
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter 12

© 2012 Ramos-Leaños et al., licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An Advanced Transmission

Line and Cable Model in Matlab

for the Simulation of Power-System Transients

Octavio Ramos-Leaños, Jose Luis Naredo and Jose Alberto Gutierrez-Robles

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48530

1. Introduction

The design and operation of power systems, as well as of power apparatuses, each time

depends more on accurate simulations of Electromagnetic Transients (EMTs). Essential to

this is to count with advanced models for representing power transmission lines and cables.

Electromagnetic Transients Program (EMTP), the most used EMT software, offer various

line models. Among these, the most important ones are: 1) the Constant Parameters Line

model (CP), 2) the Frequency Dependent or J. Marti Line model (FD) and 3) the Universal

Line Model (ULM). The CP Line model is the simplest and most efficient one from the

computational point of view. Nevertheless, it tends to overestimate the transient

phenomena as it considers that line parameters are constant. Thus, it is recommended only

for modeling lines on zones distant to an area where a transient event occurs. The FD Line

model (Marti, 1982) evaluates multi–conductor line propagation in the modal domain and

takes into account effects due to frequency dependence of the line parameters. Nevertheless,

as the transformations between the modal and the phase domains are approximated by real

and constant matrices, its accuracy is limited to cases of aerial lines which are symmetric or

nearly symmetric. The FD model tends to underestimate the transient phenomena. ULM

(Morched et al., 1999) takes into account the full-frequency dependence of line parameters.

ULM works directly in phase domain, thus avoiding simplifying assumptions regarding

modal–to–phase transformations. So far it is the most general model, capable to accurately

represent asymmetric aerial lines as well as underground cables.

The development of ULM is fairly recent and these authors consider that it still is a subject

for further research and development. The authors believe also that researchers and power

system analysts will benefit considerably from the full understanding of the theoretical basis

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 270

of the ULM, as well as from counting with a ULM–type code that is easy to understand and

modify. One problem with this is that the theoretical basis of ULM includes various topics

and subjects that are scattered through several dozens of highly specialized papers. Another

difficulty with this is the high complexity of the code for a ULM–type model. This chapter

aims at providing a clear and complete description of the theoretical basis for this model.

Although this description is intended for power engineers with an interest in

electromagnetic transient phenomena, it can be of interest also to electronic engineers

involved in the analysis and design of interconnects. The chapter includes as well the

description of Matlab program of a ULM–type model, along with executable code and basic

examples.

2. Multi-conductor transmission line analysis

2.1. Telegrapher’s Equations

Electromagnetic behavior of transmission lines and cables is described by the Modified

Telegrapher Equations, which in frequency domain are expressed as follows:

 .
d
dx

 
V

ZI (1)

 .
d
dx

 
I

YV (2)

where V is the vector of voltages, I is the vector of currents, Z and Y are the (N X N) per unit-

length series impedance and shunt admitance matrix of a given line with N conductors,

repectively. To solve equations (1) and (2), let equation (1) be first differentiated with respect

to x; then, (2) is used to eliminate the vector of currents at the right hand side. The resulting

expression is a second order matrix ODE involving only unknown voltages:

2

.
2

d

dx


V
ZYV (3)

In the same way, equation (2) can be differentiated with respect to x and (1) can be used to

eliminate the right-hand-side voltage term. The resulting expression involves unknown

currents only:

2

.
2

d

dx


I
YZI (4)

Solution to (4) is:

 1 2() ,x xx e e YZ YZI C C (5)

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 271

where C1 and C2 are vectors of integration constants determined by the line boundary

conditions; that is, by the connections at the two line ends. In fact, the term including C1

represents a vector of phase currents propagating forward (or in the positive x–direction)

along the line, whereas the one with C2 represents a backward (or negative x–direction)

propagating vector of phase currents. Expression (5) is an extension of the well–known

solution for the single–conductor line. Note that this extension involves the concept of

matrix functions. This topic is explained at section 2.2.

The solution to (3) takes a form analogous to (5) and it is obtained conveniently from (5) and

(2) as follows:

 1 2
1() x x

c
d

x e e
dx

       
YZ YZI

V Y Z C C (6)

where, 1
C

 YZZ Y is the characteristic impedance matrix and its inverse is the

characteristic admittance matrix 1
.C

 YZY Z

2.2. Modal analysis and matrix functions

Matrix functions needed for multi-conductor line analysis are extensions of analytic

functions of a one–dimensional variable. Consider the following function and its Taylor

expansion:

0

() k
k

k
f x a x




  (7)

The application of f() to a square matrix A of order NN as its argument is accomplished as

follows:

0

() ,k
k

k
f a




 A A (8)

where A0 is equal to U, the NN unit matrix. Consider now the case of a diagonal matrix:

1

2

0 0

0 0
.

0 0 N






 
 
   
 
  

Λ




   


 (9)

Application of (8) to  yields:

  

 
 

 

1 1

22
0

0 0 0 0

0 00 0

0 00 0

k
kk

k
k kk

kk

k
Nk Nk

a f

fa
f a

fa

 








   
   
        
   
      






Λ Λ

 


      


 (10)

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 272

This expression thus shows that the function of a diagonal matrix is simply obtained

applying the one–dimensional form of the function to the matrix nonzero elements.

Consider next the function of a diagonalizable matrix A; that is,a matrix A that is similar to a

diagonal one :

 1.A MΛM (11)

where M is the nonsingular matrix whose columns are the eigenvectors of A, while  is the

matrix whose diagonal elements are the eigenvalues of A (Strang, 1988).

Application of f() as in (10) to A yields:

      0 0
()k k

k kk k
f a a f

   
 

   1 1 1A MΛM M Λ M M Λ M (12)

Therefore, the function of a diagonalizable matrix is conveniently obtained first by factoring

A as in (10), then by applying the function to the diagonal elements of  and, finally, by

performing the triple matrix product as in (11) and (12).

It is clear from subsection 2.1, that multi-conductor line analysis requires evaluating matrix

functions of YZ. To do so, it is generally assumed that YZ always is diagonalizable

(Wedephol, 1965; Dommel, 1992). Although there is a possibility for YZ not being

diagonalizable (Brandao Faria, 1986), occurrences of this can be easily avoided when

conducting practical analysis (Naredo, 1986).

3. Line modelling

Figure 1 shows the representation of a multi-conductor transmission line (or cable) of length

L, with one of its ends at x = 0 and the other at x = L. Let I0 be the vector of phase currents

being injected into the line and V0 the vector of phase voltages, both at x=0. In the same

form, IL and VL represent the respective vectors of injected phase currents and of phase

voltages at x=L. Line equation solutions (5) and (6) are applied to the line end at x=0:

 0 1 2(0)  I I C C (13)

 [0 1 2(0)].C  V V Z C C (14)

Then, the value of C1 is determined from (13) and (14):

 0 0
1 .

2
C


I Y V

C (15)

Expressions (5) and (6) are applied to the line end conditions at x = L:

 1 2() L L
L L e e    YZ YZI I C C (16)

and

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 273

 () .
1 2L C

L LL e e
    
 

YZ YZV V Z C C (17)

After doing this, (17) is pre–multiplied by YC and subtracted from (16) to obtain:

 12 .L
L C L e   YZI Y V C (18)

Finally, (15) is introduced in (18) rendering

 0 0
L

L C L Ce      
YZI Y V I Y V (19)

Expression (19) establishes the relation among voltages and currents at the terminals of a

multi-conductor line section. Its physical meaning follows from realizing that the term

I0+YCV0 at its right hand side represents a traveling wave of currents leaving the line end at x
= 0 and propagating in the positive x–axis direction, whereas IL–YCVL at the left hand side is

the traveling wave of currents leaving the line end at x = L.

Figure 1. Multi-conductor line segment of length L.

By a similar process as the previous one for deriving (19), it is possible to show also that the

following relation holds as line equation solutions (5) and (6) are applied to line end

conditions at x=0:

0 0

L
C L C Le      

YZI Y V I Y V (20)

Note however that this relation can also be obtained by simply exchanging at (19) sub–

indexes 0 and L. This exchange is justified by the input/output symmetry of the line section.

Expressions (19) and (20) provide a very general mathematical model for a multi-conductor

transmission line. This is a model based on traveling wave principles. Let (19) and (20) be

rewritten as follows:

 , ,L sh L aux L I I I (21)

where, Ish,L =YCVL is the shunt currents vector produced at terminal L by injected voltages VL.

