
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322417591?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 0

Numerical Simulation of the Frank-Kamenetskii

PDE: GPU vs. CPU Computing

Charis Harley

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46463

1. Introduction

The efficient solution of the Frank-Kamenetskii partial differential equation through the
implementation of parallelized numerical algorithms or GPUs (Graphics Processing Units) in
MATLAB is a natural progression of the work which has been conducted in an area of practical
import. There is an on-going interest in the mathematics describing thermal explosions
due to the significance of the applications of such models - one example is the chemical
processes which occur in grain silos. Solutions which pertain to the different geometries of
such a physical process have different physical interpretations, however in this chapter we
will consider the Frank-Kamenetskii partial differential equation within the context of the
mathematical theory of combustion which according to Frank-Kamenetskii [16] deals with
the combined systems of equations of chemical kinetics and of heat transfer and diffusion. A
physical explanation of such a system is often a gas confined within a vessel which then reacts
chemically, heating up until it either attains a steady state or explodes.

The focus of this chapter is to investigate the performance of the parallelization power of
the GPU vs. the computing power of the CPU within the context of the solution of the
Frank-Kamenetskii partial differential equation. GPU computing is the use of a GPU as a
co-processor to accelerate CPUs (Central Processing Units) for general purpose scientific and
engineering computing. The GPU accelerates applications running on the CPU by offloading
some of the compute-intensive and time consuming portions of the code. The rest of the
application still runs on the CPU. The reason why the application is seen to run faster is
because it is using the extreme parallel processing power of the GPU to boost performance. A
CPU consists of 4 to 8 CPU cores while the GPU consists of 100s of smaller cores. Together they
operate to crunch through the data in the application and as such it is this massive parallel
architecture which gives the GPU its high compute performance.

The methods which will be investigated in this research are implicit methods, such as the
Crank-Nicolson method (CN) and the Crank-Nicolson method incorporating the Newton
method (CNN) [26]. These algorithms pose a serious challenge to the implementation of

©2012 Harley, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 5

2 Will-be-set-by-IN-TECH

parallelized architecture as we shall later discuss. We will also consider Rosenbrock methods
which are iterative in nature and as was indicated in Harley [22] showed drastically increased
running times as the time period over which the problem was considered increased. Further
pitfalls which arise when trying to obtain a solution for the partial differential equation in
question when using numerical techniques is firstly the singularity which exists at x = 0.
This complexity may be dealt with through the use of a Maclaurin expansion which splits the
problem into two cases: x = 0 and x �= 0.

The second hurdle is the nonlinear source term which may be dealt with using different

techniques. In this chapter we will implement the Newton method which acts as an updating

mechanism for the nonlinear source term and in so doing maintains the implicit nature of the

scheme in a consistent fashion. While the incorporation of the Newton method leads to an

increase in the computation time for the Crank-Nicolson difference scheme (see [22]) there

is also an increase in the accuracy and stability of the solution. As such we find that the

algorithms we are attempting to employ in the solution of this partial differential equation

would benefit from the processing power of a GPU.

In this chapter we will focus on the implementation of the Crank-Nicolson implicit method,

employed with and without the Newton method, and two Rosenbrock methods, namely ROS2

and ROWDA3. We consider the effectiveness of running the algorithms on the GPU rather

than the CPU and discuss whether these algorithms can in fact be parallelized effectively.

2. Model

The steady state formulation of the equation to be considered in this chapter was described by

Frank-Kamenetskii [16] who later also considered the time development of such a reaction.

The reaction rate depends on the temperature in a nonlinear fashion, generally given by

Arrhenius’ law. This nonlinearity is an important characteristic of the combustion phenomena

since without it the critical condition for inflammation would disappear causing the idea of

combustion to lose its meaning [16]. Thus, in the case of a thermal explosion, the Arrhenius

law is maintained by the introduction of the exponential term which acts as a source for the

heat generated by the chemical reaction. As such we are able to write an equation modelling

the dimensionless temperature distribution in a vessel as

∂u

∂t
= ∇2u + δeu/(1+ǫu) (1)

where u is a function of the spatial variable x and time t and the Frank-Kamenetskii parameter

δ is given by

δ =
Q

λ

E

RT0
2

r2καe

(

− E
RT0

)

. (2)

The value of the Frank-Kamanetskii parameter [16] δ is related to the critical temperature at

which ignition of a thermal explosion takes place and is thus also referred to as the critical

value. At values below its critical value δcr a steady state is reached for a given geometry and

set of boundary conditions whereas an explosion ensues for values above it. The Laplacian

operator takes the form

∇2 =
∂2

∂x2
+

k

x

∂

∂x
, 0 < x < 1 (3)

118 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 3

where k is indicative of the shape of the vessel within which the chemical reaction takes place:

k = 0, 1 and 2 represent an infinite slab, infinite circular cylinder and sphere, respectively.

