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1. Introduction

In reality markets are incomplete in the sense that perfect replication of contingent claims
using only the underlying asset and a riskless bond is impossible. In other words, that is
perfect risk transfer is not possible since some payoffs cannot be replicated by trading in
marketed securities. From the work of Ross in [21], it is evident that whenever the payoff of
every call or put option can be replicated then the securities market is complete. In addition,
an important implication of the aforementioned work of Ross, is the existence of options that
cannot be replicated by the primitive securities when markets are incomplete. In [7], the
authors came to the conclusion that Ross’s result is, in fact, a negative result since it asserts
that in an incomplete market one cannot expect to replicate the payoff of each option even if
the underlying asset is traded. In the same paper, it is proved that if the number of securities
is less than half the number of states of the world, then (generically) not a single option can
be replicated by traded securities. In [10], the author extended the aforementioned result
in [7], to accommodate cases where the condition on the number of primitive securities is not
imposed. In particular, it is proved that if there exists no binary payoff vector in the asset span,
then for each portfolio there exists a set of nontrivial exercise prices of full measure such that
any option on the portfolio with an exercise price in this set is non-replicated. Furthermore,
note that the results of Ross for two-date security markets with finitely many states holds for
security markets with more than two dates, see [8, 9].

It is well accepted that the lattice theoretic ideas are the most important technical contributions
of the large literature on infinite-dimensional modern mathematical finance (for example
lattice theoretic ideas in general equilibrium theory). However, ordered vector spaces that
are not lattice ordered arise naturally in models of portfolio trading. Moreover, if available
securities have smooth payoffs, then the portfolio space is never a vector lattice. It should
be pointed out that since call and put options are vector lattice operations in the space of
contingent claims, their replication by available securities requires a vector lattice structure in
the portfolio space. There is a large literature on vector lattice theory related to mathematical
economics; see for instance [1–7, 17–20, 22, 23].

On the other hand, there is an obvious need for properly structured high performance
computational methods on vector lattices. Moreover, the main concern is to describe, in
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computational terms, and then solve problems arising from mathematical economics such
as portfolio insurance and option replication. A lot of work in this area has been done in
[11, 12, 14? –16].

In this chapter, we focus to the option replication problem. We consider an incomplete market
of primitive securities, meaning that some call and put options need not be marketed and our
objective is to describe an efficient method for computing maximal submarkets that replicate
any option. Even though, there are several important results on option replication they cannot
provide a method for the determination of the replicated options. By using the theory of
vector-lattices and positive bases it is provided a procedure in order to determine the set of
securities with replicated options. In particular, it is shown that the union of all maximal
replicated submarkets (i.e., submarkets Y, such that any option written on the elements of Y
can be replicated and Y is as large as possible) defines a set of elements such that any option
written on these elements is replicated.

In [11–14, 16], it was shown that it is possible to construct computational methods in order
to efficiently compute vector sublattices and lattice-subspaces of R

m as well as in the general
case of C[a, b]. In addition, these methods has been successfully applied in portfolio insurance
and in completion of security markets.

Here we consider a two-period security market X with a finite number m of states and a
finite number of primitive securities with payoffs in R

m and we construct computational
methods in order to determine maximal replicated submarkets of X by using the theory of
vector sublattices and lattice-subspaces. Moreover, in the theory of security markets it is a
usual practice to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1).
Then, the completion F1(X) of X by options is the subspace of R

m generated by all options
written on the elements of X ∪ {1}. Since the payoff space is R

m, which is a vector lattice, in
the case where 1 ∈ X then F1(X) is exactly the vector sublattice generated by X. If, in addition,
X is a vector sublattice of R

m then F1(X) = X therefore any option is replicated, unfortunately
this situation is extremely rare.

A recent article, [15], provided a computationally efficient method for computing maximal
submarkets that replicate any option. In particular, by using computational methods and
techniques from [11–14] in order to determine vector sublattices and their positive bases, it is
presented a procedure in order to calculate the set of securities with replicated options. The
aforementioned article emphasizes the most important interrelationship between the theory
of vector lattices, positive bases, projection bases and the problem of option replication.