Iaux,L =HIrfl,0 is the auxiliary currents vector consisting of the reflected currents at terminal 0,
Irfl,0= I0+ YCV0 and the transfer functions matrix H=e-(YZ)L.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 274

In the same way as it has been previously done for (19), expression (20) is conveniently

represented as follows:

 0 ,0 ,0sh aux I I I (22)

with, Ish,0 =YCV0 , Iaux,0 =HIrfl,L ,and Irfl,L= IL+ YCVL .

Expressions (21) and (22) constitute a traveling wave line model for the segment of length L

depicted in figure 1. The former set of expressions represents end L of the line segment,

while the latter set represents end 0. A schematic representation for the whole model is

provided by figure 2. Note that the coupling between the two line ends is through the

auxiliary sources Iaux,0 and Iaux,L.

Figure 2. Frequency domain circuit representation of a multi-conductor line.

The line model defined by expressions (21) and (22) is in the frequency domain. Power

system transient simulations require this model to be transformed to the time domain. For

instance, the transformation of (21) to the time domain yields:

 0 ,0 ,0sh aux i i i (23)

with

 ,0 *sh C Li y v (24)

and

 ,0 ,0*aux rfli h i
 (25)

Note that at (23), (24), (25) the lowercase variables represent the time domain images of their

uppercase counterparts at (22) and that the symbol * represents convolution. Reflected

currents can be represented as

 , , ,2rfl L sh L aux L i i i (26)

Expressions (23)-(26) constitute a general traveling–wave based time–domain model for line

end 0. The model corresponding to the other end is obtained by interchanging sub–indexes

“0” and “L” at (23)-(26). Equation (23) essentially provides the interface of the line–end 0

model to the nodal network solver that, for power system transient analysis, usually is the

EMTP (Dommel, 1996). Expressions (24) and (25) require the performing of matrix–to–vector

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 275

convolutions that are carried out conveniently by means of State–Space methods (Semlyen

& Abdel-Rahman, 1982). State–Space equivalents of (23) and (24) arise naturally as YC and H

are represented by means of fitted rational functions (Semlyen & Dabuleanu, 1975).

4. Phase domain line model

Since rational fitting and model solutions are carried out directly in the phase domain, the

model described here is said to be a phase domain line model. Rational fitting for this model

is carried out using the Vector fitting (VF) tool (Gustavsen, 2008). In the case of YC, the whole

fitting process is done in the phase domain, whereas for H initial poles and time delays are

first calculated in the modal domain.

4.1. Rational approximation of Yc

The following rational representation has been proposed for YC in (Marti, 1982) and

(Morched et al., 1999):

 0
1

Ny
i

C
i is q

  

G

Y G (27)

where Ny is the fitting order, qi represents the i–th fitting pole, Gi is the corresponding

matrix of residues and G0 is a constant matrix obtained at the limit of YC when s=j. Note

in (27) that common poles are used for the fitting of all the elements of YC obtained by fitting

the matrix trace and finally the fitting of the matrices of residues Gi and of proportional

terms G0 is done in the phase domain. Section 7 provides an overview of the VF procedure

and further information is to be found in (Gustavsen & Semlyen, 1999) and (Gustavsen,

2008).

4.2. Rational approximation of H

Rational fitting of transfer matrix H is substantially more involving than the one of YC above.

To attain an accurate and compact (low order) rational representation for H it is essential to

factor out all terms involving time delays (Marti, 1982). The major difficulty here is that its

elements could involve a mix of up to N different delay terms due to the multimode

propagation on an N–conductor line (Wedepohl, 1965). Separation of matrix H into single-

delay terms is obtained from the following modal factorization (Wedepohl, 1965):

 1
m

H MH M (28)

where Hm is a diagonal matrix of the form

 1 2[, ,...,]N LL L
m diag e e e    H (29)

and =(YZ) is the propagation constant of a conductor line (Wedepohl, 1965). As the triple

product in (28) is performed by partitioning M in columns and M–1 in rows, the following

expression is derived:

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 276

1

i
N L

i
i

e 


 H D (30)

where Di is the rank–1 matrix obtained from pre–multiplying the i–th column of M by the i–
th row of M–1. Matrix Di in fact is an idempotent (Marcano & Marti, 1997). The exponential

factors at (30) can be further decomposed as follows:

 ; 1,2, ,i i iL L se e e i N       (31)

where  exp iL  is a minimum phase–shift function (Bode, 1945) and i is the time delay

associated to the velocity of the i–th mode. Hence:

1

i i
N L s

i
i

e e  


 H D


 (32)

The time delays in (32) can be initially estimated by applying Bode’s relation for minimum

phase complex functions (Bode, 1945) to the magnitudes of exp(-iL) in (30). Although (32)

provides the desired separation of H as a sum of terms, each one involving a single delay

factor, the following consideration is brought in for computational efficiency (Morched et

al., 1999). Modal delays often occur in groups with almost identical values. Suppose that a

number Ng of these groups can be formed and that (32) can be modified as follows:

1

k
Ng

s
k

k
e 


 H H (33)

where Ng is less or equal to N, and k is the representative delay for the k–th group. Clearly,

by comparing (33) and (32):

1

1,2,...,i i
Ik L s

k i
i

e e k Ng  


 H D

 (34)

with Ik being the number of modal terms in the k–th group. To determine whether a set of

exponential factors can be grouped or not, the maximum phase shifts associated to their

time delays are compared. The set is grouped into a single delay group if the phase shift

differences are below a pre-established value typically chosen at 10 (Morched et al., 1999).

Each term kH at (34) can now be considered free of delay factors and can be fitted as follows:

()

,

1 ,

1,2,...,
Nh k

k i
k

i k i

k Ng
s p

 


R
H (35)

where Nh(k) is the fitting order for the k–th term kH , pk,i represents its i–th fitting pole and

Rk,i is the corresponding matrix of residues. Note in (35) that common poles are being used

to fit all elements at each matrix kH . As (35) is introduced in (33), the following rational

form is obtained for H:

()

,

1 1 ,

k
Ng Nh ks k i

k i k i

e
s p



 
  



R
H (36)

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 277

Initial estimates for the poles as well as time delays are obtained in the modal domain. The

poles result from applying VF to the sum of the modal exponential factors conforming each

delay group. The time delays proceed from Bode’s formula as it has been said before. With

all the poles pk,i and group delays k of (36) being estimated in the modal domain, the overall

fitting of H is completed in the phase domain by obtaining the matrices of residues Rk,i and

recalculating the poles (Gustavsen & Nordstrom, 2008). The fitting parameters so obtained

can be taken as final or can be further refined by an iterative process. VF is applied

throughout all these fitting tasks and detailed descriptions of these processes can be found

in (Gustavsen & Nordstrom, 2008; Gustavsen & Semlyen, 1999).

4.3. State-space analysis

With the rational representation of YC and H state–space forms to evaluate ish,0 and iaux,0 arise

naturally. Consider first the case of ish,0. Taking (22) and introducing (27) yields

 ,0 0 0
1

Ny

sh i
i

  I G V W (37)

where

 0 1,2,...,i
i

i

i Ny
s q

 

G

W V (38)

Application of the Inverse Laplace Transform to (37) and (38) gives the following

continuous-time-state-space (CTSS) form for ish,0:

 ,0 0 0
1

Ny

sh i
i

  i G v w (39)

and

 0 1,2,...,i
i i i

d
q i Ny

dt
  

w
w G v (40)

The CTSS form to evaluate iaux,0, is derived now. On replacing the fitted form of H given by

(36) into (22):

()

,0 ,
1 1

Ng Nh k

aux k i
k i 

  I X (41)

with

 ,
, ,

,

1,2,...,
;

1,2,...,
k

L

sk i
k i rfl

k i

R i Ny
I e

k Ngs p
 




X (42)

Application of the Inverse Laplace Transform to (41) and (42) renders the following CTSS

form:

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 278

()

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x (43)

 ,
, , , ,

1,2,...,
();

1,2,...,
k i

k i k i k i rfl L k

d i Ny
p t

k Ngdt



  



x
x R i (44)

CTSS forms (39), (40), (43) and (44) provide the basis for a phase domain line model (Morched

et al., 1999). Nevertheless, their solution by a digital processor requires the conversion to

discrete–time state–space (DTSS). This is accomplished by applying a numerical differentiation

rule to the CTSS forms. The one adopted here is the mid–point rule of differentiation, which is

equivalent to the trapezoidal integration rule extensively used in EMTP (Dommel, 1969, 1992).

