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1. Introduction 

The design and operation of power systems, as well as of power apparatuses, each time 

depends more on accurate simulations of Electromagnetic Transients (EMTs). Essential to 

this is to count with advanced models for representing power transmission lines and cables. 

Electromagnetic Transients Program (EMTP), the most used EMT software, offer various 

line models. Among these, the most important ones are: 1) the Constant Parameters Line 

model (CP), 2) the Frequency Dependent or J. Marti Line model (FD) and 3) the Universal 

Line Model (ULM). The CP Line model is the simplest and most efficient one from the 

computational point of view. Nevertheless, it tends to overestimate the transient 

phenomena as it considers that line parameters are constant. Thus, it is recommended only 

for modeling lines on zones distant to an area where a transient event occurs. The FD Line 

model (Marti, 1982) evaluates multi–conductor line propagation in the modal domain and 

takes into account effects due to frequency dependence of the line parameters. Nevertheless, 

as the transformations between the modal and the phase domains are approximated by real 

and constant matrices, its accuracy is limited to cases of aerial lines which are symmetric or 

nearly symmetric. The FD model tends to underestimate the transient phenomena. ULM 

(Morched et al., 1999) takes into account the full-frequency dependence of line parameters. 

ULM works directly in phase domain, thus avoiding simplifying assumptions regarding 

modal–to–phase transformations. So far it is the most general model, capable to accurately 

represent asymmetric aerial lines as well as underground cables.  

The development of ULM is fairly recent and these authors consider that it still is a subject 

for further research and development. The authors believe also that researchers and power 

system analysts will benefit considerably from the full understanding of the theoretical basis 
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of the ULM, as well as from counting with a ULM–type code that is easy to understand and 

modify. One problem with this is that the theoretical basis of ULM includes various topics 

and subjects that are scattered through several dozens of highly specialized papers. Another 

difficulty with this is the high complexity of the code for a ULM–type model. This chapter 

aims at providing a clear and complete description of the theoretical basis for this model. 

Although this description is intended for power engineers with an interest in 

electromagnetic transient phenomena, it can be of interest also to electronic engineers 

involved in the analysis and design of interconnects. The chapter includes as well the 

description of Matlab program of a ULM–type model, along with executable code and basic 

examples. 

2. Multi-conductor transmission line analysis  

2.1. Telegrapher’s Equations  

Electromagnetic behavior of transmission lines and cables is described by the Modified 

Telegrapher Equations, which in frequency domain are expressed as follows: 

 .
d
dx

 
V

ZI  (1) 

  .
d
dx

 
I

YV  (2) 

where V is the vector of voltages, I is the vector of currents, Z and Y are the (N X N) per unit-

length series impedance and shunt admitance matrix of a given line with N conductors, 

repectively. To solve equations (1) and (2), let equation (1) be first differentiated with respect 

to x; then, (2) is used to eliminate the vector of currents at the right hand side. The resulting 

expression is a second order matrix ODE involving only unknown voltages: 

  
2

.
2

d

dx


V
ZYV  (3) 

In the same way, equation (2) can be differentiated with respect to x and (1) can be used to 

eliminate the right-hand-side voltage term. The resulting expression involves unknown 

currents only: 

  
2

.
2

d

dx


I
YZI  (4) 

Solution to (4) is:  

 1 2( ) ,x xx e e YZ YZI C C   (5) 
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where C1 and C2 are vectors of integration constants determined by the line boundary 

conditions; that is, by the connections at the two line ends. In fact, the term including C1 

represents a vector of phase currents propagating forward (or in the positive x–direction) 

along the line, whereas the one with C2 represents a backward (or negative x–direction) 

propagating vector of phase currents. Expression (5) is an extension of the well–known 

solution for the single–conductor line. Note that this extension involves the concept of 

matrix functions. This topic is explained at section 2.2. 