The material in this chapter is spread out in 5 sections. Section 2 is divided in two
subsections; in the first the fundamental properties of lattice-subspaces and vector sublattices
are presented, whereas in the second we introduce the basic results for vector sublattices,
positive bases and projection bases of R

k together with the solution to the problem of
whether a finite collection of linearly independent, positive vectors of R

k generates a
lattice-subspace or a vector sublattice. In section 3, there are three subsections where it is
discussed the theoretical background for option replication. Also, section 3 emphasis the
most important interrelationship between positive bases, projection bases and the problem of
option replication. Section 4 presents an algorithm for calculating maximal submarkets that
replicate any option followed by the corresponding computational approach. Conclusions
and research directions are provided in Section 5.
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In this chapter, all the numerical tasks have been performed using the Matlab 7.8 (R2009a)
environment on an Intel(R) Pentium(R) Dual CPU T2310 @ 1.46 GHz 1.47 GHz 32-bit system
with 2 GB of RAM memory running on the Windows Vista Home Premium Operating System.

2. Basic results in the theory of positive bases and projection bases of R
m

In this section, a brief introduction is provided to the theory of vector lattices of R
m.

Furthermore, we present some basic results related to the theory of positive bases and
projection bases of R

m.

2.1. Preliminaries and notation

Initially, we recall some definitions and notation from the vector lattice theory. Let R
m =

{x = (x(1), x(2), ..., x(m))|x(i) ∈ R, for each i}, where we view R
m as an ordered space. The

pointwise order relation in R
m is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ..., m.

The positive cone of R
m is defined by R

m
+ = {x ∈ R

m|x(i) ≥ 0, for each i} and if we suppose
that X is a vector subspace of R

m then X ordered by the pointwise ordering is an ordered
subspace of R

m, with positive cone X+ = X ∩ R
m
+. By {e1, e2, ..., em} we shall denote the usual

basis of R
m. A point x ∈ R

m is an upper bound, (resp. lower bound) of a subset S ⊆ R
m if

and only if y ≤ x (resp. x ≤ y), for all y ∈ S. For a two-point set S = {x, y}, we denote by
x ∨ y (resp. x ∧ y) the supremum of S i.e., its least upper bound (resp. the infimum of S i.e.,
its greatest lower bound). Thus, x ∨ y (resp. x ∧ y) is the componentwise maximum (resp.
minimum) of x and y defined by

(x ∨ y)(i) = max{x(i), y(i)} ((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ..., m.

For any x = (x(1), x(2), ..., x(m)) ∈ R
m, the set supp(x) = {i|x(i) 
= 0} is the support of x. The

vectors x, y ∈ R
m have disjoint supports if supp(x) ∩ supp(y) = ∅.

An ordered subspace Z of R
m is a vector sublattice or a Riesz subspace of R

m if for any x, y ∈ Z
the supremum and the infimum of the set {x, y} in R

m belong to Z.

Assume that X is an ordered subspace of R
m and B = {b1, b2, ..., bµ} is a basis for X. Then B is

a positive basis of X if for each x ∈ X it holds: x is positive if and only if its coefficients in the
basis B are positive. In other words, B is a positive basis of X if the positive cone X+ of X has
the form,

X+ = {x =
µ

∑
i=1

λibi|λi ≥ 0, for each i}.

Then, for any x = ∑
µ
i=1 λibi and y = ∑

µ
i=1 ̺ibi we have x ≤ y if and only if λi ≤ ̺i for each

i = 1, 2, ..., µ. A positive basis B = {b1, b2, ..., bµ} is a partition of the unit if the vectors bi have

disjoint supports and ∑
µ
i=1 bi = 1.

Recall that a nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0

implies x = λx0, for a real number λ. Since each element bi of the positive basis of X is an
extremal point of X+, a positive basis of X is unique in the sense of positive multiples.
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The existence of positive bases is not always ensured, but in the case where X is a vector
sublattice of R

m then X always has a positive basis. If B = {b1, b2, ..., bµ} is a positive basis for
a vector sublattice X the lattice operations in X, namely x ∨ y for the supremum and x ∧ y for
the infimum of the set {x, y} in X, are given by

x ∨ y =
µ

∑
i=1

max{λi, ̺i}bi and x ∧ y =
µ

∑
i=1

min{λi, ̺i}bi,

for each x = ∑
µ
i=1 λibi, y = ∑

µ
i=1 ̺ibi ∈ X.

Suppose that L is a finite dimensional subspace of C(Ω) generated by a set {z1, z2, ..., zr} of
linearly independent positive vectors of C(Ω). If Z is the sublattice of C(Ω) generated by L
and {b1, ..., bµ} is a positive basis for Z (µ = dim(Z)) then, a projection basis {b̃1, b̃2, ..., b̃r} of
Z is a basis for L such that its elements are projections of the elements of the positive basis
{b1, ..., bµ}. In our current work we consider that Ω = {1, 2, ..., m} hence C(Ω) = R

m.