Application of this rule to (44) with t as the solution time step results in:

 , , , , , ,

1,2,...,
' [() ' ()];

1,2,...,k i k i k i k i rfl L k rfl L k

i Ny
a t t

k Ng
 


    


x x R i i (45)

where ak,i=(2+tpk,i)/ (2-tpk,i) and ,k iR =(tRk,i)/ (2-tpk,i). xk,i are discrete-state variables and

primed variables denote their value at one previous time step x’k,i= xk,i(t-t). The discrete–

time version of (43) maintains its original form:

()

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x

Transmission line simulation of EMTs requires the use of time steps t smaller than any of

the travel times k in the line. Hence, (45) provides the update of state vectors xk,i using only

past values of variables already available, either from initial conditions or from previous

simulation time steps.

The differentiation mid–point rule is now applied to (40):

 0 0' ('); 1,2,...,i i i ia v v i Ny   w w G (46)

where ai=(2+tqi)/ (2-tqi) and iG =(tGi)/ (2-tqi)

Expression (46) is not a proper DTSS form, as wi depends on the present–time value of v0

which still is to be determined (Gustavsen & Mahseredjian, 2007). This problem is fixed here

with the following redefinition of the state variable vector:

 1
0() / (1); 1,2,...,i i i iv a i Ny   y G w (47)

Introducing (47) in (46) and (39) the following expressions are obtained:

 0' ' ; 1,2,...,i i ia v i Ny  y y (48)

 ,0 0 ,0sh y aux i Gv i (49)

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 279

where

,0
1

ˆ
Ny

y aux i i
i




i G y ; ˆ (1)i i ia G G ; 0
1

Ny

i
i

 G G G

Expression (48) is a proper DTSS form for the sequential evaluation of ish,0 at the phase

domain line model.

Finally, the introduction of (43) and (49) in (23) results in:

 0 0 ,0hist i Gv i (50)

with

()

,0 ,0 ,0 ,
1 1 1

ˆ
Ny Ng Nh k

hist y aux aux i i k i
i k i

x
  

     i i i G y

Expression (50), along with (48) and (49), provides a discrete time–domain model for end 0

of the line segment at figure 1. The expressions for the model at end L are simply obtained

by exchanging sub–indexes 0 and L at (48), (49) and (50). Obviously, state variables “yi” and

“xk,i” of end L model are different from those of end 0. Figure 3 provides a discrete–time

circuit–model for the line segment of length x=L. This model is based on expression (50) and

its companion for line end L. Note that the model consists of parallel arrangements of shunt

conductances and auxiliary sources of currents comprising historic terms of ends (or nodes)

0 and L. Figure 3 model is thus in an appropriate form for computer code implementation.

In this chapter, the Matlab environment has been chosen for this end.

Figure 3. Discrete time domain circuit representation of a multi-conductor line.

5. Line model implementation in Matlab

The discrete–time line model depicted in figure 3 and defined by (50) has been programmed

by these authors in Matlab as an M–code function (see Appendix). This function consists of

two sub–blocks, one for each multi-conductor line end. This model is to be used with a

nodal network solver, a complete explanation on the nodal solver can be found in (Dommel,

1969 & 1992). Expression (50) constitutes essentially the interface between the line model

and the nodal solver. Each one of the two sub–blocks in the line model performs iteratively

the six tasks that are described next for line–end 0 sub–block. Figure 4 provides the block

diagram of the complete line/cable model, along with its interfacing with the nodal solver.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 280

Step 1. State–variable and history–current values are assumed known, either from initial

conditions or from previous simulation steps. These values are used by the nodal solver

to determine line end (nodal) voltages v0 and vL.

Step 2. Shunt current due to the characteristic admittance of the line is calculated by (49)

repeated here for convenience:

,0 0 ,0sh y aux i Gv i

Step 3. Auxiliary current source value, due to the reflected traveling waves at the remote

line end, is updated by (43):

()

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x

Step 4. Vector of reflected currents at the local line–end (node) “irfl,0” is calculated for the

present time by means of (26) being modified to suit line–end 0:

,0 ,0 ,02rfl sh aux i i i

This vector is delivered to end L sub–block through a delay buffer. Although branch current

vector i0 usually is not explicitly required, it is conveniently evaluated here by (50):

0 0 ,0hist i Gv i

Step 5. Internal states inside the line model are updated by (48) and (45):

0' 'i i ia v y y

, , , , , ,' [() ' ()]k i k i k i k i rfl L k rfl L ka t t     x x R i i

Step 6. The vector of history currents for end (node) 0 is updated by means of (50) and the

update is delivered to the nodal-network solver.

Steps 1 to 6 are iterated Nt times until Ntt spans the total simulation time of interest.

5.1. Handling of line-travel delays

It follows from expressions (43) and (45) that the calculation of iaux,0 requires the reflected

currents vector irfl,L being evaluated with various time delays , …, Ng. Recall that the

delays are due to the travel time needed by a wave to travel from one line end to the other.

Past values of irfl,L can be obtained either from line initial conditions or from previous

simulation steps; nevertheless, these values are given by samples regularly distributed t
seconds apart. Since the involved travel times (or line delays) usually are not integer

multiples of t, the required values of irfl,L must be obtained by means of interpolations. The

standard procedure for this is to interpolate linearly (Dommel, 1992) and this is adopted

here.

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 281

Evaluation of the delayed values require a memory buffer spanning at least the largest

travel time

 max 1 2max{ , ,..., }Ng    , (51)

and buffer length Nb is calculated as follows:

 max 1bN
t

 
   

 (52)

Figure 4. Line/Cable model’s complete flow diagram.

If a propagation delay is an integer multiple of t, the required value of irfl can be readily

retrieved from the memory buffer. This is illustrated by figure 5 where the simulation time

step is t=0.03 ms and the travel time is =0.10 ms. It can be seen that at simulation time t=

0.24 ms the required history value at 0.09ms is available from the table.

On a multiphase system, nevertheless, it is highly improbable that all the propagation times

can be made integer multiples of a single value of t suitable for transient simulations. Thus,

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 282

the required values must be obtained through interpolation. Figure 6 illustrates this case,

where a simulation time step t=0.04 ms is assumed instead of the t=0.03 ms one at figure

5. Notice that now the required history value, for a time delay of 0.09ms, is not readily

available.

Suppose now that the required value irfl(t–) is between the k–th and the (k+1)–th stored

samples of irfl. Let  be the fractional part of /t, that can be obtained as follows:

 ,
t t
 

 
     

 (53)

with, 0 < <1. The estimated value of irfl(t–) by linear interpolation is thus:

 , , , ,() () [() ()].rfl L k rfl L rfl L rfl Lt t r t t k t t k t t            i i i i (54)

Figure 7 illustrates the memory buffer management, either for irfl,0 or for irfl,L. At the first

simulation time step corresponding to time t=0t, calculated irfl is stored at memory 1, and

so on until step Nb which is the buffer size limit. Beyond this limit, memory cells 1, 2, 3 and

on, are overwritten as figure. 7 shows, since their previously stored values are not needed

any longer.

Figure 5. Interpolation scheme: t integer multiple.

Figure 6. Interpolation scheme: t non integer multiple.

t(ms) irfl,0 irfl,L

0.0 * *

0.03 * *

0.09 * *

0.12 * *

0.15 * *

0.18 * *

0.21 * *

0.24 * *

t(ms) irfl,0 irfl,L

0.0 * *

0.04 * *

0.08 * *

0.12 * *

0.16 * *

0.20 * *

0.24 * *

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 283

Figure 7. History buffer management.

Linear interpolation is an order 1 numerical procedure and the trapezoidal rule used for the

rest of the line model is of order 2. The question arises as to whether or not the order 2

quadratic interpolation should be adopted instead. This has been investigated at (Gutierrez–

Robles et al., 2011) and it has been found that the increase in accuracy is marginal.

6. Application examples

The simulation results presented as follows are obtained with the Matlab implementation of

the model being described here. These results are compared against those from the phase

domain line model in EMTP-RV. Two examples are presented next, first an aerial 9–conductor

line and, finally, one for an underground cable. Also a basic m-code for the described phase

domain line model is provided at the appendix. The code is given along with the companion

routines to perform the first example presented in (Ramos- Leaños & Iracheta, 2010). The

reader can readily modify the provided m-code for other applications of interest.

