
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322417578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 6

© 2012 Hassairi et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Matlab/SystemC for the New Co-Simulation

Environment by JPEG Algorithm

Walid Hassairi, Moncef Bousselmi, Mohamed Abid and Carlos Valderrama

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/46474

1. Introduction

The functionality of embedded systems as well as the time-to-market pressure has been

continuously increasing in the past decades. Simulation of an entire system including both

hardware and software from early design stages is one of the effective approaches to

improve the design productivity. A large number of research efforts on hardware/software

(HW/SW) co-simulation have been made so far. Real-time operating systems have become

one of the important components in the embedded systems. However, in order to validate

function of the entire system, this system has to be simulated together with application

software and hardware. Indeed, traditional methods of verification have proven to be

insufficient for complex digital systems. Register transfer level test-benches have become too

complex to manage and too slow to execute. New methods and verification techniques

began to emerge over the past few years. High-level test-benches, assertion-based

verification, formal methods, hardware verification languages are just a few examples of the

intense research activities driving the verification domain.

Our work articulates on three contributions which are the proposal for solutions to the

implementation of the different parts of the architecture using SystemC and

Matlab/Simulink simulators. Secondly, the definition of a co-simulation environment based

on the automatic generation of the interfaces required to the integration of these simulators.

Finally, the proposal of a new verification framework based on SystemC Verification

standard that uses MATLAB/Simulink to accelerate the test-bench development. This

chapter attempts to give a guide for the implementation of real-time control systems, using

the S-function of matlab/Simulink, as a practical tool for students in control engineering.

The MATLAB/Simulink to SystemC interface and the advanced version of transactors are

combined in a scalable multi-abstraction level verification platform. The proposed refined

co-simulation platform enables co-simulation with hardware models written in SystemC.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 120

On that platform, application software and hardware modules are directly executed on a

host computer, which leads to a high co-simulation speed. The MATLAB/SystemC interface

is mainly used for the verification of the lower abstraction levels with a high level model of

their execution environment.

The integration of SystemC within MATLAB/Simulink and the resulting verification flow is

tested on the JPEG compression algorithm. The required synchronization of both simulation

environments, including data type conversion, is solved by using the proposed co-

simulation flow. The application is divided into two JPEG encoder parts: the DCT (Direct

Cosine Transform), the HW part implemented in SystemC, and the QEE (Quantization and

Entropy Encoding), the SW part implemented in Matlab. With this research premise, this

study introduces a new HW implementation of the DCT algorithm in SystemC. For the

communication and synchronization between these two parts we use the S-Function and the

MATLAB/Simulink engine. In addition, we compare the co-simulation results to a pure

software simulation.

In this chapter, the related work is discussed in Section 2 and the proposed co-simulation

methodology is presented in Section 3. Then, in Section 4, we propose the implementation of

the JPEG image compression as a case study. We present the steps in matlab for

the implementation of the JPEG algorithm. In Section 5, we summarize the proposed

approach and co-simulation results. Finally, we sum up the proposal including suggestions

and recommendations to future works.

2. Related work

First of all, we present the chosen two simulators: Matlab and SystemC.

The MATLAB environment is a high-level technical computing language for algorithm

development, data visualization, data analysis and numerical computing. One of the key

features of this tool is the integration ability with other languages and third-party

applications. MATLAB also included the Simulink graphical environment used for multi-

domain simulation and model-based design. Signal processing designers take advantage of

Simulink as it offers a good platform for preliminary algorithmic exploration and

optimization. A hardware designer doesn’t like C/C++ environment because of:

- Concurrency support is missing (HW is inherently parallel)

- No notion of time (clock, delays)

- Communication model (function calls & parameters) is very different from actual HW

model (pins & signals)

- Weak/complex reactivity to events

- Some data types missing (logic values, bit vectors, fixed point).

The resulting modelling language is System C.

Connecting Simulink and SystemC together have already been tried in the literature.

Authors in [6] propose a solution to integrate SystemC models in Simulink. A wrapper is

created using S-Functions to combine SystemC modules with Simulink.