For an extensive presentation of vector sublattices as well as for notation not defined here we
refer to [11–13, 15? , 16] and the references therein.

2.2. Theoretical background

In this section we present theoretical results for positive bases and projection bases in R
m.

Given a collection x1, x2, ..., xn of linearly independent, positive vectors of R
m we define the

function,
h : {1, 2, ..., m} → R

n such that h(i) = (x1(i), x2(i), ..., xn(i))

and the function,

β : {1, 2, ..., m} → R
n such that β(i) =

h(i)

‖h(i)‖1
(1)

for each i ∈ {1, 2, ..., m} with ‖h(i)‖1 
= 0. We shall refer to β as the basic function of the vectors
x1, x2, ..., xn. The set

R(β) = {β(i)|i = 1, 2, ..., m, with ‖h(i)‖1 
= 0},

is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of
different elements of R(β).

Suppose that Z denotes the sublattice of R
m generated by X = [x1, x2, ..., xn]. We shall denote

by P1, P2, ..., Pn, Pn+1, ..., Pµ an enumeration of R(β) such that the first n vertices P1, P2, ..., Pn

are linearly independent and µ = dim(Z). Note that such an enumeration always exists. The
notation, AT stands for the transpose of a matrix A. A procedure in order to construct the
sublattice Z is given by the following theorem.

Theorem 1. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of R
m if and only if R(β) has exactly n points (i.e., µ = n). Then a positive

basis b1, b2, ..., bn for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., n. It is clear
that in such a case Z and X coincide.
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(ii) Let µ > n. If Is = β−1(Ps), and

xs = ∑
i∈Is

‖h(i)‖1ei, s = n + 1, n + 2, ..., µ,

then
Z = [x1, x2, ..., xn, xn+1, ..., xµ],

is the vector sublattice generated by x1, x2, ..., xn and dim Z = µ.

For a positive basis {b1, b2, ..., bµ} of Z, consider the basic function γ of {x1, x2, ..., xµ} with range,
R(γ) = {P′

1, P′
2, ..., P′

µ}. Then, the relation

(b1, b2, ..., bµ)
T = B−1(x1, x2, ..., xµ)

T (2)

where B is the µ × µ matrix with columns the vectors P′
1, P′

2, ..., P′
µ, defines a positive basis for Z.

The notion of the projection basis is important for our study. Furthermore, in the following, we
are interested for a projection basis that corresponds to a positive basis. Let {z1, z2, ..., zr} be a
set of linearly independent and positive vectors of R

m then by using Theorem 1 we construct
the sublattice Z of R

m generated by these vectors. If dim(Z) = µ, by Theorem 1, a positive
basis {b1, b2, ..., bµ} of Z can be determined. The basic result for calculating the projection basis
that corresponds to the positive basis {b1, b2, ..., bµ} of Z is the following theorem.

Theorem 2. Suppose that β is the basic function of the vectors {z1, z2, ..., zr} and P1, P2, ..., Pr,
Pr+1, ..., Pµ is an enumeration of the range of β such that the first r vectors P1, P2, ..., Pr are linearly
independent and suppose also that zr+1, ..., zµ are the new vectors constructed in Theorem 1. If
L = [z1, z2, ..., zr] is the subspace of R

m generated by the vectors z1, z2, ..., zr then,

(i) Z = L ⊕ [zr+1, ..., zµ],

(ii) {br+1, br+2, ..., bµ} = {2zr+1, 2zr+2, ..., 2zµ},

(iii) If bi = b̃i + b′i , with b̃i ∈ L and b′i ∈ [zr+1, ..., zµ], for each i = 1, 2, ..., r, then {b̃1, b̃2, ..., b̃r} is a
basis for L which is given by the formula

(b̃1, b̃2, ..., b̃r)
T = A−1(z1, z2, ..., zr)

T ,

where A is the r × r matrix whose ith column is the vector Pi, for i = 1, 2, ..., r. This basis,

{b̃1, b̃2, ..., b̃r} is called the projection basis of L and has the property: The r first coordinates of
any element x ∈ L expressed in terms of the basis {b1, b2, ..., bµ} coincide with the corresponding
coordinates of x in the projection basis, i.e.,

x =
µ

∑
i=1

λibi ∈ L ⇒ x =
r

∑
i=1

λi b̃i

Suppose that Z is the sublattice generated by a collection z1, z2, ..., zr of linearly independent,
positive vectors of R

m and {d1, d2, ..., dµ} is a positive basis for Z.