6.1. Aerial line case

The transversal geometry of this test case is shown in figure 8. Phase conductors are 1192.5

ASCR 54/19 and ground wires are 7 No 5 AWLD. This case consists of three coupled three–

phase transmission lines. First line (or circuit 1) is composed of conductors 1 to 3, second

line (or circuit 2) includes conductors 5 to 6 and the third line (or circuit 3) comprises

conductors 7 to 9. The line length is 150 km. The test circuit is shown in figure 9 where the

source is 169 kV, Y-grounded, source impedance is determined by its zero and positive

sequence data in Ohms: R0=2, R1=1, X0=22, X1=15, and closing times are 0 s for phase a, 0.63

ms for phase b and 0.4 ms for phase c. The simulation time step is 5 s.

Figure 8. Aerial line transversal geometry.

1 2 Nb

26m
16m

12m

14m

34m

20m 13m

27m

3m

9m

3m

8m

21m

Circuit 1

Circuit 2 Circuit 3

1

2

3

4

5

6

7

8

9

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 284

Figure 9. Test circuit for the case of a nine–conductor line.

Simulation results are presented in figure 10 where the receiving end voltage waveforms of

circuit 1 are shown, those for phase a are in blue, those for phase b are in green and those for

phase c are in red. A dashed line is used for waveforms obtained with EMTP-RV, while a

solid line is used for the results with the line model in Matlab. Notice that the two sets of

results overlap and not difference can be seen. Figure 10 provides the differences between

the two sets of results. Note that the largest difference is around 3e-9.

Figure 10. (a) Over voltages at receiving end for conductors 1, 2 and 3, (b) Differences between results

with Matlab model and with EMTP–RV.

6.2. Underground cable case

The underground cable system used for this test consists of three single–phase coaxial cables, its

transversal layout is shown in figure 11. The Corresponding connection diagram is provided in

figure 12. Circuit parameters are given in table 1, the cable length is 6.67km and the time step

used for the simulation is 1 s. The applied excitation is by a 3ph 169kV ideal source.

The simulation experiment consists in the simultaneous energizing of the three cable cores.

The results presented in figure 13 correspond to the core voltages at the far end. Phase a

voltages are in blue, phase b voltages are in green and those for phase c are in red. A dashed

line is used for the results obtained with EMTP-RV, while a solid line is used for the Matlab

WB+

+

169kV /_0

AC1

+

RL1

+

1k

 R1

+

SW1

c

b

a
WB_m2

a

b

c

WB_m1

a

b

c

WB_m3

a

b

c

WB_k

(a) (b)

0 0.005 0.01 0.015 0.02
-3

-2

-1

0

1

2

3
x 10

5

Time (s)

V
o

lt
a
g

e
 (

V
)

0 0.005 0.01 0.015 0.02
-4

-3

-2

-1

0

1

2

3
x 10

-9

Time (s)

A
b

s
o

lu
te

 e
rr

o
r

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 285

model results. Notice that both sets of results overlap and that no difference can be seen by

eye. Figure 13 also shows the difference between the two sets of results which is around 4e-

9. Compared to the 1.69e+5 amplitude of the excitation source, this difference shows the

outstanding accuracy of the Matlab model.

Figure 11. Cable layout.

Radius of inner solid conductor (m) 0.015

Resistivity nuclei/sheath (ohm/m) 4.25e-8/2.84e-8

Inner/Outer radius of sheath (m) 0.0258/0.0263

Relative permittivity of 1st & 2nd insulation 2.5

Table 1. Cable data.

Figure 12. Cable test circuit.

Figure 13. (a) Receivng end core voltages, (b) absolute error.

1.12m 0.07m 0.07m

0.121m

WB+

WBline4

+

R35

+

R45

+

169kVRMSLL /_0

AC1

VM+

?v

m2a

b

c

BUS1

c

b

a

BUS4

(a) (b)

0 0.002 0.004 0.006 0.008 0.01
-2

-1

0

1

2

3
x 10

5

Time (s)

V
o

lt
a

g
e

 (
V

)

0 0.002 0.004 0.006 0.008 0.01
-6

-4

-2

0

2

4
x 10

-9

Time (s)

A
b

s
o

u
lt

e
 e

rr
o

r

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 286

7. Vector fitting

The goal of VF is to approximate a complex function of frequency by means of a rational

function; that is, a quotient of two polynomials of the frequency variable (Gustavsen &

Semlyen, 1999). The function to be approximated could be trascendantal or could be

specified by its values at a number of frequency points. The form of the approximation

obtained with VF is that of a partial fraction expansion:

1

()
N

n

n n

r
f s

s p


 (55)

VF estimates the system parameters by means of a two-stage linear least–squares

procedure. First a set of initial poles for the partial fraction basis (55) is selected and

relocated iteratively until a prescribed convergence criterion is attained. Then,

convergence is tested by means of a second linear least–squares procedure in which the

previously obtained poles are fixed and the corresponding residues are taken as the

unknown parameters.

Consider the following relation (Gustavsen & Semlyen, 1999):

1 1

() 1 ,
N N

n n

n nn n

r r
f s

s p s p 

 
     

 
 

 (56)

where, N is the order of approximation, np represents the unknown poles and n̂r and nr are

unknown residues. Poles are initialized by values distributed logarithmically over the

frequency range of interest. Expression (56) is now rewritten as follows:

1 1

() ().
N N

n n

n nn n

r r
f s f s

s p s p 

 
     

 
 

 (57)

An over–determined least squares equation–system is then obtained by evaluating (57) at a

number M of specific frequencies, with M>2N:

 ,Ax b (58)

where A is the M2N matrix whose elements depend on the poles, x is the 2N–dimension

vector of unknown residues and b is the M–dimension vector with the values of the function

to be approximated (Gustavsen & Semlyen, 1999). Special care is taken to accommodate next

to each other those complex–conjugate pairs of pole–residues that can arise. Expression (58)

is solved through an iterative process represented symbolically as follows:

 (1) () ,j j A x b (59)

were (j–1) and (j) represent super–indexes and j is the iteration index. A(0) is obtained from

the initial poles with logarithmic distribution over the frequency range of interest

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 287

(Gustavsen & Semlyen, 1999). As (59) is solved in the first iteration, a second step is to use

the obtained residue values to recalculate new poles for the function to be fitted f(s). This is

accomplished by computing the eigenvalues of the following matrix Q (Gustavsen &

Semlyen, 1999):

 ,T Q W gx (60)

where W is a diagonal matrix containing previously calculated poles np , g is a vector of

ones and x is a vector containing the r terms only. The reason for using (60) is explained

next. Let (56) be rewritten as follows:

 1 1

1 1

ˆ
ˆ()

().

1 ()

NN
n

n
n n n

N N
n

n
n n n

r
s z

s p
f s

r
s z

s p



 

 




 
 



 

 



 (61)

It is clear in (61) that the two polynomials containing the poles np cancel each other, and

that the zeros nz become the poles of f(s). Notice further that the denominator on the left–

hand–side of (61) can be written as follows:

 1

1

1

()

1 .

()

N

nN
n n

N
n n

n
n

s z
r

s p
s p








 












 (62)

Zeros nz are then obtained by finding the roots of (Gustavsen & Semlyen, 1999)

1 1, 1

() () 0,
N NN

i n n
i n n i n

r s p s p
   

 
     

 
   (63)

which is equivalent to finding the eigenvalues of Q in (60) (Gustavsen & Semlyen,

1999).

The newly found set of poles is replaced in (55) to determine a new set of residues rn. This is

again an over–determined linear system. The fitting error is tested at this stage for each

available sample of f(s). If the error level is not acceptable, the new poles are used to restart

the procedure as with (56). If the desired error limit is not met after a pre-specified number

of iterations, then, the order of approximation N is increased and the iterative procedure is

restarted (Gustavsen & Semlyen, 1999).

Even in most cases where initial poles are not chosen adequately, VF is capable of finding a

solution at the expense of more iterations. In some cases an iteration can produce unstable

poles; these poles simply are flipped into the left–hand–side part of the complex plane (i.e.,

the stable part) and a new solution is searched (Gustavsen & Semlyen, 1999).

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 288

8. Conclusions

Proper design and operation of present-day power systems and apparatuses each time

require accurate simulations of their electromagnetic transient performance. An important

aspect of these simulations is the realistic representation of transmission lines by digital

computer models. The ULM is the most general line model available today, mostly with

EMTP–type programs. By being of relatively recent creation, this model still is a subject for

substantial improvements in accuracy, stability and computational efficiency. It has been

postulated in this work that, both, researchers and power system analysts will benefit

considerably from the full understanding of the theoretical basis of the ULM, as well as from

counting with a ULM–type code that is easy to understand and modify. It has been

contended also that the best way to carry out ULM research and development is by

providing a model version in an interpretive environment and Matlab has been the platform

chosen for this. This chapter provides a comprehensive description of the theoretical basis of

ULM, phase domain line model. In addition to this, full description of a ULM prototype in

Matlab has been provided here, along with executable code and typical application

examples.