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 121

This wrapper initializes the SystemC kernel and converts Simulink data type to SystemC

signals and vice versa. Simulation control is entirely handled by Simulink. Some

extensions of the SystemC kernel are required for initialization and simulation tasks. In

[7], SystemC calls MATLAB using the engine library. MATLAB provides interfaces to

external routines written in other programming languages. Using the C engine library, it

is possible to share data between SystemC models and MATLAB. This simple working

demo shows how to use the library to send, to retrieve data from the MATLAB workspace

and to plot some results. The main difference with [6] is with the simulation control:

SystemC is now the master of the simulation and MATLAB operates as a slave process.

Also, Simulink is not supported in this example.

In a similar way, MathWorks provides a commercial solution to close the gap between the

algorithmic domain and the hardware design. The link for ModelSim [8] is a co-simulation

interface that integrates MATLAB and Simulink into the hardware design flow. It provides a

link between MATLAB/Simulink and Model Technology’s HDL simulator, ModelSim. This

interface makes the verification and co-simulation of RTL-level models possible from within

MATLAB and Simulink. As opposed to the two previous techniques, there is no support for

system level languages like SystemC.

These approaches [6, 7, 8] all try to reduce the barrier that exist between higher level

modeling and existing hardware design flow. While [8] is a fully functional commercial tool

for RTL verification, [6, 7] suffer from their embryonic stage (i.e. incomplete solutions for

hardware design and verification).

The authors in [9] look at the problem of cosimulating continuous systems with discrete

systems. The increasing complexity of continuous/discrete systems makes their simulation

and validation a demanding task for the design of heterogeneous systems. They propose a

co-simulation interface based on Simulink and SystemC. The main objective of the

proposed solution is to provide a framework to evaluate continuous/discrete systems

modeling and simulation.

In work [10], the authors have created a tool called: co-simulation COLIF that defines a

subset of Matlab / simulink and combines a set of descriptive rules allows for the

specification and functional validation efficient algorithms for the application. To reduce

the "gap" between the functional model and architecture model in SystemC, they

proposed a new intermediate transactional model in Simulink executable that combines

both the algorithm and architecture in a single model representation. To validate their

work, they applied to decoder MPEG Layer III. They found that the simulation model in

Simulink is 50 times faster than the macro-level architecture. The difference is mainly due

to the complexity of the description and details of the communication are present at the

macro architecture.

In our former work [11], we adopted the methodology of communication and

synchronization. To exchange data between a Simulink model and SystemC module, the co-

simulation interface must integrate a bridge between the two simulators. This bridge is built

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 122

with two Simulink S-Functions. An S-Function is a computer language description of a

Simulink block. It uses syntax of call allowing us to interact with Simulink solvers. For our

bridge, we create two C++ S-Functions.

The representation of simulation time differs significantly from SystemC and Matlab.

SystemC is cycle-based simulator and simulation occurs at multiples of the SystemC

resolution limit. The default time resolution is one picosecond. This limit can be changed

with the function sc_set_time_resolution. However, Simulink maintains simulation time as a

double precision value scaled to seconds. Thus, our co-simulation interface uses a one-to-

one correspondence between simulation time in Simulink and SystemC.

3. Methodologies

The implementation of applications on embedded systems is a very time expensive task

using the standard development tools. The proposed heterogeneous model is also

executable to simulate the co-design implementation. Such simulation of the heterogeneous

model is realized using SystemC. In fact, a description of a hardware module is transformed

into a structural description with SystemC components (RT-level). Then, the interface

between hardware and software parts is implemented using special SystemC constructs.

This interface can be compared with the interface of the implementation in the real system.

SystemC provides several levels of abstraction to describe hardware. For the simulation of

hardware modules in the shown design flow given by figure Fig1, the cycle accurate level

(CA) of SystemC is used. The interface to the software kernel is untimed functional level

(UTF). A wrapper was designed to connect the modules to the software kernel. This wrapper

is based on two shell-blocks which connect the CA-model to the software kernel by realizing

an interface between the CA- and the UTF-model (Untimed Functional) of SystemC.

Simulink is a commonly used tool for designing DSP applications. It supports with a lot of

libraries distinguished suppositions to develop single machine vision operators, e.g. the

possibility to generate intelligent test environments for image. To use the tool for generation of

hardware operators, an interface between SystemC and Simulink was developed. Thus, the

visualized tool in more common design flows is integrated using Simulink S-Functions. Those

Functions provide a powerful mechanism for extending Simulink with custom blocks and can

be implemented as C++ Code. Within the S-Function the output is calculated from input and

from states at each time step using a cycle by cycle SystemC-simulation as a fixed-step discrete

time solver. The initialization of the SystemC kernel should be separated from simulation.