The dimensionless parameter ǫ = RT0
E is introduced as the critical activation parameter. To

be able to speak of combustion the condition ǫ ≪ 1 must be satisfied due to the fact that the

ambient temperature can normally be seen as much smaller in magnitude than the ignition

temperature [16]. Equation (1) for ǫ = 0 was derived by Frank-Kamenetskii [16]. Further work

was done by Steggerda [31] on Frank-Kamenetskii’s original criterion for a thermal explosion

showing that a more detailed consideration of the situation is possible. For small x a solution

was derived for the cylindrical system by Rice [27], Bodington and Gray [6] and Chambré [10].

While the steady state case - often termed the Lane-Emden equation of the second kind - has

been considered extensively, the time dependent case is also of import and has been studied

in [2], [32] and [33].

In this chapter we consider numerical solutions for equation (1) modelling a thermal explosion

within a cylindrical vessel, i.e. k = 1. A thermal explosion occurs when the heat generated

by a chemical reaction is far greater than the heat lost to the walls of the vessel in which the

reaction is taking place. As such this equation is subject to certain boundary conditions given

at the walls of the vessel. The appropriate boundary conditions for this problem are

u(x, 0) = 0, (4)

∂u

∂x
(0, t) = 0, (a) u(R, t) = 0 (b) (5)

where R = 1 is the radius of the cylinder. The boundary conditions (4) and (5) imply that the

temperature at the vessel walls is kept fixed and the solution is symmetric about the origin.

Frank-Kamenetskii [16] obtained a steady state solution to this problem with ǫ = 0. Zeldovich

et al. [34] considered similarity solutions admitted by (1) for k = 1 that exhibit blow-up

in finite time. These kinds of solutions, while noteworthy, have limited significance due

to the restricted form of the initial profiles compatible with the similarity solutions. These

solutions correspond to very special initial conditions for the temperature evolution profile,

limiting the degree to which results obtained in this manner are applicable. This disadvantage

has been noted by Anderson et al. [3] while analytically investigating the time evolution of

the one-dimensional temperature profile in a fusion reactor plasma. A solution which also

models blow-up in finite time has been obtained by Harley and Momoniat [18] via nonlocal

symmetries of the steady-state equation.

In Harley [21] a Crank-Nicolson- and hopscotch scheme were implemented for equation (1)

subject to (4) and (5) where δ = 1 and ǫ = 0. The nonlinear source term was kept explicit when

the Crank-Nicolson method was employed, as commented on by Britz et al. [9] in whose

work the nonlinear term was incorporated in an implicit manner in a style more consistent

with the Crank-Nicolson method. Britz et al. [9] implemented the Crank-Nicolson scheme

with the Newton iteration and showed that it outperformed the explicit implementation of

the nonlinearity as in [21] in terms of accuracy. However it does require more computer time

as would be expected.

In recent work (see [22]) the Crank-Nicolson method was implemented with the Newton

iteration as done by Britz et al. [9] by computing a correction set in each iteration to obtain

119Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

4 Will-be-set-by-IN-TECH

approximate values of the dependent variable at the next time step. The efficiency of the

Crank-Nicolson scheme, hopscotch scheme (both of these methods were implemented with

an explicit and then an implicit discretisation of the source term) and two versions of the

Rosenbrock method were compared [22]. Using the pdepe function in MATLAB and the

steady state solution obtained by Frank-Kamenetskii [16] as a means of comparison, it was

found that the incorporation of the Newton method for the Crank-Nicolson- and hopscotch

scheme led to increased running times as T, where 0 ≤ t ≤ T, increased.

Furthermore, it was shown that while the Crank-Nicolson- and hopscotch method (with or

without the implementation of the Newton method) performed well in terms of accuracy for

T = 0.3 and 0.5, they were in fact able to outperform pdepe at T = 4. The Rosenbrock

methods employed (ROS2 and ROWDA3) performed similarly with regards to accuracy,

however showed almost an exponential increase in their running times as T increased,

indicating that using the Crank-Nicolson- or hopscotch scheme may be more efficient. Thus,

given that the Rosenbrock methods performed even poorer with regards to running time,

it seems reasonable to suggest that implementing the Crank-Nicolson- or hopscotch scheme

with a Newton iteration is most ideal. The Crank-Nicolson method using the Newton method

as a means of maintaining the implicit nature of the source term in the difference scheme

has been used by Anderson and Zienkiewicz [2]. In Harley [21] and Abd El-Salam and

Shehata [1] the discretisation of the exponential terms were kept explicit, thereby removing

the nonlinearity.

As a consequence of these findings and due to the complexity created by the nonlinear source

term which serves a critical function in the model, further work regarding faster algorithms for

the solution of such an equation are of interest. This chapter will not consider the hopscotch

scheme directly as an appropriate method for the solution of the Frank-Kamenetskii partial

differential equation due to work done by Feldberg [15] which indicated that for large values

of β = △t

△x2 the algorithm produces the problem of propagational inadequacy which leads

to inaccuracies - similar results were obtained in [22]. Given the improved accuracy of

the Crank-Nicolson method incorporating the Newton method [22] - the order of the error

for this method is O(△t2) which is only approximately the case for the Crank-Nicolson

method without the Newton iteration incorporated [9] - it seems more fitting to consider

an improvement in the computing time of this method. Hence a consideration of such

an improvement on the algorithm’s current running time will be the focus of this chapter.