Author details

Octavio Ramos-Leaños

École Polytechnique de Montréal, Canada

Jose Luis Naredo

Cinvestav-Guadalajara, Mexico

Jose Alberto Gutierrez-Robles

University of Guadalajara, Mexico

Appendix

CODE EXECUTION

The following code provides the line model described in the paper and it is embedded into

an application example. It simulates the simultaneous energizing of a 150 km long aerial

line. At the source side the three voltage sources have a 600  Thevenin impedance. The

program asks for the type of source (unit step or three phase sinusoids). At the load end the

line is open. Figure 14 shows the geometry of the simulated line. Figure 15 shows the

sending and receiving voltages for the unit step source, while Figure 16 shows the sending

and receiving voltages for the sinusoidal source.

Note at Figure 15 that waveforms for phases A and C are equal and their plots are

superposed. This is because the symmetry of the line and the excitation.

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 289

Main program

clear all

clc

 % m file to set line data

LineData

 % Per unit length parameters

[Zg,Zt,Zc,Yg,ZL,YL] = LineParameters(Mu,Eo,Rsu,Geom,Ncon,Ns,w);

 % Modal Parameters

for k=1:Ns

 [Yc(:,:,k),Vm(k,:),Hm(k,:)] = ABYZLM(ZL(:,:,k),YL(:,:,k),lenght,w(k));

end

% Characteristic Admittance Fitting

[YcPoles,YcResidues,YcConstant,YcProportional] = YcFit(Yc,f,Ns,Ncon);

 % Hk fit

[HkPoles,HkResidues,HkConstant,HkProportional,md] =

HkFitTrace(Hm,Vm,ZL,YL,f,Ns,lenght,Ncon);

% m file to execute simulation loop.

SimulationLoop

Code to Load LineData

% Line Geometry

% column 1—conductor number

% column 2-- x position of each cond in m

% column 3-- y position of each cod in m

% column 4-- radii of each conductor

% column 5-- number of conductor in bundle

% column 6-- distance between conductors in bundle

% column 7—conductor resistivity

% column 8—conductor relative permitivity

% column 9-- line lenght in m

 Geom=[1 0 20 0.0153 3 0.4 2.826e-8 1e3 150e3

 2 10 20 0.0153 3 0.4 2.826e-8 1e3 150e3

 3 20 20 0.0153 3 0.4 2.826e-8 1e3 150e3];

 lenght = Geom(1,9); % Line lenght

Ncon = Geom(max(Geom(:,1)),1); % # of cond

Rsu = 100; % Earth resistivity Ohm-m

Mu = 4*pi*1E-7; % Henry's/meters

Eo = (1/(36*pi))*1E-9; % Farads/meters

Rhi = 9.09E-7; % Ohm-m resistivity of the iron.

Ral = 2.61E-8; % Ohm-m res of the aluminum.

Rhg = 2.71E-7; % Ohm-m res of the sky wires.
Ns = 500; % Number of samples
f = logspace(-2, 6, Ns); % Vector of log spaced Frequencies
w = 2*pi*f; % Vector of freqs in radian/sec.

Function LineParameters

function [Zg,Zt,Zc,Yg,ZT,YT]=LineParameters (Mu,Eo,Rsu,Geom,Ncon,Ns,w)
 % Function to compute the distances between conductor
[Dij,dij,hij]=Height(Geom);

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 290

Zg = zeros(Ncon,Ncon,Ns);

Zt = zeros(Ncon,Ncon,Ns);

Zc = zeros(Ncon,Ncon,Ns);

Yg = zeros(Ncon,Ncon,Ns);

Zcd = zeros(Ncon,Ns);

Zaf = zeros(Ncon,Ns);

P = (1./sqrt(j*w*Mu/Rsu)); % Complex depth

Pmatrix = log(Dij./dij); % Potential Coeff. Matrix

Pinv = inv(Pmatrix); % Inverse of Pmatrix

% Loop to compute matrices at all frequencies

for kl = 1:Ns

 % Geometric impedance

 Zg(:,:,kl) = (j*w(kl)*Mu/(2*pi))*Pmatrix;

 % Earth impedance

 for km = 1:Ncon

 for kn = 1:Ncon

 if km == kn

 Zt(km,km,kl) = (j*w(kl)*Mu/(2*pi))*

 log(1+P(kl)./(0.5*hij(km,km)));

 else

 num = hij(km,kn)^2 + 4*P(kl)*hij(km,kn) +

 4*P(kl)^2 + dij(km,kn)^2;

 den = hij(km,kn)^2 + dij(km,kn)^2;

 Zt(km,kn,kl) = (j*w(kl)*Mu/(4*pi))*

 log(num/den);

 end

 end

 end

 % Geometric admittance

 Yg(:,:,kl) = (j*w(kl)*2*pi*Eo)*Pinv;

end

% Conductor impedance

for kd = 1:Ncon;

 Rcon = Geom(kd,4); % conductor radii in m.

 Nhaz = Geom(kd,5); % # of conductor in bundle

 Rpha = Geom(kd,7); % Resistivity in Ohm-m.

 Zcd(kd,:) = (1/Nhaz)*Rpha./(pi.*Rcon.^2);

 Zaf(kd,:) = (1/Nhaz)*(1+j).*(1./(2.*pi.*Rcon)) .*

 sqrt(0.5.*w.*Mu.*Rpha);

 Zc(kd,kd,:) = sqrt(Zcd(kd,:).^2 + Zaf(kd,:).^2);

end

% Outputs

ZT = Zg + Zt + Zc ; % Total impedance

YT = Yg ; % Total admittance

Function ABYZLM

function [Yc,Vm,Hmo] = ABYZLM(Z,Y,Lo,w)

 [M, Lm] = eig(Y*Z); % Eigenvalues of YZ
Minv = inv(M); % Inverse of eigenvectors matrix
Yc = inv(Z)*(M*sqrt(Lm)*Minv); % Characteristic Admittance

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 291

Gamma = sqrt(diag(Lm)); % Propagation constants.

Vm = w./imag(Gamma); % Modal Velocities

Hmo = diag(expm(-sqrtm(Lm)*Lo)); % Modal propag. Matrix H

Function YcFit

function [YcPoles,YcResidues,YcConstant, YcProportional]=YcFit(Yc,f,Ns,Ncon)

% Trace of characteristic admittance matrix

for k = 1:Ns

 Ytrace(k,1) = trace(Yc(:,:,k));

end

Npol = 6; % Number of poles

[Ps] = InitialPoles(f,Npol); % Set initial poles

s = j*2*pi*f.'; % Vector of values of variable "s"

Ka=2; % 1.-Strictly proper, 2.-Proper, 3.-Improper

for khg=1:20

 % Fit the trace of Yc (Poles)

 [YcPoles]=Poles(Ytrace.',s,Ps,Ns,Ka);

 Ps=YcPoles;

end

% Residues and constant term for Yc from poles of trace of Yc

for k = 1:Ncon

 for l = 1:Ncon

 Hs(:,1) = Yc(k,l,:); % k-l term of admittance

 [C,D,E]=Residue(Hs.',s,YcPoles,Ns,Ka);

 YcResidues(k,l,:) = C; % k-l residues term

 YcConstant(k,l) = D; % k-l constant term

 YcProportional(k,l)=E; %k-l proportional term

 end

end

Function HkFitTrace

function [HkPoles,HkResidues,HkConstant, HkProportional,md]=HkFit(Hm,Vm,ZL,YL,f,Ns,

lenght,Ncon);

 % Minimum phase of each mode

md = ModeDelay(Hm.',f,lenght,Vm.',Ns,Ncon);

% Computing Idempotents

for k=1:Ns

 % Function to calculate Idempotents of Y*Z

 [Hk] = HmIdem(ZL(:,:,k),YL(:,:,k),lenght,f(k), md,Hm(k,:));

 HkIdem(:,:,:,k) = Hk; % Idempotents

end

for m = 1:3

 for k=1:Ns

 TraceHk(m,k) = trace(HkIdem(:,:,m,k));
 end
end
s = j*2*pi*f.'; % Vector of the variable "s"