To meet these requirements a wrapper has been inserted between the S-Function and the

SystemC model (Fig. 1). The wrapper functionalities are:

 connecting Simulink ports to a SystemC-TM-Block,

 converting Simulink data types to SystemC-TM signals and vice versa,

 initializing of the SystemC-Kernel,

 converting events; function call from Simulink to sc_cycle(),

 providing a DLL interface to the Simulink S-Function.

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 123

Figure 1. Integrated SystemC in Simulink S-Function.

So, our methodology tries to push the idea a step further than just a co-simulation interface.

It is a complete verification solution. It uses MATLAB external interfaces, similar to the

example described in [6], to exchange data between SystemC and Simulink. Once this link is

established, it opens up a wide range of additional capability to SystemC, like stimulus

generation and data visualization [10]. We also based our methodology on a portion of the

methodology in the work [11]. In this work, they are based on the transformation of a task in

SystemC. The first advantage of our technique is to use the right tool for the right task.

Complex stimulus generation and signal processing visualization are carried out with

MATLAB and Simulink while hardware verification is performed with SystemC verification

standard. The second advantage is to have a SystemC centric approach allowing greater

flexibility and configurability.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 124

With this approach the overall system simulation can be controlled by Simulink through

settings of duration time and step size.

There are three new call-backs provided via virtual methods for classes derived from

sc_module, sc_port, sc_export, and sc_prim_channel. These call-backs will be invoked by

the SystemC simulation kernel when certain phases of the simulation process occur. The

new methods are:

void before_end_of_elaboration();

This method is called just before the end of elaboration processing is to be done by the

simulator.

void start_of_simulation();

This method is called just before the start of simulation. It is intended to allow users to set

up variable traces and other verification functions that should be done at the start of

simulation.

void end_of_simulation();

If a call to sc_stop() had been made this method will be called as part of the clean up process

as the simulation ends. It is intended to allow users to perform final outputs, close files,

storage, etc.

It is also possible to test whether the callbacks to the start_of_simulation methods or

end_of_simulation methods have occurred. The Boolean functions

sc_start_of_simulation_invoked() and sc_end_of_simulation_invoked() will return true if

their respective callbacks have occurred.

The tasks at the transactional level under Simulink are included in a software knot

represented by a sub-system having the prefix ' SW_ ' in its name. These tasks are modelled

under Simulink in several ways.

They can be trained by a merger of several blocks in one under system having the name

preceded by the prefix ' TASK _ ' either they are trained by individual blocks. These last ones,

in turn can be predefined blocks of the library either Functions modelled in language C.

In what follows, the modelling of the tasks in SystemC will be explained before describing

the various manners admitted to transform the tasks of transactional Simulink into tasks

described in SystemC.

For the modelling and description of the tasks in SystemC, we used the notion of

"SC_MODULE". A module can be hierarchical containing the other modules, or elementary

containing an active or passive behaviour using the elementary modules "SC_CTHREAD".

On the other hand, the communication is determined through an interface of

communication. This last one is described through a set of ports which can be inputs, output

or inputs / output ones. SystemC also supplies a specific port for the modelling of a physical

clock. The figure 2 shows the header file of a task described in SystemC. The interface of this

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 125

module is formed by an input port and an output port of type 'long int'. The task has a

service port 'SAP', which allows synchronization of tasks in the co-simulation.

Figure 2. Example of a file header. "h" has a corresponding TASK SystemC.

However, the figure 3 shows the main file. "cpp '. The main calculation is done to the

body of this task. The communication of this module with the system is through the

interfaces represented by the ports of entry and exit 'DATA_IN1'and 'DATA_OUT1' by

means of APIs defined in the library.

Figure 3. Example of a file header. "cpp" has a corresponding task SystemC.