The means by which we wish to accomplish this is through the use of the the Parallel

Computing Toolbox in MATLAB. It is hoped that this is the next step towards creating fast

and effective numerical algorithms for the solution of a partial differential equation such as

the one originating from the work of Frank-Kamenetskii [16].

3. Executing MATLAB on a GPU

The advantage of using the Parallel Computing Toolbox in MATLAB is the fact that it allows

one to solve computationally and data-intensive problems using multicore processors, GPUs,

and computer clusters. In this manner one can parallelize numerical algorithms, and in so

doing MATLAB applications, without CUDA or MPI programming. Parallelized algorithms

such as parfor, used within the context of what is usually a for loop, allows you to offload

120 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 5

work from one MATLAB session (the client) to other MATLAB sessions, called workers.

You can use multiple workers to take advantage of parallel processing and in this way

improve the performance of such loop execution by allowing several MATLAB workers to

execute individual loop iterations simultaneously. In this context however we are not able

to implement in-built MATLAB functions such as parfor due to the numerical algorithms

which we have chosen to consider. The CN- and CNN method, both implicit, loop through

the index m until t0 + m△t = T. These iterative steps are not independent of each other, i.e

to obtain data at the m + 1th step the data at the mth step is required. In a similar fashion the

ROS2 and ROWDA3 methods also iterate through dependent loops to obtain a solution. As

such we attempt to run the code directly on the GPU instead of the CPU in order to decrease

the running time of the algorithms.

The Parallel Computing Toolbox in MATLAB allows one to create data on and transfer it to

the GPU so that the resulting GPU array can then be used as an input to enhance built-in

functions that support them. The first thing to consider when implementing computations

on the GPU is keeping the data on the GPU so that we do not have to transfer it back and

forth for each operation - this can be done through the use of the gpuArray command. In

this manner computations with such input arguments run on the GPU because the input

arguments are already in the GPU memory. One then retrieves the results from the GPU to the

MATLAB workspace via the gather command. Having to recall the results from the GPU is

costly in terms of computing time and can in certain instances make the implementation of an

algorithm on the GPU less efficient than one would expect. Furthermore, the manner in which

one codes algorithms for GPUs is of vital importance given certain limitations to the manner

in which functions of the Toolbox may be implemented (see [25]). More importantly however,

is whether the method employed can allow for the necessary adjustments in order to improve

its performance. In this chapter we will see that there are some problems with implementing

the kind of algorithms considered here on the GPU.

In this chapter we are employing MATLAB under Windows 7 (64 bits) on a PC equipped with

an i7 2.2 GHz processor with 32 GB of RAM.

3.1. Crank-Nicolson implicit scheme

We will implement the Crank-Nicolson method while maintaing the explicit nature of the

nonlinear source term and also apply the method by computing a correction set in each

iteration to obtain approximate values of the dependent variable at the next time step through

the use of the Newton method [26]. The methodology will be explained briefly here; the reader

is referred to [7–9] for clarification.

When implementing the Crank-Nicolson method we employ the following central-difference

approximations for the second-and first-order spatial derivatives respectively

∂2u

∂x2
≈

um
n+1 − 2um

n + um
n−1

△x2
, (6)

∂u

∂x
≈

um
n+1 − um

n−1

2△x
(7)

121Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

6 Will-be-set-by-IN-TECH

while a forward-difference approximation

∂u

∂t
≈

um+1
n − um

n

△t
(8)

is used for the time derivative. We implement a Crank-Nicolson scheme by approximating

the second-derivative on the right-hand side of (1) by the implicit Crank-Nicolson [12]

approximation

∂2u

∂x2
≈

um+1
n+1 − 2um+1

n + um+1
n−1

2△x2
+

um
n+1 − 2um

n + um
n−1

2△x2
. (9)

In a similar fashion the first-derivative on the right-hand side becomes

∂u

∂x
≈

um+1
n+1 − um+1

n−1

4△x
+

um
n+1 − um

n−1

4△x
. (10)

To impose zero-shear boundary conditions at the edges we approximate the spatial

first-derivative by the central-difference approximation (7) which leads to the following

condition

um
−1 = um

1 . (11)

As mentioned before the boundary condition (5a) at x0 = 0 can pose a problem for the solution

of equation (1). One could discretise it directly as a forward difference formula, such as the

three-point approximation −3um
0 + 4um

1 − um
2 = 0, and add this to the set of equations to

solve when using the Crank-Nicolson scheme. Alternatively one could use the more accurate

symmetric approximation, um
−1 = um

1 , which introduces a ’fictitious point’ at x = −△x. This

however, would lead to another problem due to the singularity in the differential equation at

x0 = 0. Instead we choose to overcome this difficulty by using the Maclaurin expansion

lim
x→0

1

x

∂u

∂x
=

∂2u

∂x2

∣

∣

∣

∣

x=0

(12)

which simplifies the equation for the case x0 = 0. It has been noted by Britz et al. [9] that

using (12) turns out to be more convenient and accurate. Due to the fact that the point x0 = 0

would lead to a singularity in equation (1) we structure the code to account for two instances:

x = 0 and x �= 0. Using (12) for equation (1) we attain the following approximation