Then, by Theorem 2, if

(d̃1, d̃2, ..., d̃r)
T = A−1(z1, z2, ..., zr)

T ,

183MATLAB Aided Option Replication
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where A is the r × r matrix whose ith column is the vector Pi, for i = 1, 2, ..., r then
{d̃1, d̃2, ..., d̃r} is the projection basis of L = [z1, z2, ..., zr]. The projection basis {d̃1, d̃2, ..., d̃r}
is called the projection basis of X corresponding to the basis {d1, d2, ..., dµ}. The following
proposition allows us to determine a positive basis and its corresponding projection basis.
Moreover, the calculated positive basis is a partition of the unit.

Proposition 1. Suppose that {di} is the basis of Z given by equation (2) of Theorem 1 and {d̃i} is the

projection basis of L = [z1, z2, ..., zr] corresponding to the basis {di}. Then {bi =
di

‖di‖∞
|i = 1, 2, ..., µ}

is the positive basis of Z which is a partition of the unit and {b̃i =
d̃i

‖di‖∞
|i = 1, 2, ..., n} is the projection

basis of L corresponding to the basis {bi} of Z.

In the following, we shall denote by 1 the vector 1 = (1, 1, ..., 1). A vector x is a binary vector
if x 
= 0 = (0, 0, ..., 0), x 
= 1 and x(i) = 0 or x(i) = 1, for any i. Let {bi|i = 1, 2, ..., µ} be a

positive basis of Z which is a partition of the unit and let {b̃i|i = 1, 2, ..., n} be the projection
basis of L corresponding to the basis {bi}. A partition δ = {σi|i = 1, 2, ..., k} of {1, 2, ..., n} is

proper if for any r = 1, 2, ..., k, the vector wr = ∑i∈σr
b̃i is a binary vector with ∑

k
r=1 wr = 1. If

there is no proper partition of {1, 2, ..., n} strictly finer than δ, then we say that δ is a maximal
proper partition of {1, 2, ..., n}.

Example 1. Let {bi|i = 1, 2, 3} be a positive basis such that the corresponding projection basis
is the following

b̃1 = (
1

2
, 1, 0, 1, 0), b̃2 = (

1

2
, 0, 0, 0, 1), b̃3 = (0, 0, 1, 0, 0).

We calculate the partitions of {1, 2, 3} which are the following:

δ1 = {σ1, σ2}, where σ1 = {1}, σ2 = {2 3}

δ2 = {σ1, σ2}, where σ1 = {2}, σ2 = {3 4}

δ3 = {σ1, σ2}, where σ1 = {3}, σ2 = {1 2}

δ4 = {σ1, σ2, σ3}, where σ1 = {1}, σ2 = {2}, σ3 = {3}.

Then δ1 is not a proper partition since w1 = ∑i∈σ1
b̃i = b̃1 and b̃1 is not a binary vector.

Similarly, δ2 is not a proper partition. On the other hand δ3 is a proper partition since w1 =

∑i∈σ1
b̃i = b̃3 and b̃3 is a binary vector, w2 = ∑i∈σ2

b̃i = b̃1 + b̃2 = (1, 1, 0, 1, 1) which is a binary
vector and w1 + w2 = (1, 1, 1, 1, 1). Notice that δ3 is strictly finer than δ4, hence δ3 is a maximal
proper partition of {1, 2, 3}.

3. Option replication

In this section we shall discuss the economic model of our study. Moreover, first we discuss
an inductive method for calculating the completion of security markets. So, if 1 ∈ X then it is
possible to determine a basic set of marketed securities i.e., a set of linearly independent and
positive vectors of X and the sublattice of R

m generated by a basic set of marketed securities
is F1(X). Finally, F1(X) has a positive basis which is a partition of the unit. Under these
observations we present an algorithmic procedure in order to determine maximal submarkets
that replicate any option.

184 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3
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3.1. The economic model

In our economy there are two time periods, t = 0, 1, where t = 0 denotes the present and t = 1
denotes the future. We consider that at t = 1 we have a finite number of states indexed by
s = 1, 2, ..., m, while at t = 0 the state is known to be s = 0.