3.1. Transformation the S-functions of Simulink in task SystemC

SystemC is used by the synthesis tools and co-simulation in the stream of conception flow of

the proposed heterogeneous Systems. The conception process always begins with the

specification of the application in the Simulink environment using S-Functions blocks. The

S-Functions are developed in language C according to precise rules and through methods

decided by the Simulink simulator. An S-Function is formed by four essential methods. In

our work, a block S-Function will be converted in a module in SystemC trained by a ' thread

' sensitive to a signal ' SAP '. The file S-function C will be processed in a direct

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 126

manner in a header file and the implementation file in C + +. To understand better the

transformation of one S-Function into a task, we divided into four parts.

In the first part, we define global variables and we include the header files. 'H'.

S-function: header files of the library of Simulink (Simstruct.h ...) macros, header files of the

code, and global variables are defined. SystemC: The header files of the SystemC library,

macros, code header files and global variables are defined.

In the second part, the initialization of variables and definition of input ports and output are

included in this section. S-function: This part is formed by the method mdlInitializeSizes

(SimStruct * S) where variables are initialized, and the number and size of ports of entry and

exit are defined. SystemC: This part is divided on the header file and implementation file

for SystemC. In the first type of port is defined. In the second module ports are declared and

initialized. The type of the port depends on the type of communication used by the

port (Shared memory, FIFO, signal synchronization).

In the third part, the APIs and the communication are the main calculation developed in this

part along a loop that is repeated several times. S-function: Method mdloutput (SimStruct

*S) is used in this part. The main calculation of the block is made. The data to be transmitted

are affected ports by using the operator "=". This is a communication primitive. SystemC:

The loop for (;;) in the implementation file contains the main calculation module. The

calculation code in C is similar to that of the S-function.

The difference in this part occurs at the level of communication primitives. In S-function, a

reading and writing data port is through the assignment operator "=". In SystemC there are

two types of communication primitives:

- The Get () and Put () to communicate through a FIFO.

- The operator "=" to read and write to shared memory.

In the final part, there is the last part that runs at the end of the simulation. S-function: This

part is formed by the method mdlterminate (SimStruct * S). SystemC: This part is after the

end of the loop for (;;) of Part III and the end of the module.

3.2. Creating a task from a SystemC predefined block in the Simulink library

In the case of an elementary block a different type of S-function included in a software node

(a subsystem with the prefix 'SW_'), the generation of the tasks SystemC is made from a

bookshop of functions describing the behaviour of all the blocks Simulink used in the

application.

Each function has the same name as the Simulink block and the corresponding module in

our methodology. However, reading and writing data are specific through the APIs to each

communication protocol. These APIs exist in the communication library. The type of

communication protocol is identified in the 'Port' of each module in our methodology.

Figure 4 shows the generation of a task in SystemC from an individual block in Simulink

transaction, this block is transformed into a parameterized module under our methodology.

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 127

Figure 4. Generating a task from a basic block.

3.3. Fusion of several blocks Simulink in one task SystemC

In the case where several units are grouped in a subsystem representing a task whose name

is prefixed with 'TASK_’ the generation of the task SystemC is by assembling several library

functions into a single task SystemC. Functions have the same names of the blocks. These

functions exchange data via common variables. Communication with the system

'inter_Thread' is via the APIs generated following the protocol communication defined in

our methodology.

Figure 5 illustrates the merger of several blocks in Simulink transactional to generate a task

in SystemC. The functions of the library F0 (), F1 () have the same names as the blocks F0, F1.

The generation of APIs is done by identifying the type of protocol in each port of the

module in the virtual architecture of our methodology.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 128

Figure 5. Generating a task from a set of blocks in Simulink.

4. JPEG compression algorithm

The baseline JPEG compression algorithm is the most basic form of sequential DCT based

compression [12]. The process of JPEG-based encoding and decoding of images vary

according to color depth (8, 24 or 32 bits). However, the basic ideology for all color depths is

same. The bitmap image stores raw pixel-by-pixel color values. In addition, 54 bytes are

stored at the start of file as header information that includes image width and height, image

file size, image color depth, etc. These 54 bytes must be taken into account whenever

working with the bitmap images. Following the 54-byte header, the bitmap image holds the

color values of each pixel that varies for different color depths. For an 8-bit image, this is

simply one byte (8-bits) per pixel and for a 32-bit image; they are 4 bytes per pixel. For 8-bit

pixels, the pre-processing stage divides image data into 8x8 blocks that are shifted from

unsigned integers with range [0, 28 – 1] to signed integers with a range of [–27, 27 – 1] and

then individually compressed at the 8x8 block level. The compression process for each block

goes through the following processes in addition to preprocessing.