∂u

∂t
= 2

∂2u

∂x2
+ eu (13)

to equation (1) at x0 = 0. This approximation has been taken into account in the system given

by (16) below. Such an approximation has been used in many numerical algorithms. In Crank

and Furzeland [13], for instance, they presented a modified finite-difference method which

eliminates inaccuracies that occur in the standard numerical solution near singularities. The

approximation has also been used by Harley and Momoniat [19] to generate a consistency

criteria for initial values at x0 = 0 for a Lane-Emden equation of the second-kind. From the

equation under consideration (1) an initial condition for u(x, t) is obtained at x0 = 0 giving

122 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 7

the following

(1 + 2β) um+1
0 − 2βum+1

1 −△tδeum+1
0 = (1 + 2β) um

0 + 2βum
1 +△tδeum

0 (14)

as the initial difference scheme with β = △t

△x2 . Implementing the difference approximations

discussed above we obtain the general numerical scheme

−
λn

2
um+1

n−1 +(1 + β) um+1
n −

γn

2
um+1

n+1 −△tδeum+1
n =

λn

2
um

n−1 +(1 − β) um
n +

γn

2
um

n+1 +△tδeum
n

(15)

where xn = n△x and β = △t

△x2 such that γn = β
(

1 − 1
2n

)

and λn = β
(

1 + 1
2n

)

. This

difference scheme (15), including the initial difference condition (14), form a system of

equations which are to be solved iteratively.

As indicated by the boundary conditions (5a) and (5b) we consider the problem for x ∈ [0, 1]
and t ∈ [0, T]. The domain [0, 1] is sub-divided into N equidistant intervals termed △x, i.e.

0 = x0 < x1 < x2 < · · · < xN−1 < xN where xn+1 = xn +△x. In a similar fashion the

domain [0, T] is sub-divided into M intervals of equal length, △t, through which the scheme

iterates. The system will iterate until tm + △t = T, i.e. for M = T/△t steps. The system

generated by (15) can be written in compact form as

Aum+1 = Bum +△tδeum
+△tδeum+1

(16)

and is solved as follows

um+1 = (A)−1
(

Bum +△tδeum
+△tδeum+1

)

. (17)

The inverse of A is calculated using the \ operator in MATLAB which is more efficient than the

inv function. The nonlinear term on the m+ 1th level is dealt with through an implementation

of the Newton method [26] in an iterative fashion as done by Britz et al. [9] and discussed in

[8]. The system Jδu = −F(u) is solved where F is the set of difference equations created as

per (16) such that F(u) = 0. The starting vector at t = 0 is chosen as per the initial condition

(4) such that u = 0. The Newton iteration converges within 2-3 steps given that changes are

usually relatively small.

3.2. Rosenbrock method

We now consider two particular Rosenbrock methods, ROS2 and ROWDA3, as a means

of comparison for the effectiveness of the methods discussed in the previous section.

The Rosenbrock methods belong to the class of linearly implicit Runge - Kutta methods

[11, 17]. They were used successfully for the numerical solution of non-electrochemical stiff

partial differential equations, including equations of interest to electrochemistry. For further

information regarding the particulars of such methods interested readers are referred to the

numerical literature of [17, 28–30].

The reason for the use of the Rosenbrock methods in this paper is the ease with which they

are able to deal with the nonlinear source term and the fact that no Newton iterations are

123Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

8 Will-be-set-by-IN-TECH

necessary. The advantages of these methods are great efficiency, stability and a smooth error

response if ROS2 or ROWDA3 are used (see [4] for instance) and the ease with which they are

able to handle time-dependent and/or nonlinear systems.

We consider equation (1) as the following system

dun

dt
==

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1+k)

△x2 (2u1 − 2u0) + δeu0 if n = 0
γn

△t un−1 −
2

△x2 un +
λn
△t un+1 + δeun if n = 1, 2, ..., n − 2

− 2
△x2 uN−1 +

λN−1

△t uN−2 + δeuN−1 if n = N − 1

(18)

which along with 0 = uN can be written in the compact form

S
du

dt
= F(t, u) (19)

where S = diag(1, 1, 1, ..., 1, 0) is the selection matrix containing zeros in those positions where
the set of differential algebraic equations has an algebraic equation (i.e. zero on the left-hand
side of (18)) and unity in those positions corresponding to the ordinary differential equations.
The function F(t, u) can be written as: F(t, u) = Ju + s where the matrix J is the Jacobian and
the vector s arises from the constant terms of the set of differential algebraic equations. We
can thus write F(t, u) = Ju + s as

=
1

△t

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−2(1+ k)β 2(1 + k)β 0 0 0 . . . 0 0 0 0

0 γ1 −2β λ1 0 . . . 0 0 0 0

0 0 γ2 −2β λ2 . . . 0 0 0 0
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.