Suppose that, agents trade x1, x2, ..., xn non-redundant securities in period t = 0, then the
future payoffs of x1, x2, ..., xn are collected in a matrix

A =
[
xi(j)

]j=1,2,...,m

i=1,2,...n
∈ R

m×n

where xi(j) is the payoff of one unit of security i in state j. In other words, A is the matrix
whose columns are the non-redundant security vectors x1, x2, ..., xn. It is clear that the matrix
A is of full rank and the asset span is denoted by X = Span(A). So, X is the vector subspace
of R

m generated by the vectors xi. That is, X consists of those income streams that can be
generated by trading on the financial market. A portfolio is a column vector θ = (θ1, θ2, ..., θn)T

of R
n and the payoff of a portfolio θ is the vector x = Aθ ∈ R

m which offers payoff x(i) in state
i, where i = 1, ..., m. A vector in R

m, is said to be marketed or replicated if x is the payoff of some
portfolio θ (called the replicating portfolio of x), or equivalently if x ∈ X. If m = n, then markets
are said to be complete and the asset span coincides with the space R

m. On the other hand, if
n < m, the markets are incomplete and some state contingent claim cannot be replicated by a
portfolio.

In the following, we shall denote by 1 the riskless bond i.e., the vector 1 = (1, 1, ..., 1). A
vector x is a binary vector if x 
= 0 = (0, 0, ..., 0), x 
= 1 and x(i) = 0 or x(i) = 1, for any
i. The call option written on the vector x ∈ R

m with exercise price α is the vector c(x, a) =
(x − α1)+ = (x − α1) ∨ 0. The put option written on the vector x ∈ R

m with exercise price
α is the vector p(x, a) = (α1 − x)+ = (α1 − x) ∨ 0. If y is an element of a Riesz space then
the following lattice identities hold, y = y+ − y− and y− = (−y)+. It is clear that x − α1 =
(x − α1)+ − (x − α1)− = (x − α1)+ − (α1 − x)+ = c(x, α)− p(x, α). Therefore we have the
identity

x − a1 = c(x, a)− p(x, a),

which is called put-call parity.

If both c(x, α) > 0 and p(x, α) > 0, we say that the call option c(x, α) and the put option
p(x, α) are non trivial and the exercise price α is a non trivial exercise price of x. If c(x, α) and
p(x, α) belong to X then we say that c(x, α) and p(x, α) are replicated. If we suppose that
1 ∈ X and at least one of c(x, a), p(x, a) is replicated, then both of them are replicated since,
x − α1 = c(x, α)− p(x, α).

3.2. Completion of security markets

We shall discuss the problem of completion by options of a two-period security market in
which the space of marketed securities is a subspace of R

m. The present study involves
vector sublattices generated by a subset B of R

m of positive, linearly independent vectors.
A computational solution to this problem is provided by using the SUBlat Matlab function
from [16].

185MATLAB Aided Option Replication
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Let us assume that in the beginning of a time period there are n securities traded in a market.
Let S = {1, ..., m} denote a finite set of states and xj ∈ R

m
+ be the payoff vector of security

j in m states. The payoffs x1, x2, ..., xn are assumed linearly independent so that there are no
redundant securities. If θ = (θ1, θ2, ..., θn) ∈ R

n is a non-zero portfolio then its payoff is the
vector

T(θ) =
n

∑
i=1

θixi.

The set of payoffs of all portfolios is referred as the space of marketed securities and it is the
linear span of the payoffs vectors x1, x2, ..., xn in R

m which we shall denote it by X, i.e.,

X = [x1, x2, ...xn].

For any x, u ∈ R
m and any real number a the vector cu(x, a) = (x − au)+ is the call option and

pu(x, a) = (au − x)+ is the put option of x with respect to the strike vector u and exercise price a.

Let U be a fixed subspace of R
m which is called strike subspace and the elements of U are the

strike vectors. Then, the completion by options of the subspace X with respect to U is the space
FU(X) which is defined inductively as follows:

• X1 is the subspace of R
m generated by O1, where O1 = {cu(x, a)|x ∈ X, u ∈ U, a ∈ R},

denotes the set of call options written on the elements of X,

• Xn is the subspace of R
m generated by On, where On = {cu(x, a)|x ∈ Xn−1, u ∈ U, a ∈ R},

denotes the set of call options written on the elements of Xn−1,

• FU(X) = ∪∞
n=1Xn.

The completion by options FU(X) of X with respect to U is the vector sublattice of R
m

generated by the subspace Y = X ∪ U. The details are presented in the next theorem,

Theorem 3. In the above notation, we have

(i) Y ⊆ X1,

(ii) FU(X) is the sublattice S(Y) of R
m generated by Y, and

(iii) if U ⊆ X, then FU(X) is the sublattice of R
m generated by X.

Any set {y1, y2, . . . , yr} of linearly independent positive vectors of R
m such that FU(X) is the

sublattice of R
m generated by {y1, y2, . . . , yr} is a basic set of the market.