 Discrete Cosine Transform (DCT)

 Quantization

 Zigzag

 Entropy Encoding (commonly Huffman)

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 129

Decompression is an inverse process that performs the individual inverse of all the above

processes.

4.1. 8x8 FDCT and IDCT

At the input to the encoder, source image samples are grouped into 8x8 blocks, shifted from

unsigned integers with range [0, 27 - 1] to signed integers with range [-27-1, 27ˉ¹-1], and input

to the Forward DCT (FDCT). At the output from the decoder, the Inverse DCT (IDCT)

outputs 8x8 sample blocks to form the reconstructed image. The following equations are the

idealized mathematical definitions of the 8x8 FDCT and 8x8 IDCT:

 (,) = 1/4 () ()[∑ ∑ (,) ∗ cos (2 + 1) /16 ∗ cos (2 + 1) /16 		 (1)

, 0,1...7

1
, 0

2
1

, 0, 0
(,) 2

1
, 0, 0

2

1,

x y

where u v

where u v
c u v

where u v

atherwise

 (,) = 1/4[∑ ∑ () () (,) ∗ (2 + 1) /16 ∗ 	 	((2 + 1))/16]. (2)

The DCT is related to the Discrete Fourier Transform (DFT). Some simple intuition for DCT-

based compression can be obtained by viewing the FDCT as a harmonic analyzer and the

IDCT as a harmonic synthesizer. Each 8x8 block of source image samples is effectively a 64-

point discrete signal which is a function of the two spatial dimensions x and y. The

FDCT takes such a signal as its input and decomposes it into 64 orthogonal basis signals.

Each contains one of the 64 unique two-dimensional (2D) “spatial frequencies’’ which

comprise the input signal’s “spectrum.” The ouput of the FDCT is the set of 64 basis-signal

amplitudes or “DCT coefficients” whose values are uniquely determined by the particular

64-point input signal.

The DCT coefficient values can thus be regarded as the relative amount of the 2D spatial

frequencies contained in the 64-point input signal. The coefficient with zero frequency in

both dimensions is called the “DC coefficient” and the remaining 63 coefficients are called

the “AC coefficients.’’ Because sample values typically vary slowly from point to point

across an image, the FDCT processing step lays the foundation for achieving data

compression by concentrating most of the signal in the lower spatial frequencies. For a

typical 8x8 sample block from a typical source image, most of the spatial frequencies have

zero or near-zero amplitude and need not be encoded.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 130

Figure 6. The JPEG decoder.

At the decoder the IDCT reverses this processing step. It takes the 64 DCT coefficients

(which at that point have been quantized) and reconstructs a 64-point ouput image signal by

summing the basis signals. Mathematically, the DCT is one-to-one mapping for 64-point

vectors between the image and the frequency domains. If the FDCT and IDCT could be

computed with perfect accuracy and if the DCT coefficients were not quantized as in the

following description, the original 64-point signal could be exactly recovered. In principle,

the DCT introduces no loss to the source image samples; it merely transforms them to a

domain in which they can be more efficiently encoded. Some properties of practical FDCT

and IDCT implementations raise the issue of what precisely should be required by the JPEG

standard. A fundamental property is that the FDCT and IDCT equations contain

transcendental functions.

4.2. Quantization

After output from the FDCT, each of the 64 DCT coefficients is uniformly quantized in

conjunction with a 64-element Quantization Table, which must be specified by the

application (or user) as an input to the encoder. Each element can be any integer value from

1 to 255, which specifies the step size of the quantizer for its corresponding DCT coefficient.

The purpose of quantization is to achieve further compression by representing DCT

coefficients with no greater precision than is necessary to achieve the desired image quality.

Stated another way, the goal of this processing step is to discard information which is not

visually significant. Quantization is a many-to-one mapping, and therefore is fundamentally

lossy. It is the principal source of lossiness in DCT-based encoders.