Ka =1;%1.-Strictly proper, 2.-Proper, 3.-Improper

Npol = 5; % Number of poles

[Ps] = InitialPoles(f,Npol); % Set the initial poles

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 292

for m = 1:3

 Hk = TraceHk(m,:);

 for khg=1:10

 [HkPol]=Poles(Hk,s,Ps,Ns,Ka);

 Ps=HkPol;

 end

 HkPoles(m,:)=Ps;

end

% Residues for Idempotent matrices of

% Hm from the poles of each trace.

for m = 1:3

 for k = 1:Ncon

 for l = 1:Ncon

 Hs(:,1) = HkIdem(k,l,m,:); % k-l term

 [C,D,E]=Residue(Hs.',s,HkPoles(m,:),Ns,Ka);

 HkResidues(k,l,m,:) = C; % k-l-m term

 HkConstant(k,l,m) = D; % k-l-m constant

 HkProportional(k,l,m) = E; % k-l-m prop

 end

 end

end

SimulationLoop program

Ts = 0.016; % Observation time

Nt = fix(Ts/Dt); % Number of time steps

t1 = fix(md./Dt); % Delay of H in samples

t0 = fix(max(md)./Dt); % Maximum time delay as expressed in

% number of samples

t = (0:Dt:(Nt+t1)*Dt-Dt); % Vector of time

Ks = menu('CHOOSE THE TYPE OF INPUT SOURCE' , '1 -unit step' , '2 -sinusoidal');

if Ks == 1 % unit step source

 Isr = ones(Ncon,Nt+t0);

elseif Ks ==2 % sinusoidal source

 Isr(1,:) = sin(337*t);

 Isr(2,:) = sin(337*t+2*pi/3);

 Isr(3,:) = sin(337*t+4*pi/3);

end

NpYc = length(YcPoles); % Number of poles of Yc

NpH = length(HkPoles); % Number of poles for the first

% Idempotent matrix

Ng = 3; %Number of groups

 % Initialize the states for both nodes

ZA = zeros(Ncon,NpYc); % State variables

ZB = zeros(Ncon,NpYc); % State variables

YA = zeros(Ncon,NpH,Ng); % State variables

YB = zeros(Ncon,NpH,Ng); % State variables

IfarA = zeros(Ncon,t0+3); % Current at node A
IfarB = zeros(Ncon,t0+3); % Current at node B
VO = zeros(Ncon,1); % Voltage at node A

Vi = zeros(Ncon,Nt+t0); % Voltage at node A

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 293

VL = zeros(Ncon,1); % Voltage at node B

Vf = zeros(Ncon,Nt+t0); % Voltage at node B

IO = zeros(Ncon,1); % Current at node A

Ii = zeros(Ncon,Nt+t0); % Current at node A

IL = zeros(Ncon,1); % Current at node B

If = zeros(Ncon,Nt+t0); % Current at node B

Iri = zeros(Ncon,Nt+t0); % Current at Y source

Irf = zeros(Ncon,Nt+t0); % Current at Y charge

 IfarAint = zeros(Ncon,Ng); % Current at node A

IfarBint = zeros(Ncon,Ng); % Current at node B

% Constants for the state ZA and ZB

Ai(:,1) = (1+(Dt/2)*YcPoles)./(1-(Dt/2)*YcPoles);

Au(:,1) = ((Dt/2)./(1-(Dt/2)*YcPoles));

Bi(:,1) = (Ai+1).*Au;

Gy = zeros(Ncon,Ncon);

for nm = 1:NpYc

 Di(:,:,nm) = YcResidues(:,:,nm)*Bi(nm);

 Gy = Gy + YcResidues(:,:,nm)*Au(nm);

end

% Constants for the states YA and YB

for k = 1:Ng

 K1(:,k) = (1+(Dt/2)*HkPoles(:,k))./(1-(Dt/2)*HkPoles(:,k));

 Ka(:,k) = (((Dt/2))./(1-(Dt/2)*HkPoles(:,k)));

 Ku(:,k) = (K1(:,k)+1).*Ka(:,k);

end

for k = 1:Ng

 for nm = 1:NpH

 K2(:,:,nm,k) = HkResidues(:,:,nm,k).*Ka(nm,k);

 K3(:,:,nm,k) = HkResidues(:,:,nm,k).*Ku(nm,k);

 end

end

Gy = Gy + YcConstant; % Admitance of the Ish

Yi = diag(eye(3)*[1/600; 1/600; 1/600]); % Admittance of the source, connected at node A

Gys = inv(Gy + Yi); % Impedance to calculate VO

Yr =diag(eye(3)*[1/1e6; 1/1e6; 1/1e6]); % Admittance of load connected at node B

Gyr = inv(Gy + Yr); % Impedance to calculate VL

% Contants terms to perform the interpolation

tm =md - t1*Dt; % Time for the interpolation

% Linear interpolation constants

c1 = tm/Dt;

c2 = 1-c1;

c3 = ones(Ng,1);

% Pointers for the interpolation and the buffer

h1 = t1+1;

h2 = t1+2;

h3 = t1+3;

 for k = t0+2:Nt+t0-3

 IfarA(:,1) = IL + Gy*VL + sum(ZB(:,:),2);

 IfarB(:,1) = IO + Gy*VO + sum(ZA(:,:),2);

 % Linear interpolation

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 294

 for m = 1:Ng

 IfarAint(:,m) = c2(m)*IfarA(:,t1(m)) + c3(m)*IfarA(:,h1(m)) + c1(m)*IfarA(:,h2(m));

 IfarBint(:,m) = c2(m)*IfarB(:,t1(m)) + c3(m)*IfarB(:,h1(m)) + c1(m)*IfarB(:,h2(m));

 end

 IfarA(:,2:h3) = IfarA(:,1:h2);

 IfarB(:,2:h3) = IfarB(:,1:h2);

 for m = 1:NpYc

 ZA(:,m) = Ai(m)*ZA(:,m) + Di(:,:,m)*VO;

 ZB(:,m) = Ai(m)*ZB(:,m) + Di(:,:,m)*VL;

 end

 for l = 1:Ng

 for m = 1:NpH

 YA(:,m,l) = K1(m,l)*YA(:,m,l) + K2(:,:,m,l)*IfarAint(:,l);

 YB(:,m,l) = K1(m,l)*YB(:,m,l) + K2(:,:,m,l)*IfarBint(:,l);

 end

 end

 HistO = - sum(ZA(:,:),2) + sum(sum(YA(:,:,:),3),2);

 HistL = - sum(ZB(:,:),2) + sum(sum(YB(:,:,:),3),2);

 VO = Gys*(Isr(:,k)+HistO);

 VL = Gyr*HistL;

 IO = Gy*VO - HistO;

 IL = Gy*VL - HistL;

 Vi(:,k) = VO;

 Vf(:,k) = VL;

 Ii(:,k) = IO;

 If(:,k) = IL;

end

Iri = Yi*Vi;

Irf = Yr*Vf;

vt = (0:Dt:length(Vi(1,:))*Dt-(t0+4)*Dt)';

N = length(vt);

a1 = t1+1;

a2 = Nt+t1-3;

figure(1),plot(vt,Vi(:,a1:a2),':',vt,Vf(:,a1:a2))

ylabel('Amplitude in volts')

xlabel('Time in seconds')

legend('Sending end phase A' , 'Sending end phase B' , 'Sending end phase C' , 'Receiving end phase A' ,

'Receiving end phase B' , 'Receiving end phase C')

Function Height

function[Dij,dij,hij]=Height(Geom)

Ls = Geom(max(Geom(:,1)),1);

Req = zeros(Ls,1);

 % Equivalent bundle radii

k4 = sqrt(2*(Geom(:,6)/2).^2);
for nc = 1: Ls;
 if Geom(nc,5)==1
 Req(nc) = Geom(nc,4);
 else

 Req(nc) = (Geom(nc,4).*Geom(nc,5).*k4(nc).^

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 295

(Geom(nc,5)-1)).^(1./Geom(nc,5));

 end

end

% Direct and image distances among conductors

for xl = 1:Ls;

 for yl = 1:Ls;

 if xl==yl

 dij(xl,yl)=Req(xl);

 y1=Geom(yl,3);

 hij(xl,yl)=2*y1;

 Dij(xl,yl)=hij(xl,yl);

 else

 x=abs(Geom(yl,2)-Geom(xl,2));

 y=abs(Geom(yl,3)-Geom(xl,3));

 dij(xl,yl)=sqrt(x^2 + y^2);

 y1=Geom(xl,3);

 y2=Geom(yl,3);

 hij(xl,yl)=y1+y2;

 x=abs(Geom(yl,2)-Geom(xl,2));

 y=hij(xl,yl);

 Dij(xl,yl)=sqrt(x^2 + y^2);

 end

 end

end

Function InitialPoles

function [Ps]=InitialPoles(f,Npol)

 even = fix(Npol/2); % # of complex initial poles

p_odd = Npol/2 - even; % Auxiliary variable to check if number

% of initial poles is odd

disc = p_odd ~= 0; % 0 for even Nr of initial poles & 1 – for

% odd Nr.