Theorem 4. Any maximal subset {y1, y2, . . . , yr} of linearly independent vectors of A is
a basic set of the market, where A = {x+1 , x−1 , . . . , x+n , x−n }, if U ⊆ X and A =
{x+1 , x−1 , . . . , x+n , x−n , u+

1 , u−
1 , . . . , u+

d , u−
d }, if U � X

The space of marketed securities X is complete by options with respect to U if X = FU(X).

From theorem 1 it follows,

Theorem 5. The space X of marketed securities is complete by options with respect to U if and only
if U ⊆ X and cardR(β) = n. In addition, the dimension of FU(X) is equal to the cardinal number of
R(β). Therefore, FU(X) = R

k if and only if cardR(β) = k.
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MATLAB Aided Option Replication 9

Example 2. Suppose that in a security market, the payoff space is R
12 and the primitive

securities are:
x1 = (1, 2, 2,−1, 1,−2,−1,−3, 0, 0, 0, 0)

x2 = (0, 2, 0, 0, 1, 2, 0, 3,−1,−1,−1,−2)

x3 = (1, 2, 2, 0, 1, 0, 0, 0,−1,−1,−1,−2)

and that the strike subspace is the vector subspace U generated by the vector

u = (1, 2, 2, 1, 1, 2, 1, 3,−1,−1,−1,−2).

Then, a maximal subset of linearly independent vectors of {x+1 , x−1 , x+2 , x−2 , x+3 , x−3 , u+
1 , u−

1 }
can be calculated by using the following code:

>>XX = [max(X,zeros(size(X)));max(-X,zeros(size(X)))];

>>S = rref(XX’);

>>[I,J] = find(S);

>>Linearindep = accumarray(I,J,[rank(XX),1],@min)’;

>>W = XX(Linearindep,:);

where X denotes a matrix whose rows are the vectors x1, x2, x3, u. We can determine the
completion by options of X i.e., the space FU(X), with the SUBlat function from [16] by
using the following code:

>>[VectorSublattice,Positivebasis]=SUBlat(W’)

The results then are as follows

VectorSublattice =

1 2 2 0 1 0 0 0 0 0 0 0

0 2 0 0 1 2 0 3 0 0 0 0

1 2 2 1 1 2 1 3 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 2

2 0 4 0 0 0 0 0 0 0 0 0

Positivebasis =

0 0 0 0 0 0 0 0 1 1 1 2

0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 4 0 6 0 0 0 0

4 0 8 0 0 0 0 0 0 0 0 0

0 6 0 0 3 0 0 0 0 0 0 0

3.3. Computation of maximal submarkets that replicate any option

We consider a two-period security market X with a finite number m of states and a finite
number of primitive securities with payoffs in R

m and we construct computational methods
in order to determine maximal submarkets of X that replicate any option by using the results
provided in subsection 2.2. In particular, in the theory of security markets it is a usual practice
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to take call and put options with respect to the riskless bond 1 = (1, 1, ..., 1). Then, the
completion F1(X) of X by options (see subsection 3.2) is the subspace of R

m generated by
all options written on the elements of X ∪ {1}. Since the payoff space is R

m, which is a vector
lattice, in the case where 1 ∈ X then F1(X) is exactly the vector sublattice generated by X. If,
in addition, X is a vector sublattice of R

m then F1(X) = X therefore any option is replicated.

A basic set of marketed securities (i.e., a set of linearly independent and positive vectors) of X
always exist and the sublattice of R

m generated by a basic set of marketed securities is F1(X).
In addition, F1(X) has a positive basis which is a partition of the unit.

Let us assume that X is generated by a basic set of marketed securities, then from Theorem 1
it is possible to determine a positive basis {b1, b2, ..., bµ} of F1(X).

The sublattice Z, generated by a basic set of marketed securities, is exactly F1(X) and F1(X)
has a positive basis which is a partition of the unit, i.e., ∑

µ
i=1 bi = 1. This is possible since

the notion of a positive basis is unique in the sense of positive multiples therefore we are able
to extract from the positive basis {b1, b2, ..., bµ} another positive basis {d1, d2, ..., dµ} of F1(X)
which is a partition of the unit. Therefore, let us denote by {d1, d2, ..., dµ} a positive basis of
F1(X) which is a partition of the unit. Then, by Theorem 2, if

(d̃1, d̃2, ..., d̃r)
T = A−1(z1, z2, ..., zr)

T ,

where A is the r × r matrix whose ith column is the vector Pi, for i = 1, 2, ..., r then
{d̃1, d̃2, ..., d̃r} is a projection basis of F1(X). The projection basis {d̃1, d̃2, ..., d̃r} is the projection
basis of X corresponding to the basis {d1, d2, ..., dµ}. For Z = F1(X) proposition 1 takes the
following form.