Quantization is defined as division of each DCT coefficient by its corresponding quantizer

step size, followed by rounding to the nearest integer:

(,)

(,)
(,)

Q F u v
F u v IntegerRound

Q u v

 (3)

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 131

This output value is normalized by the quantizer step size. Dequantization is the inverse

function, simply means in this case that the normalization is removed by multiplying by the

step size, which returns the result to a representation appropriate for input to the IDCT:

 (,) (,) * (,)Q QF u v F u v Q u v (4)

When the aim is to compress the image as much as possible without visible artifacts, each

step size ideally should be chosen as the perceptual threshold or “just noticeable difference”

for the visual contribution of its corresponding cosine basis function. These thresholds are

also functions of the source image characteristics, display characteristics and viewing

distance. For applications in which these variables can be reasonably well defined, psycho

visual experiments can be performed to determine the best thresholds.

4.3. DC Coding and Zig-Zag sequence

After quantization, the DC coefficient is treated separately from the 63 AC coefficients. The DC

coefficient is a measure of the average value of the 64 image samples. Because there is usually

strong correlation between the DC coefficients of adjacent 8x8 blocks, the quantized DC

coefficient is encoded as the difference from the DC term of the previous block in the encoding

order (defined in the following), as shown in Figure 7. This special treatment is worthwhile, as

DC coefficients frequently contain a significant fraction of the total image energy.

Figure 7. Preparation of Quantized Coefficients for Entropy Coding

Finally, all of the quantized coefficients are ordered into the “zig-zag” sequence, also shown

in Figure 7. This ordering helps to facilitate entropy coding by placing low-frequency

coefficients (which are more likely to be nonzero) before high-frequency coefficients.

4.4. Entropy coding\Huffman

Huffman coding is a technique which will assign a variable length codeword to an input

data item. Huffman coding assigns a smaller codeword to an input that occurs more

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 132

frequently. It is very similar to Morse code, which assigned smaller pulse combinations to

letters that occurred more frequently. Huffman coding is variable length coding, where

characters are not coded to a fixed number of bits.

This is the last step in the encoding process. It organizes the data stream into a smaller

number of output data packets by assigning unique codewords that later during

decompression can be reconstructed without loss. For the JPEG process, each combination of

run length and size category, from the run length coder, are assigned a Huffman codeword.

4.5. Decomposition and implementation of the JPEG algorithm

It is possible to increase speed and to reduce power consumption by running portions of the

algorithm implemented in the custom hardware. To do this, parts of the algorithm remains the

SW and the other part goes to HW area and must be well chosen. This is called hardware

partitioning software (HW / SW partitioning). Many factors must be considered when the HW

/ SW partitioning is done. The problem is to use the right amount of material. Using too much

material implies a rise in costs and probably increase the time of placing on the market.

The first step in a HW / SW partitioning is to identify the parts of the algorithm that

consumes a lot of time if left in the software or by the implementation of the algorithm

entirely in software or perform estimates on the number of cycles. The next step is to

evaluate and decide which parts need to be moved to the HW area. It is important to take

into account more things than just a party that consumes more cycles of the software.

Perhaps it is better to leave this part of computation in software intensive

and move some other parts in HW, the parts that are better suited for hardware

implementation. This is of course possible only if time constraints may even now be

suffering the most intense in the software calculation.

To make a good HW / SW partitioning a simulation tool is needed where much can be

moved from HW field to SW field and vice versa. In addition, it should be possible to

specify the execution time for different parts. This part of the design process is important

and time spent here is well spent and often reduces the work in phases. If the processor

architecture also must be chosen in the design process, the problem becomes even more

complicated. With a more powerful processor, it is probably possible to do more in software

and thus reduce the cost of designing and manufacturing the hardware. The question then is

of course how this affects the total cost. The entire HW / SW partitioning problem is an

optimization problem where constraints are typical on the surface of silicon, energy,

monetary cost and execution time. So the time aspect of the market must be considered. In

this section, we illustrate the approach we have followed for the implementation of JPEG

through our methodology. As we have previously presented the most important part of the

chain compression and DCT part, it has a lot of calculating. In this case we will implement

this part with SystemC and the rest of the chain compression is implemented on MATLAB.

The following attempts to give a guide for the implementation of the JPEG compression

algorithm in Figure 8.

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 133

Figure 8. Implementing the JPEG algorithm.

Matlab let us to choose the video when we click on the video source. A window is opened

where we specify the video place and its parameter as it is presented in figure 9.