% Set a real pole in case of disc == 1

if disc == 0 % Even Nr of initial poles

 pols = [];

else % Odd Nr of initial poles
 pols = [(max(f)-min(f))/2];
end
% Set the complex initial poles
bet = linspace(min(f),max(f),even);
for n=1:length(bet)
 alf=-bet(n)*1e-2;
 pols=[pols (alf-j*bet(n)) (alf+j*bet(n))];
end
Ps = pols.'; % Column vector of initial poles

Function Poles

function [A]=Poles(Fs,s,Pi,Ns,Ka);
Np = length(Pi); % Length of vector containing starting poles

CPX = imag(Pi)~=0; % 0 for real pole and 1 for complex pole

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 296

rp = 0; % Initialize the index for real poles

cp = 0; % Initialize the index for complex poles

RePole = []; % Initialize the vector of real poles

CxPole=[];%Initialize the vector of complex poles

% Loop to separate real poles and complex poles

for k = 1:Np

 if CPX(k) == 0 % Real Pole

 rp = rp + 1;

 RePole(rp) = Pi(k);

 elseif CPX(k) == 1 % Complex pole

 cp = cp + 1;

 CxPole(cp) = Pi(k);

 end

end

Lambda = Pi.';

RePole = sort(RePole); % Sort real poles

CxPole = sort(CxPole); % Sort complex poles

Lambda = [RePole CxPole]; % Concatenate poles

I = diag(ones(1,Np)); % Unit matrix

A = []; % Poles

B = ones(Ns,1); % the weight factor

C = []; % Residues

D = zeros(1); % Constant term

E = zeros(1); % Proportional term

KQA = ones(Ns,1);

cpx = imag(Lambda)~=0; % 0 if pole is real and 1 if pole is

% complex.

dix = zeros(1,Np); % Initializes vector of pole types

if cpx(1)~=0 % If the first pole is complex

 dix(1)=1; % real part

 dix(2)=2; % imag part

 k=3; % continue dix for third position

else

 k=2; % If the first pole is real continue dix for the second position

end

% complete the classification of the poles

for m=k:Np

 if cpx(m)~=0 % If the pole is complex

 if dix(m-1)==1

 dix(m)=2; % If the previous position has the real part put 2

% to identifies the imag part

 else

 dix(m)=1; % 1 for the real part of a complex pole

 end

 end

end

% Creates matriz A divided in four parts A = [A1 A2 A3 A4]

% A1 = Dk

% A2 = B.*ones(Ns,1)

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 297

% A3 = B.*s

% A4 = -Dk*Fs

Dk=zeros(Ns,Np); % Initialize matrix with zeros

for m=1:Np % Iterative cycle for all poles

 if dix(m)== 0 % For a real pole

 Dk(:,m) = B./(s-Lambda(m));

 elseif dix(m)== 1 % For the real part

 Dk(:,m)=B./(s-Lambda(m)) +

 B./(s-Lambda(m)');

 elseif dix(m)== 2 % For the imag part

 Dk(:,m) = i.*B./(s-Lambda(m-1)) -

 i.*B./(s-Lambda(m-1)');

 end

end

% Creates work space for matrix A

A1 = Dk;

A2 = B.*ones(Ns,1);

A3 = B.*s;

for col = 1:Np

 A4(:,col) = -(Dk(:,col).*Fs.');

end

% Asigns values to A

if Ka == 1

 A = [A1 A4]; % Strictly proper rational fitting

elseif Ka == 2

 A = [A1 A2 A4]; % Proper rational fitting

elseif Ka == 3

 A = [A1 A2 A3 A4]; % Improper rational fitting

else

 disp('Ka need to be 1, 2 or 3')

end

% Creates matrix b = B*Fs

b = B.*Fs.';

% Separating real and imaginary part

Are = real(A); % Real part of matrix A

Aim = imag(A); % Imaginary part of matrix A

bre = real(b); % Real part of matrix b

bim = imag(b); % Imaginary part of matrix b

An = [Are; Aim]; % Real and imaginary part of A

bn = [bre; bim]; % Real and imaginary part of b

% Routine to applies the Euclidian norm to An

[Xmax Ymax] = size(An);

for col=1:Ymax

 Euclidian(col)=norm(An(:,col),2);

 An(:,col)=An(:,col)./Euclidian(col);

end

% Solving system

Xn = An\bn;

Xn = Xn./Euclidian.';

% Put the residues into matrix C

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 298

if Ka == 1

 C = Xn(Np+1:Ymax); % Strictly proper fitting

elseif Ka == 2

 C = Xn(Np+2:Ymax); % Proper rational fitting

elseif Ka == 3

 C = Xn(Np+3:Ymax);% Improper rational fitting

else

 disp('Ka need to be 1, 2 or 3')

end

% C complex when the residues are complex

for m=1:Np

 if dix(m)==1

 alfa = C(m); % real part of a complex pole

 betta = C(m+1); % imag part of a complex pole

 C(m) = alfa + i*betta; % the complex pole

 C(m+1) = alfa - i*betta; % the conjugate

 end

end

% Now calculate the zeros for sigma

BDA = zeros(Np);

KQA = ones(Np,1);

% Loop to calculate the zeros of sigma which are the new poles

for km = 1:Np

 if dix(km)== 0 % For a real pole

 BDA(km,km) = Lambda(km);

 elseif dix(km)== 1 % For a cp with - imag part

 BDA(km,km) = real(Lambda(km));

 BDA(km,km+1) = imag(Lambda(km));

 KQA(km) = 2;

 Aux = C(km);

 C(km) = real(Aux);

 elseif dix(km)== 2 % For a cp with + imag part

 BDA(km,km) = real(Lambda(km));

 BDA(km,km-1) = imag(Lambda(km));

 KQA(km) = 0;

 C(km) = imag(Aux);

 end

end

ZEROS = BDA - KQA*C.';

POLS = eig(ZEROS).';

%Forcing (flipping) unstable poles to make them stable

uns = real(POLS)>0;

POLS(uns) = POLS(uns)-2*real(POLS(uns));

 % Sort poles in ascending order. First real poles and then complex poles

CPX = imag(POLS)~=0; % Set to 0 for a real pole and to1 for a

%complex pole

rp = 0; % Initialize index for real poles

cp = 0; % Initialize index for complex poles

RePole = []; % Initialize the vector of real poles

CxPole = []; % Initialize the vector of cp

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 299

% Loop to separate real and complex poles

for k = 1:Np

 if CPX(k) == 0 % Real Pole

 rp = rp + 1;

 RePole(rp) = POLS(k);

 elseif CPX(k) == 1 % Complex pole

 cp = cp + 1;

 CxPole(cp) = POLS(k);

 end

end

RePole = sort(RePole); % Sort real poles

CxPole = sort(CxPole); % Sort complex poles

% For conjugate pairs store first the one with positive imag part

CxPole = (CxPole.')';

NewPol = [RePole CxPole];

A = NewPol.'; % Output

Function Residue

function [C,D,E]=Residue(Fs,s,Pi,Ns,Ka);

Np = length(Pi);

CPX = imag(Pi)~=0; % 0 for a rp and 1 for cp

rp = 0; % Initialize the index for real poles

cp = 0; % Initialize the index for complex poles

RePole = []; % Initialize the vector of real poles

CxPole=[]; %Initialize the vector of complex poles

% Loop to separate real poles and complex poles

for k = 1:Np

 if CPX(k) == 0 % Real Pole

 rp = rp + 1;

 RePole(rp) = Pi(k);

 elseif CPX(k) == 1 % Complex pole

 cp = cp + 1;

 CxPole(cp) = Pi(k);

 End

end

RePole = sort(RePole); % Sort real poles

CxPole = sort(CxPole); % Sort complex poles

CxPole = (CxPole.')';

Lambda = [RePole CxPole];