Proposition 2. Suppose that {di} is the basis of F1(X) given by equation (2) of theorem 1 and {d̃i}

is the projection basis of X corresponding to the basis {di}. Then {bi =
di

‖di‖∞
|i = 1, 2, ..., µ} is the

positive basis of F1(X) which is a partition of the unit and {b̃i =
d̃i

‖di‖∞
|i = 1, 2, ..., n} is the projection

basis of X corresponding to the basis {bi} of F1(X).

Suppose that Y is a subspace of X, then if F1(Y) ⊆ X we say that Y is replicated. If, in addition,
for any subspace Z of X with Y � Z we have that X � F1(Z) then Y is a maximal replicated
subspace or a maximal replicated submarket of X. Note that, the replicated kernel of the market, i.e.,
the union of all maximal replicated subspaces of the market is the set of all elements x of X so
that any option written on x is replicated.

Let {bi i = 1, 2, ..., µ} be a positive basis of F1(X) which is a partition of the unit and let

{b̃i i = 1, 2, ..., n} be the projection basis of X corresponding to the basis {bi}. Recall that,
a partition δ = {σi|i = 1, 2, ..., k} of {1, 2, ..., n} is proper if for any r = 1, 2, ..., k, the vector

wr = ∑i∈σr
b̃i is a binary vector with ∑

k
r=1 wr = 1. If there is no proper partition of {1, 2, ..., n}

strictly finer than δ, then we say that δ is a maximal proper partition of {1, 2, ..., n}.

The following theorem provides the development of a method in order to determine the set of
securities with replicated options by using the theory of positive bases and projection bases.
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Theorem 6. Let {bi, i = 1, 2, ..., µ} be the positive basis of F1(X) which is a partition of the unit and
let {b̃i, i = 1, 2, ..., n} be the projection basis of X corresponding to the basis {bi}. If Y is a subspace of
X, the following are equivalent:

(i) Y is a maximal replicated subspace of X,

(ii) there exists a maximal proper partition δ = {σi|i = 1, 2, ..., k} of {1, 2, ..., n} so that Y is the
sublattice of R

m generated by δ.

The set of maximal replicated submarkets of X is nonempty.

4. The computational method

We present the proposed computational method that enables us to determine maximal
submarkets that replicate any option. Our numerical method is based on the introduction
of the mrsubspace function, from [15], that allow us to perform fast testing for a variety of
dimensions and subspaces.

4.1. Algorithm for calculating maximal submarkets that replicate any option

Recall that X is the security market generated by a collection {x1, x2, ..., xn} of linearly
independent vectors (not necessarily positive) of R

m. If 1 ∈ X then it is possible to determine
a basic set of marketed securities i.e., a set of linearly independent and positive vectors of X.
This is possible through the following easy proposition:

Proposition 3. If a = max{‖xi‖∞|i = 1, 2, ..., n}, then at least one of the two sets of positive vectors
of X

{yi = a1 − xi|i = 1, 2, ..., n}, {zi = 2a1 − xi|i = 1, 2, ..., n},

consists of linearly independent vectors.

The main steps of the underlying algorithmic procedure that enables us to determine maximal
submarkets that replicate any option are the following:

(1) Use proposition 3 in order to determine a basic set {y1, y2, ..., yn} of marketed securities.

(2) Use Equation (1) in order to determine the basic curve β of the vectors yi.

(3) Determine the range R(β) of β.

(4) Use Theorem 1 in order to construct the vector sublattice generated by y1, y2, ..., yn,
which is exactly the completion by options F1(X) of X. Then, determine a positive basis
{d1, d2, ..., dµ} for F1(X).

(5) Use Theorem 2 in order to determine a projection basis {d̃1, d̃2, ..., d̃n} of X.

(6) Use Proposition 1 in order to determine a positive basis {b1, b2, ..., bµ} of F1(X) which is a

partition of the unit and the corresponding projection basis {b̃1, b̃2, ..., b̃n}.

(7) Calculate all the possible proper partitions of the set {1, 2, ..., n}.

(8) Decide which of the proper partitions created in step (7) are maximal proper partitions
and determine the corresponding maximal replicated submarkets.
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In [15], it is presented the translation followed by the implementation of the aforementioned
algorithm in R

m within a Matlab-based function named mrsubspace. Moreover, in the
same paper, computational experiments assessing the effectiveness of this function and lead
us to the conclusion that the mrsubspace function provides an important tool in order to
investigate replicated subspaces.