Figure 9. Choosing the video.

A click on the Block Profession opens window. In this window, there are the parameters of this

block as a number of input, in our case , we put 1, number of output, in our case, we put 2 and

two parameters are block size and overlap. A click the open Subsystem opens another window

opens in which we find the block that we have just parameterize as indicated in figure 10.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 134

Figure 10. Parameter of Block Processing.

Figure 11 below, shows the different parts of the implementation of the JPEG encoder.

Figure 11. Implementing the JPEG algorithm.

As motion in the chair, the DCT is the most important and contains much of calculation.

This part of the chain will be developed in SystemC, and represents the Hardware part. We

explain it using an example process named ‘DCT’ (in JPEG encoder) in SystemC as shown in

Figure 12.

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 135

Figure 12. The DCT in SystemC.

It has two FIFO channels, one for receiving data and the other for sending data. From the

SystemC code, we remove all SystemC dependent statements and exchange the FIFO

read/write.

Figure 13. Two FIFO channels.

To proceed to an FPGA implementation, the resulting netlist from the previous stage has to

be mapped to the FGPA's logic block structure and interconnect. The main outcome of this

technology mapping, placing, and routing is a bit stream which can be programmed into a

FPGA figure 13.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 136

4.6. Results

The virtual architecture model is described using SystemC language and is generated

according to the parameters specified in the initial Simulink model. SystemC allows

modeling a system at different abstraction levels from functional to pin accurate register

transfer level.

The virtual architecture is modeled using transaction level modeling (TLM) techniques that

allow analyzing FPGA architecture in an earlier phase of design, software development and

timing estimation. At the virtual architecture level, the Simulink functions of the application

are transformed into systemC program code for each task. This step is very similar to the

code generation performed by Real Time Workshop (RTW).

Contrary to the RTW which generates only single task code, the software at the virtual

architecture level represents a multitasking systemC code description of the initial Simulink

application model. The generation has to support also user defined systemC codes

integrated in the Simulink model as S-functions. For the S-functions, the task code

represents a function call of the user written systemC function. The semantics of the

argument passing are identical to those of the definition in the configuration panel of the S-

Function Builder tool in Simulink. The hardware is refined to a set of abstract SystemC

modules (SC_MODULE) for each subsystem. The SC_MODULE of the processor includes

the tasks modules that are mapped on the processor and the communication channels for

the intra-subsystem communication between the tasks inside the same processor. The

communication channels between the tasks mapped on the FPGA is implemented using

standard SystemC channels. The tasks modules are implemented as SystemC modules

(SC_MODULE). The development of the JPEG Decoder application in Simulink requires 7 S-

Functions in order to integrate the systemC code of the main parts of the decoding

algorithm. Which are: jpeg_sfun_h, dct_sfun_h, sfc_sf.h, sfc_mex.h, sfcdebug.h,

jpeg_sfun.mexw32, dct_sfun.mexw32.

Once this link is established, it opens up a wide range of additional capability to SystemC,

like stimulus generation and data visualization. The first advantage of our technique is to

use the right tool for the right task. Complex stimulus generation and signal processing

visualization are carried out with MATLAB and Simulink while hardware verification is

performed with SystemC verification standard. The second advantage is to have a SystemC

centric approach allowing greater flexibility and configurability.

In this part, we make a comparison between the previous methodology based on the

communication and the synchronization between both simulators and the new approach

which is based on the integration of systemC in matlab / Simulink in other applications.

CODIS (COntinuous DIscrete Simulation) is a tool which can automatically produces co-

simulation instances for continuous/discrete systems simulation using SystemC and

Simulink simulators. This is done by generating and providing co-simulation interfaces and

the co-simulation bus. To evaluate the performances of simulation models generated in

CODIS, they measured the overhead given by the simulation interfaces. The experiments

Matlab/SystemC for the New Co-Simulation Environment by JPEG Algorithm 137

have shown synchronization overhead of less than 30 % in simulation time [9]. In the [5] A

Software-Defined Radio (SDR) is a combination of digital filters, analog components and

processors, each requiring different design approaches with a different tool or language.

Using a traditional design flow, where the verification effort represents 70% of the total

design time, will yield in more time spent on test-bench development and simulation runs.

