

Scheme 13. 
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Scheme 13. Hydrolysis in alkaline medium 

The depolymerization and thermo-oxidative degradation results in decrease of IV and a rise 

in the number of carboxyl end-groups [11]. Similar phenomena are reported for polyester 

copolymers at higher temperatures [7]. The degradation processes that occur are influenced 

by the moisture and oxygen present in the system. Polyethylene terephthalate is shown to 
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give dual slopes of initial fast rate and later slow rate of degradation [37]. The initial rate is 

attributed to hydrolysis of residual water and the latter slow rate is attributed the thermal 

degradation initiated by thermal energy. Rate of degradation of polyethylene terephthalate 

polymer is studied by measurement of the evolved acetaldehyde by Khemani [12]. The 

degradation causes a decrease in molecular weight either through random scission at the 

ester linkages or through chain ends.  

2.7. Recycling of polyester 

The chemical nature of polyethylene terephalate permits easy recyclability by all known 

recycling methods. Recycling of polyester has become an important process from the 

environmental point of view and it has given commercial opportunity due to wide spread 

use and availability of PET bottles, packages and fibers [37-39]. While mechanical recycling 

is well established, chemical recycling is highly dependent of the manner in which the 

depolymerization is carried out.  

The chemical recycling methods include processes namely methanolysis, glycolysis, 

hydrolysis, ammonolysis, aminolysis and other processes [40-41]. Chemical recycling of 

polyethylene terephthalate into yarn through a process where part of the virgin raw 

materials are replaced by washed post consumer polyester which is partially depolymerized 

before repolymerization [42]. Controlled hydrolysis of polyethylene terephthalate using 

dilute HNO3 as catalyst is shown to produce cation exchange sites based on acidic groups 

and the acid sites are shown to adsorb heavy metal cations like Cd+ +, large cationic dye 

molecules and the acid hydrolysis is shown to be much more efficient compared to neutral 

and alkaline hydrolysis [43].  

Post-consumer PET bottles are generally sorted out at a material recovery facility, 

compressed into bales, washed and converted to clean dried flake [39]. The feed purity 

requirements of the intended use of the recycled PET makes recycling more challenging. 

Generally contaminants are not allowed in fiber or bottle applications due to breakage and 

aesthetic considerations. During recycling thermal and oxidative degradation products 

cause yellowing and diminishing of mechanical properties of the product. There are a 

number of other difficulties which are to be addressed during recycling PET. For example, 

the presence of ester group in the back bone of the polymer makes the polymer easily 

degradable with moisture hence recycling process requires special type of drying prior to 

processing and hence the conventional blow moulders or sheet extruders used for PE or PP 

couldn’t be used in PET applications. PET drying temperature strongly affects the 

processing characteristics of the PET containing PVC. For example [39] drying at 

temperatures below decomposition temperature of PVC (120°C 24 hrs) results in clear PET 

without significant black speck formation upon extrusion but the rheological stability of PET 

is poor due to the contamination of HCl catalysed hydrolysis reactions. On the other hand, 

drying at very high temperatures (230°C, 4h) the majority of HCl is getting removed thus 

improving the rheological stability of the material, although the extrudate shows excessive 

black speck formation. While recycling PET traces of label adhesives (based on rosin acids 
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and esters ) cause PET to lose clarity and the contamination of impurities such as glue, dirt, 

paper cause severe deterioration of properties of the recycled polymer. The yet another 

factor to be considered is the difficulty in getting consistency in the batch-to batch quality of 

the polymer obtained [39]. It is also not easy to separate contaminants like PVC, PVDC, 

rosin adhesives, glues, EVA etc which generate acidic compounds which catalyze the 

hydrolysis of the back bone ester linkages of PET . While physical contaminants like dirt, 

glass fragments PE are removed the ingrained particulate materials embedded by 

mechanical abrasion and mechanical grinding during baling, transport and handling are 

difficult to dislodge. Such impurities pass through the mechanical recycling process and 

cause stress concentrations (eg.gels, blobs, black specks) that can create problems during 

fabrication such as excessive fiber breakage during spinning or blow-outs in the wall of 

blown bottles. Some contaminants such as degraded rubber and wood ash also pass through 

the extremely fine screens and melt filters and these lead to black specks to the recycled 

polyester.  

State of the art recycling technology by M/s Teijin Limited, Osaka, Japan , has won the 

Honor award [44]. By this technology, valuable materials are recovered from PET bottles 

wastes which are crushed, washed and then dissolved in ethylene glycol at its boiling point 

under pressure of 1 bar to depolymerize to BHET which is later reacted with methanol in an 

efficient way to produce dimethyl terephthalate and ethylene glycol by ester exchange 

reaction at the boiling point of methanol.  

The recycle value of polyester plastic is found to be second to aluminum and the conditions 

needed to effect degradation and the extractability of valuable products becomes necessary. 

New degradation test methods are needed to evaluate the same [37-39].  

3. Conclusion 

The characteristics needed to understand the wide range of susceptibility of the various 

agents that facilitate degradation e.g. oxidative, thermal, mechanical, chemical and their 

dependence on chemical composition and structure of polymers in general and 

polyethylene terephthalate in particular are discussed. The kinetic studies on polyester 

containing cationic dyeable comonomer units indicate that the copolymer degrades faster 

than homo PET . The rate of degradation depends on the residence time and temperature to 

which the molten polymer is subjected. The SEM images of the yarn samples indicate that as 

the residence time in a particular temperature is increased more number of particles of 

degraded products are formed and they have tendency to grow in large size. The 

degradation results in highly crystalline trimers or oligomers having carboxyl terminals. 

Addition of phosphoric acid is able to control degradation. The chemical nature of 

polyethylene terephalate permits easy recyclability by all known recycling methods. 

Recycling of polyester has become an important process from the environmental point of 

view and it has given commercial opportunity due to wide spread use and availability of 

PET bottles, packages and fibers. The effects of contaminants have deleterious effects on 

degradation and colour of the polymer while recycling of polyester.  
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