0 0 0 . . . 0 0 γN−2 −2β λN−2 0

0 0 0 0 . . . 0 0 γN−1 −2β 0

0 0 0 0 . . . 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u0

u1

u2

..

.

uN−2

uN−1

uN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

δeu0

δeu1

δeu2

...

δeuN−2

δeuN−1

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(20)

such that

Fu =
1

△t

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1 + k)β(2u1 − 2u0) + δeu0

γ1u0 − 2βu1 + λ1u2 + δeu1

γ2u1 − 2βu2 + λ2u3 + δeu2

...

γN−2uN−3 − 2βuN−2 + λN−2uN−1 + δeuN−2

−2βuN−1 + λN−1uN − 2 + δeuN−1

uN

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (21)

124 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 9

In order to implement the Rosenbrock methods a number s of ki vectors are computed with s

the order chosen. The general equation given by (22) is solved iteratively to obtain each vector

ki for all i specified which will then be used to update the vector u for the next time step. We

use the notation employed in [7] for the general equation to be used to obtain the values for

ki

−
M

β
ki = −

△t

β
F

⎛

⎝t + ϕi△t, u +
i−1

∑
j=1

aijkj

⎞

−
S

β

i−1

∑
j=1

cijkj −
κi

β
△t2Ft(t, u) (22)

where we define M = S
κ −△tFu were the function F is applied at partly augmented t and

u values and the time derivative Ft is zero in this case since the system does not include

functions of time. Having calculated the s ki vectors the solution is obtained from

um+1 = um +
s

∑
i=1

miki (23)

where the mi are weighting factors included in the tables of constants specified for each

method (see [4] and [7]).

In this chapter we implement the ROS2 and ROWDA3 methods though there are other

variants of the Rosenbrock methods. Lang [24] described a L-stable second-order formula

called ROS2. A third-order variant thereof is called ROWDA3 and described by Roche [28]

and later made more efficient by Lang [23]. The latter is a method favoured by Bieniasz

who introduced Rosenbrock methods to electrochemical digital simulation [4, 5]. For a more

detailed explanation and discussion regarding the method and its advantages refer to [7].

The focus of the work done here is with regards to whether the Rosenbrock algorithms lend

themselves toward parallelized implementation. It has already been noted that functions such

as the parfor command cannot be used in this instance. It now remains to consider the

method’s performance when run on a GPU via the MATLAB Parallel Computing Toolbox.

4. Discussion of numerical results

The results noticed, as per Table 1, indicate the extent to which implementing the code on the

GPU slows down overall performance of the CN, CNN, ROS2 and ROWDA3 methods. The

question is why this would be the case. In Table 1 the results for the different methods run on

a CPU were obtained by running the code on one CPU only instead of all of those available

to MATLAB on the computer employed. This was done to get a better understanding of the

one-on-one performance between the processing units, and yet implementing the code on the

GPU still led to poor performance.

To gain a better understanding of these results we consider the baseline structure for our CN

code:

A = gpuArray(A);
B = gpuArray(B);

125Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

10 Will-be-set-by-IN-TECH

u0 = gpuArray(u0);
for m = 1 : T

b = delta. ∗ dt. ∗ exp((1+ eps. ∗ u0).\(u0));
u0 = mldivide(A, (B ∗ u0+ b));

end

In doing so, we realise that the main components thereof are matrix and elementwise vector

operations. In order to understand why we are achieving the results we do (see Table 1) we

run a few simple ’test’-codes to consider the speed taken by the CPU vs. the GPU to perform

such elementary operations as C\d and d. ∗ f where C is a matrix and d and f are vectors. In

Figure 1 we see the speed of the CPU over the GPU computed as
CPU running time
GPU running time . You will

notice that as the size of the matrix and corresponding vector increases so too does the speed

at which the GPU is able to compute C\d allowing it to overtake the CPU. This is what one

would expect given that the GPU will only ’kick in’ once the CPU is overloaded with data

structures too large for it to compute effectively. Thus the efficiency in terms of running time

of the code provided above is heavily dependent upon the size of the matrices A and B. At

this juncture it is important to remember that we are considering the range x ∈ [0, 1] with

△x = 0.1 which means that our A matrix is a 10 × 10 matrix and as such not large enough

to give the GPU the chance to expose its ability to improve the performance of the algorithm.

The reason for the choice in the size of the matrix for the problem considered is twofold: (1) it

is due to the influence of the ratio β = △t/△x2 which one usually tries to keep close to 1 for

reasons of stability, and (2) the limitations of memory of the PC being used.