The result is 192 days as the total development time for this project, compared to 131 days

using the improved design flow. This represents a productivity gain of around 32% over a

traditional design flow that has limited test-bench components reuse and software

interoperability. But the implementation HW/SW reduced the number of clock cycle:

1334722 to 158044 times of execution. The reduction on the total execution time of the JPEG

algorithm was 88. 15%.

5. Conclusion

In this chapter, we presented a new approach based on the integration systemC in matlab /

simulink. The capital advantage of this approach is the possibility of modeling and verifying

the overall system within the same design environment. The result is shorter design cycles

for applications using heterogeneous architectures. The co-simulation interface we

presented a method for reducing the time spent on validation and verification while

improving overall test-bench quality. MATLAB/Simulink assists the SystemC verification

environment in a unified approach. It has been shown that the methodology allows complex

stimulus generation and exhaustive data analysis for the design under verification. As

FPGA designs encompass larger and larger systems, the need to efficiently model the

complex external environment during the architecture and verification phases becomes

greater. The whole verification flow has been evaluated, using an example. It has been

shown, that the usage of the extended verification flow saves a significant amount of time

during the development process. The proposed platform is tested on the JPEG compression

algorithm. The execution time of such algorithm is improved by 88.15% due to the hardware

implementation of the Matlab mult16 Function using SystemC. As future works, we aim to

test our platform with the whole video compression chain using MPEG4 modules and

Software-Defined Radio (SDR). It includes hardware and software components that require

rigorous verification all along the design flow.

Author details

Walid Hassairi, Moncef Bousselmi, Mohamed Abid and Carlos Valderrama

UMons University of Mons, Electronics & Microelectronics Dpt., Mons, Belgium

Laboratory CES, National School of Engineers of Sfax, Tunisia

6. References

[1] A. Avila, “Hardware/Software Implementation of a Discrete Cosine Transform Algorithm

Using SystemC” Proceedings of the 2005 International Conference on Reconfigurable

Computing and FPGAs (ReConFig 2005)

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 2 138

[2] M.Abid, A. Changuel, A. Jerraya,” Exploration of Hardware/Software Design Space through

a Codesign of Robot Arm Controller” EURO-DAC '96 with EURO-VHDL '96 pp 17-24

[3] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, M. Poncino, “SystemC Cosimulation

and Emulation of Multiprocessor SoC designs,” Computer Magazine, April 2003 pp: 53 – 59

[4] The Open SystemC Initiative (OSCI) http://www.systemc.org

[5] J.F. Boland “Using MATLAB and Simulink in a SystemC Verification Environment”, Proc. of

Design and Verification Conference & Exhibition, San Jose, Californie, Février 2005

[6] F. Czerner and J. Zellmann. “Modeling cycle-accurate hardware with matlab/ simulink using

systemc”. 6th European SystemC Users Group Meeting (ESCUG), October 2002.

[7] C. Warwick. Systemc calls matlab. MATLAB Central, March 2003.

[8] The MathWorks. Link for ModelSim 2.0, 2006.

[9] F. Bouchhima, M. Briere, G. Nicolescu, M. Abid, and E.M. Aboulhamid. A

SystemC/Simulink co-simulation framework for continuous/discrete-events simulation. In

Behavioral Modeling and Simulation Workshop, Proceedings of the 2006 IEEE

International, pages 1–6, 2006

[10] Youssef ATAT “Conception de haut niveau des MPSoCs à partir d’une spécification Simulink :

Passerelle entre la conception au niveau Système et la génération d’architecture“21 Mai 2007

[11] W.hassairi, M.Bousselmi, M.Abid,C.valderama “Using Matlab And Simulink In SystemC

Verification Environment By JPEG Algorithm“ICECS 2009 ,page 912-915

[12] Draft Standard SystemC Language Reference Manual April 25 2005

[13] Independent JPEG Group, http://www.ijg.org

[14] Hiroyasu Mitsui “A Student Experiment Method for Learning the Basics of Embedded

Software Development Including HW/SW Co-design” 22nd International Conference on

Advanced Information Networking and Applications – Workshops 2008 pp.1367-1376

[15] James Rosenthal “ JPEG Image Compression using an FPGA” A Thesis submitted in partial

satisfaction of the requirements for the degree Master of Science in Electrical and

Computer Engineering December 2006