I = diag(ones(1,Np)); % Unit diagonal matrix

A = []; % Poles

B = ones(Ns,1); % weight factor

C = []; % Residues

D = zeros(1); % Constant term

E = zeros(1); % Proportional term
cpx = imag(Lambda)~=0; % 0 for rp and 1 for cp
dix = zeros(1,Np); % Vto identifies poles
if cpx(1)~=0 % If the first pole is complex
 dix(1)=1; % put 1 in dix(1) for the real part

 dix(2)=2; % put 2 in dix(2) for the imag part

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 300

 k=3; % continue dix for the third position

else

 k=2; % If the first pole is real continue dix for the second

% position

end

% complete classification of the poles

for m=k:Np

 if cpx(m)~=0 % If the pole is complex

 if dix(m-1)==1

 dix(m)=2; % If the previous position has the real part, set to % 2 to identify the imag part

 else

 dix(m)=1; % put 1 for the real part of a cp

 end

 end

end

% Output matrices:

Dk=zeros(Ns,Np);

for m=1:Np

 if dix(m)==0 % Real pole

 Dk(:,m) = B./(s-Lambda(m));

 elseif dix(m)==1 % Complex pole, 1st part

 Dk(:,m) = B./(s-Lambda(m)) + B./(s-Lambda(m)');

 elseif dix(m)==2 % Complex pole, 2nd part

 Dk(:,m) = i.*B./(s-Lambda(m-1)) - i.*B./(s-Lambda(m-1)');

 end

end

% Creates work space for matrices A and b

AA1=Dk;

AA2=B.*ones(Ns,1);

AA3=B.*s;

if Ka == 1

 AA = [AA1]; % Strictly proper rational fit

elseif Ka == 2

 AA = [AA1 AA2]; % Proper rational fit

elseif Ka == 3

 AA = [AA1 AA2 AA3]; % Improper fit

else

 disp('Ka must be 1, 2 or 3')

end

bb = B.*Fs.';

AAre = real(AA); % Real part of matrix A

AAim = imag(AA); % Imaginary part of matrix A

bbre = real(bb); % Real part of matrix b

bbim = imag(bb); % Imaginary part of matrix b

AAn = [AAre; AAim]; % Real and imag part of A

bbn = [bbre; bbim]; % Real and imag part of b

 [Xmax Ymax] = size(AAn);

for col=1:Ymax

 Eeuclidian(col)=norm(AAn(:,col),2);

 AAn(:,col)=AAn(:,col)./Eeuclidian(col);

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 301

end

% Solving system X

Xxn=AAn\bbn;

X=Xxn./Eeuclidian.';

% Putting residues into matrix C

C=X(1:Np);

% C is complex when the residues are complex

for m=1:Np

 if dix(m)==1

 alfa = C(m); % real part of a complex pole

 betta = C(m+1); % imag part of a complex pole

 C(m) = alfa + i*betta; % the complex pole

 C(m+1) = alfa - i*betta; % the conjugate

 end

end
% Outputs
if Ka == 1
 A = Lambda.'; % Poles
 C = C; % Residues
 D = 0; % Constant term
 E = 0; % Proportional term
elseif Ka == 2
 A = Lambda.'; % Poles
 C = C; % Residues
 D = X(Np+1); % Constant term
 E = 0; % Proportional term
elseif Ka == 3
 A = Lambda.'; % Poles
 C = C; % Residues
 D = X(Np+1); % Constant term
 E = X(Np+2); % Proportional term
End

Figure 14. Transversal geometry of aerial line in example.

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 302

Figure 15. Voltage responses at sending and receiving ends. Unit step excitation.

Figure 16. Voltage responses at sending and receiving ends. Sinusoidal excitation.

9. References

Bode, H. W. (1945). Network Analysis and Feedback Amplifier Design, D Van Nostrand

Company, London, 1945.

Brandao Faria, J. A. & Borges da Silva, J. F. (1986). Wave Propagation in Polyphase

Transmission Lines a General Solution to Include Cases Where Ordinary Modal

Theory Fails, Power Delivery, IEEE Transactions on, vol.1, no.2, (April 1986), pp.(182-

189).

Dommel H. W. (1969). Digital computer solution of electromagnetic transients in single

and multiphase networks. IEEE Trans. On Power App. Syst., Vol. 88, (July 1969),

pp.(388).

0 0.005 0.01 0.015 0.02
0

100

200

300

400

500

600

700

A
m

p
lit

u
d
e
 i
n
 v

o
lt
s

Time in seconds

Sending end phase A

Sending end phase B

Sending end phase C

Receiving end phase A

Receiving end phase B

Receiving end phase C

0 0.005 0.01 0.015 0.02
-600

-400

-200

0

200

400

600

A
m

p
lit

u
d
e
 i
n
 v

o
lt
s

Time in seconds

Sending end phase A

Sending end phase B

Sending end phase C

Receiving end phase A

Receiving end phase B

Receiving end phase C

An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 303

Dommel, H. W. (1992). EMTP Theory Book, 2nd ed., Microtran Power System Analysis

Corporation, Vancover, Canada, 1992.

Gustavsen B. & Semlyen A.(1998). Simulation of transmission line transients using vector

fitting and modal decomposition. Power Delivery, IEEE Trans. On, Vol.13, No.2,(April

1998), pp.(605-614).

Gustavsen, B., Semlyen, A. (1999). Rational approximation of frequency domain responses

by vector fitting, Power Delivery, IEEE Transactions on, vol.14, no.3, (July 1999). pp.(1052-

1061).

Gustavsen, B. & Mahseredjian, J. (2007). Simulation of Internal Overvoltages on

Transmission Lines by an Extended Method of Characteristics Approach, Power
Delivery, IEEE Transactions on, vol.22, no.3, (July 2007), pp.(1736-1742).

Gustavsen, B., Nordstrom, J. (2008). Pole Identification for The Universal Line Model Based

on Trace Fitting, Power Delivery, IEEE Transactions on, vol. 23, no. 1, (January 2008), pp.

(472–479).

Gustavsen, B. (2008). “User’s Guide for vectfit3.m”, Available at

 http://www.energy.sintef.no/Produkt/VECTFIT/index.asp, Aug. 2008.

Gutierrez-Robles, J. A., Snider, L. A., Naredo, J. L. & Ramos-Leaños (2011). An Investigacion

of Interpolation Methods Applied in Transmission Line Models for EMT Analysis,
Proceedings of the International Conference on Power System Transients, IPST, Delft, The

Netherlands, Jun. 2011.

Marcano, F. J. & Marti, J. R. (1997). Idempotent Line Model: Case Studies, Proceedings of the
International Conference on Power System Transients, IPST, Seattle, USA, Jun. 1997.

Marti, J. R. (1982). Accurate modeling of frequency dependent transmission lines in

electromagnetic transient simulations. IEEE Trans. On Power App. Syst., Vol. 101, No. 1,

(January 1982), pp. (147-155)

Morched, A., Gustavsen B. & Tartibi M.(1999).A universal model for accurate calculation of

electromagnetic transients on overhead lines and underground cables. IEEE Trans. On
Power Delivery, Vol. 14, No. 3,(July 1999), pp. (1032-1038)

Naredo, J. L., Brandao Faria, J. A., Borges da Silva, J. F. (1986). Discussion to Wave

Propagation in Polyphase Transmission Lines a General Solution to Include Cases

Where Ordinary Modal Theory Fails, Power Delivery, IEEE Transactions on, vol.1, no.2,

(April 1986), pp. (188-195)

Ramos-Leaños O. & Iracheta R. (2010). Wide-Band line model implementation in MatLab for

EMT analysis. Proceedings of the North American Power Symposium, Arlington USA,

September 2010.

Strang, G. (1988). Linear Algebra and its Applications. Third Edition, Harcourt College, 1988.

Semlyen A. & Dabuleanu A.(1975).Fast and accurate switching transient calculations on

transmission lines with ground return using recursive convolutions. IEEE Trans. On
Power App. Syst., Vol. 94, No. 2,(April 1975), pp. (561-571)

MATLAB – A Fundamental Tool for Scientific Computing and Engineering Applications – Volume 1 304

Semlyen, A., Abdel-Rahman, M. (1982). A state variable approach for the calculation of

switching transients on a power transmission line, Circuits and Systems, IEEE
Transactions on, vol.29, no.9, (September 1982), pp. (624-633)

Wedepohl, L. M., (1965). Electrical characteristics of polyphase transmission systems with

special reference to boundary-value calculations at power-line carrier frequencies,

Electrical Engineers, Proceedings of the Institution of, vol.112, no.11,(November 1965),

pp.(2103-2112)