The next step in this evaluative process is to now consider the speed at which vector

operations are performed. This was done in a similar fashion to the previous case by

considering the speed taken by the CPU and GPU to perform the elementwise operation d. ∗ f

where d and f are vectors. The ratios of the speeds
CPU running time
GPU running time were also considered for

the in-built function arrayfun which performs elementwise operations on all its inputs. It

can clearly be seen in Figure 2 that the in-built function outperforms the normal .∗ operation.

What is interesting in this case is that the size of the vector required for the GPU to outperform

the CPU is very large - we considered vectors of sizes between 200 000 and 201 000 as

indicated. For smaller vector lengths the GPU is completely outperformed by the speed

at which calculations are done on the CPU. As such, to improve the speed at which these

vector calculations are performed we would either (1) have to diminish △x to the degree

needed to obtain vectors of the required length (2) or be required to move the vectors from

the GPU memory to the CPU memory every time calculations need to be made. The first

approach would require a memory capacity beyond that of the computer used here and the

second would greatly increase the running time of the algorithm and as such is not worth

implementing.

As a means of further investigation we consider the CN code as a test case for the use of the

arrayfun function. Obviously implementing this in-built function as follows

A = gpuArray(A);
B = gpuArray(B);
u0 = gpuArray(u0);
u0 = arrayfun(@myCrank, u0, A, B)

126 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 11

β = 0.01 and T = 0.3

CN CNN ROS2 ROWDA3

CPU 7.8449e-05 2.7737e-04 2.3002e-05 9.1288e-05
GPU 0.0014 0.0960 0.0033 0.0063

β = 0.01 and T = 5

CN CNN ROS2 ROWDA3
CPU 1.4783e-05 2.0018e-04 1.5354e-05 6.3574e-05

GPU 8.0940e-04 0.0047 0.0028 0.0047

β = 2 and T = 5
CN CNN ROS2 ROWDA3

CPU 2.4573e-05 0.0033 1.7146e-05 6.8119e-05
GPU 0.0048 0.4731 0.0042 0.0073

Table 1. Running times per iteration of △t for the relevant methods implemented for △t = 0.0001,
△x = 0.1, δ = 1 and ǫ = 0.

ǫ = 0.01

CN CNN ROS2 ROWDA3
0.0137 0.0025 0.0059 0.0138

ǫ = 0.05
CN CNN ROS2 ROWDA3

0.0133 0.0024 0.0067 0.0149

ǫ = 0.1
CN CNN ROS2 ROWDA3

0.0146 0.0025 0.0057 0.0128

ǫ = 0.25
CN CNN ROS2 ROWDA3

0.0145 0.0024 0.0059 0.0133

Table 2. The ratio
CPU running time
GPU running time for the relevant methods implemented for △t = 0.0001, △x = 0.1,

δ = 1 and T = 0.3.

δ = 0.5

CN CNN ROS2 ROWDA3
0.0146 0.0012 0.0064 0.0150

δ = 1

CN CNN ROS2 ROWDA3
0.0275 0.0026 0.0061 0.0160

δ = 2

CN CNN ROS2 ROWDA3
0.0151 0.0030 0.0062 0.0151

δ = 3

CN CNN ROS2 ROWDA3
0.0160 0.0042 0.0063 0.0140

Table 3. The ratio
CPU running time
GPU running time for the relevant methods implemented for △t = 0.0001, △x = 0.1,

ǫ = 0 and T = 0.3.

127Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

12 Will-be-set-by-IN-TECH

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Size of matrix

C
P

U
 R

u
n
n
in

g
 T

im
e
/G

P
U

 R
u
n
n
in

g
 T

im
e

Figure 1. Plot showing the CPU Running Time/GPU Running Time for matrices and corresponding
vectors of sizes 100 to 1000.

2 2.002 2.004 2.006 2.008 2.01

x 10
5

0.5

1

1.5

2

2.5

3

Size of vectors

C
P

U
 R

u
n
n
in

g
 T

im
e
/G

P
U

 R
u
n
n
in

g
 T

Im
e

Elelmentwise multiplication

’arrayfun’ function

Figure 2. Plot showing the CPU Running Time/GPU Running Time for vectors of sizes 200 000 to 201
000.

where the @myCrank function performs the loop through m, instead of the code presented

previously produces incorrect results. The results obtained do however support our findings

that the arrayfun function is able to increase the speed with which elementwise operations

are performed. In this instance arrayfun is computing on the GPU since the inputs are

128 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 13

all GPU array objects. We found for T = 10 with △t = 0.0001 as we decreased △x that

computing on the GPU was faster than doing so on the CPU: for △x = 0.1 and 0.01 the ratios

were
CPU running time
GPU running time = 1.5709 and

CPU running time
GPU running time = 6.5906 respectively. This makes

sense given that smaller values of △x would increase the sizes of the matrices A and B and

the vectors b and u0. As such, it seems likely that using a PC with a greater memory capacity

would lead to the GPU outperforming the CPU by a large margin as △x decreases.