4.2. The computational approach - Code features

We shall discuss the proposed computational method that enables us to determine maximal
submarkets that replicate any option. The standard method used currently to determine the
maximal replicated submarkets is based on a manual processing. From section 3, it is evident
that the required number of verifications for this process can be of significant size even in
a relatively low-dimensional space, thus rendering the problem too difficult to solve. Our
numerical method is based on the introduction of the mrsubspace function, from [15] that
allow us to perform fast testing for a variety of dimensions and subspaces.

The structure of the code ensures flexibility, meaning that it is convenient for applications as
well as for research and educational purposes. The given security market X, generated by the
linearly independent vectors x1, x2, ..., xn, must be given under a matrix notation with columns
the vectors x1, x2, ..., xn. The mrsubspace function must be stored in a Matlab-accessible
directory and then the input data, i.e., the matrix X, can be typed directly in the Matlab’s
environment. Under the following command,

mrsubspace(X);

the program solves the problem of option replication and prints out the maximal proper
partitions as well as the corresponding maximal replicated subspaces. If X is a vector
sublattice, then X = F1(X) and any option is replicated. In the case where the initial space
X is not a vector sublattice, it is possible to produce the normalized positive basis and the
corresponding projection basis with the following code,

[Npb,Cprb] = mrsubspace(X)

Inside the code there are several explanations that indicate the implemented part of the
algorithm. A user proficient in Matlab can easily use the code and modify it if needed.
Especially, the user can isolate a part of the code according to his/her special needs to solve
different problems like

• Determine a basic set of marketed securities.

• Find the completion F1(X) of X by options in R
m or find the vector sublattice generated

by a finite collection of linearly independent vectors of R
m.

• Calculate a positive basis and a projection basis for a finite dimensional vector sublattice.

In the last part of the code, entitled Maximal proper partitions - Maximal replicated subspaces,
the user can change the way that the mrsubspace function understands the values 0 and 1,
according to his/her knowledge and needs.
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Example 3. Consider the following 5 vectors x1, x2, ..., x5 in R
10,

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥
=

⎡
⎢⎢⎢⎢⎣

0 1 0 1 1 1 1 2 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥

and X = [x1, x2, ..., x5] is the marketed space.

Note that 1 = x5 − x4 + x1. In order to determine the maximal replicated subspaces for the
above collection of vectors we use the following simple code:

>> X = [0,1,0,1,1,1,1,2,2,1;1,1,1,2,1,1,1,2,1,2;...

1,1,1,2,1,1,1,2,1,1;1,1,1,1,1,1,1,2,2,1;2,1,2,1,1,1,1,1,1,1];

>> [Npb,Cprb] =mrsubspace(X)

as a result and after removing irrelevant Matlab output one gets

The 1 partition(s) are:

{1} {2 3} {4} {5}

ReplicatedSubspace =

1 0 1 0 0 0 0 0 0 0

0 1 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1

The 1 partition(s) are:

{1} {2} {3 4} {5}

ReplicatedSubspace =

1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 1 0

0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

Npb =

1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0
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Cprb =

1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 1 1 0 1 0

0 0 0 1 0 0 0 0 -1 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 0 1

Therefore, the marketed space X has two maximal replicated subspaces, {1} {2 3} {4} {5}
and {1} {2} {3 4} {5} are maximal proper partitions with corresponding maximal replicated
subspaces the subspaces

Y1 = [(1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 1, 1, 1, 1, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 1, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)]

and

Y2 = [(1, 0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 1, 1, 1, 0, 1, 0), (0, 0, 0, 1, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)],

respectively. The replicated kernel of the market is Y = Y1 ∪ Y2.

5. Conclusions

In this chapter, computational methods for option replication are presented based on vector
lattice theory. It is well accepted that the lattice theoretic ideas are one of the most important
technical contributions of the large literature on modern mathematical finance. In this chapter,
we consider an incomplete market of primitive securities, meaning that some call and put
options need not be marketed. Our objective is to describe an efficient method for computing
maximal submarkets that replicate any option. Even though, there are several important
results on option replication they cannot provide a method for the determination of the
replicated options. By using the theory of vector-lattices and positive bases it is provided
a procedure in order to determine the set of securities with replicated options. Moreover, we
determine those subspaces of the marketed subspace that replicate any option by introducing
a Matlab function, namely mrsubspace. The results of this work can give us an important
tool in order to study the interesting problem of option replication of a two-period security
market in which the space of marketed securities is a subspace of R

m. This work is based on
a recent work, [15], regarding computational methods for option replication.
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