4.1. Influence of changing parameter values on the running time of the algorithms

Just a few brief comments upon the results obtained for CN, CNN , ROS2 and ROWDA3 for

varying values of ǫ and δ will be made in this section. Firstly we considered the schemes for

δ = 1 and ǫ = 0.01, 0.05, 0.1 and 0.25 and then we also considered the case for ǫ = 0 with

δ = 0.1, 1, 2 and 3. The reader will notice considering Tables 2 and 3 that there does not seem

to be any noticeable trend to the results obtained. As such the values of ǫ and δ do not seem

to have a meaningful impact on the speed at which the algorithms compute.

5. Concluding remarks

The implementation of numerical algorithms such as those considered in this chapter are

widely used for the solution of many differential equations which model physical processes

and applications. As such it is of vital importance that we be able to perform such calculations

at high speed given the requirement of fine grids to improve accuracy. It is in this context that

the use of GPUs becomes of prime importance. However it is not simply a matter of running

the algorithm on the GPU - the method employed needs to lend itself to being adjusted in the

required manner so that the parallel processing power of the GPU may be taken advantage

of. Though we found that the numerical methods considered here were not entirely suited to

being implemented on the GPU as we would have hoped we were able to explain why this

was the case.

This work has investigated the effectiveness of matrix and elementwise operations when run

on a GPU vs. a CPU and found that the speed taken to do such operations heavily relies

on the choice of △x. It was discovered that the introduction of the nonlinear source term is

problematic due to the length of time taken to do elementwise calculations on the GPU. While

matrix operations were also shown to be slow it was more specifically this aspect of the code

which increased the running time.

We also discovered the power of the in-built function arrayfun which was able to improve

upon the performance of the GPU with regards to computing time to the degree that it

outperformed the CPU even for a grid with ’large’ △x, i.e. small matrices and vectors

within the computations. As the grid became finer the performance of the GPU over the

CPU improved, indicating the impact of the size of the matrices upon which computations

are being performed and the degree to which arrayfun is able to improve computations

occurring on the GPU. Thus, the manner in which arrayfun computes elementwise is

extremely efficient and if such a structure could be developed for matrix operations then that

would truly allow the performance of the GPU to overtake that of CPU computing.

129Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

14 Will-be-set-by-IN-TECH

What the work in this chapter has shown is that the structures of the GPU and the Parallel

Computing Toolbox in MATLAB are such that while certain algorithms have the ability to

be adjusted for improved performance not all methods do. In particular it seems clear that

implicit methods with matrix and vector operations will in fact run much slower on the

GPU than the CPU. Thus whether GPU computing is able to improve the performance of

a numerical scheme is very much dependent upon the type of computations which need to

be done. In our case we discovered that the implicit and nonlinear nature of our numerical

schemes do not lend themselves towards improved performance via the implementation of

the parallel processing power of a GPU.

Acknowledgements

I would like to thank Mr. Dario Fanucchi for invaluable discussions.

Author details

Charis Harley

Faculty of Science, University of the Witwatersrand, School of Computational and Applied

Mathematics, Centre for Differential Equations, Continuum Mechanics and Applications, South Africa

6. References

[1] Abd El-Salam, M. R. & Shehata, M. H. (2005). The numerical solution for reaction

diffusion combustion with fuel consumption, Appl. Math. Comp., 160:423Ű-435.

[2] Anderson, C. A.; Zienkiewicz, O. C. (1974). Spontaneous ignition: finite element

solutions for steady and transient conditions, J. Heat Transfer, 96(3):398–404

[3] Anderson, D.; Hamnén, H.; Lisak, M.; Elevant T. & Persson, H (1991). Transition

to thermonuclear burn in fusion plasmas, Plasma Physics and Controlled Fusion,

33(10):1145–1159

[4] Bieniasz, L. K. (1999). Finite-difference electrochemical kinetic simulations using the

Rosenbrock time integration scheme, Journal of Electroanalytical Chemistry, 469:97–115

[5] Bieniasz, L. K. & Britz, D. (2001). Chronopotentiometry at a Microband

Electrode: Simulation Study Using a Rosenbrock Time Integration Scheme

for Differential-Algebraic Equations, and a Direct Sparse Solver, Journal of

Electroanalytical Chemistry, 503:141–152

[6] Boddington, T. & Gray, P. (1970). Temperature profiles in endothermic and exothermic

reactions and interpretation of experimental rate data, Proc. Roy. Soc. Lond Ser A - Mat.

Phys. Sci., 320(1540):71–100

[7] Britz, D. (2005). Digital Simulation in Electrochemistry, 3rd Edition, Lecture Notes in

Physics, Springer, 3 − 540 − 23979 − 0, Berlin Heidelberg

[8] Britz, D.; Baronas, R.; Gaidamauskaitė, E. & Ivanauskas, F. (2009). Further Comparisons

of Finite Difference Schemes for Computational Modelling of Biosensors, Nonlinear

Analysis: Modelling and Control, 14(4):419–433

[9] Britz, D.; Strutwolf J. & Østerby, O. (2011). Digital simulation of thermal reactions, Appl.

Math. and Comp., 218(4), 15:1280–1290

130 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing 15

[10] Chambré, P. L. (1952). On the solution of the Poisson-Boltzmann equation with

application to the theory of thermal explosions, J. Chem. Phys., 20:1795–1797

[11] Chan, Y. N. I.; Birnbaum, I. & Lapidus, L. (1978). Solution of Stiff Differential Equations

and the Use of Imbedding Techniques, Ind. Eng. Chem. Fundam., 17(3):133–148

[12] Crank J. & Nicolson, E. (1947). A practical method for numerical evaluation of solutions

of partial differential equations of the heat-conduction type, Proc. Camb. Phil. Soc.,

43:50–67

[13] Crank J. & Furzeland, R. M. (1977). The treatment of boundary singularities in axially

symmetric problems containing discs, J. Inst. Math. Appl., 20(3):355–370

[14] Evans. D. J. & Danaee, A. (1982). A new group Hopscotch method for the numerical

solution of partial differential equations, SIAM J. Numer. Anal., 19(3):588–598

[15] Feldberg, S. W. (1987). Propagational inadequacy of the hopscotch finite difference

algorithm: the enhancement of performance when used with an exponentially

expanding grid for simulation of electrochemical diffusion problems, J. Electroanal.

Chem., 222:101–106

[16] Frank-Kamenetskii, D. A. (1969). Diffusion and Heat Transfer in Chemical Kinetics,

Plenum Press, New York

[17] Hairer E. & Wanner, G. (1991). Solving Ordinary Differential Equations II, Stiff and

Differential-Algebraic Problems, Springer-Verlag, 3 − 540 − 60452 − 9, Berlin

[18] Harley, C. & Momoniat, E. (2007). Steady state solutions for a thermal explosion in a

cylindrical vessel, Modern Physics Letters B (MPLB), 21(14):831–841.

[19] Harley, C. & Momoniat, E. (2008). Instability of invariant boundary conditions of

a generalized Lane-Emden equation of the second-kind, Applied Mathematics and

Computation, 198:621–633

[20] Harley, C. & Momoniat, E. (2008). Alternate derivation of the critical value of

the Frank-Kamenetskii parameter in the cylindrical geometry, Journal of Nonlinear

Mathematical Physics, 15(1):69–76

[21] Harley, C. (2010). Explicit-implicit Hopscotch method: The numerical solution of the

Frank-Kamenetskii partial differential equation, Journal of Applied Mathematics and

Computation, 217(8):4065–4075

[22] Harley, C. (2011). Crank-Nicolson and Hopscotch method: An emphasis on maintaining

the implicit discretisation of the source term as a means of investigating critical

parameters. Special Issue on ’Nonlinear Problems: Analytical and Computational

Approach with Applications’, Abstract and Applied Analysis, Submitted.

[23] Lang, J. (1996). High-resolution self-adaptive computations on chemical

reaction-diffusion problems with internal boundaries, Chemical Engineering Science,

51(7):1055–1070

[24] Lang, J. (2001). Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems,

Springer, 9783540679004, Berlin

[25] The MathWorks, Inc. ©1994-2012. Parallel Computing Toolbox Perform parallel

computations on multicore computers, GPUs, and computer clusters, http :

//www.mathworks.com/products/parallel − computing/.

[26] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. & Flannery, B. P. (1986). Numerical

Recipes in Fortran, 2nd Edition, Cambridge University Press, 0 − 521 − 43064 − X,

Cambridge

131Numerical Simulation of the Frank-Kamenetskii PDE: GPU vs. CPU Computing

16 Will-be-set-by-IN-TECH

[27] Rice, O. K. (1940). The role of heat conduction in thermal gaseous explosions, J. Chem.

Phys., 8(9):727–733

[28] Roche, M. (1988). Rosenbrock methods for differential algebraic equations, Numerische

Mathematik, 52:45–63

[29] Rosenbrock, H. H. (1963). Some general implicit processes for the numerical solution of

differential equations, The Computer Journal, 5(4):329–330

[30] Sandu, A.; Verwer, J. G.; Blom, J.G.; Spee, E. J. & Carmichael, G. R. (1997).

Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems II: Rosenbrock

Solvers, Atmospheric Environment, 31:3459–3472

[31] Steggerda, J. J. (1965). Thermal stability: an extension of Frank-Kamenetskii’s theory, J.

Chem. Phys., 43:4446–4448

[32] Zhang, G.; Merkin J. H. & Scott, S. K. (1991). Reaction-diffusion model for combustion

with fuel consumption: Ii. Robin boundary conditions, IMA J. Appl. Math., 51:69–93

[33] Zhang, G.; Merkin J. H. & Scott, S. K. (1991). Reaction-diffusion model for combustion

with fuel consumption: I. Dirichlet boundary conditions, IMA J. Appl. Math., 47:33–60

[34] Zeldovich, Y. B.; Barenblatt, G. I.; Librovich, V. B. & Makhviladze, G. M. (1985). The

Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York

132 MATLAB – A Fundamental Tool for Scientifi c Computing and Engineering Applications – Volume 3