The solution to (3) takes a form analogous to (5) and it is obtained conveniently from (5) and 

(2) as follows:  

  1 2
1( ) x x

c
d

x e e
dx

       
YZ YZI

V Y Z C C   (6) 

where, 1
C

 YZZ Y  is the characteristic impedance matrix and its inverse is the 

characteristic admittance matrix 1
.C

 YZY Z  

2.2. Modal analysis and matrix functions  

Matrix functions needed for multi-conductor line analysis are extensions of analytic 

functions of a one–dimensional variable. Consider the following function and its Taylor 

expansion: 

  
0

( ) k
k

k
f x a x




   (7) 

The application of f() to a square matrix A of order NN as its argument is accomplished as 

follows: 

  
0

( ) ,k
k

k
f a




 A A  (8) 

where A0 is equal to U, the NN unit matrix. Consider now the case of a diagonal matrix: 
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 (9) 

Application of (8) to  yields: 
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This expression thus shows that the function of a diagonal matrix is simply obtained 

applying the one–dimensional form of the function to the matrix nonzero elements. 

Consider next the function of a diagonalizable matrix A; that is,a matrix A that is similar to a 

diagonal one : 

 1.A MΛM  (11) 

where M is the nonsingular matrix whose columns are the eigenvectors of A, while  is the 

matrix whose diagonal elements are the eigenvalues of A (Strang, 1988). 

Application of f() as in (10) to A yields: 

      0 0
( )k k

k kk k
f a a f

   
 

   1 1 1A MΛM M Λ M M Λ M   (12) 

Therefore, the function of a diagonalizable matrix is conveniently obtained first by factoring 

A as in (10), then by applying the function to the diagonal elements of  and, finally, by 

performing the triple matrix product as in (11) and (12). 

It is clear from subsection 2.1, that multi-conductor line analysis requires evaluating matrix 

functions of YZ. To do so, it is generally assumed that YZ always is diagonalizable 

(Wedephol, 1965; Dommel, 1992). Although there is a possibility for YZ not being 

diagonalizable (Brandao Faria, 1986), occurrences of this can be easily avoided when 

conducting practical analysis (Naredo, 1986). 

3. Line modelling  

Figure 1 shows the representation of a multi-conductor transmission line (or cable) of length 

L, with one of its ends at x = 0 and the other at x = L. Let I0 be the vector of phase currents 

being injected into the line and V0 the vector of phase voltages, both at x=0. In the same 

form, IL and VL represent the respective vectors of injected phase currents and of phase 

voltages at x=L. Line equation solutions (5) and (6) are applied to the line end at x=0: 

 0 1 2(0)  I I C C  (13) 

 [0 1 2(0) ].C  V V Z C C  (14) 

Then, the value of C1 is determined from (13) and (14):  

 0 0
1 .

2
C


I Y V

C   (15) 

Expressions (5) and (6) are applied to the line end conditions at x = L: 

 1 2( ) L L
L L e e    YZ YZI I C C   (16) 

and 
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 ( ) .
1 2L C

L LL e e
    
 

YZ YZV V Z C C  (17) 

After doing this, (17) is pre–multiplied by YC and subtracted from (16) to obtain: 

 12 .L
L C L e   YZI Y V C   (18) 

Finally, (15) is introduced in (18) rendering 

 0 0
L

L C L Ce      
YZI Y V I Y V   (19) 

Expression (19) establishes the relation among voltages and currents at the terminals of a 

multi-conductor line section. Its physical meaning follows from realizing that the term 

I0+YCV0 at its right hand side represents a traveling wave of currents leaving the line end at x 
= 0 and propagating in the positive x–axis direction, whereas IL–YCVL at the left hand side is 

the traveling wave of currents leaving the line end at x = L. 

 

Figure 1. Multi-conductor line segment of length L. 

By a similar process as the previous one for deriving (19), it is possible to show also that the 

following relation holds as line equation solutions (5) and (6) are applied to line end 

conditions at x=0: 

 
0 0

L
C L C Le      

YZI Y V I Y V   (20) 

Note however that this relation can also be obtained by simply exchanging at (19) sub–

indexes 0 and L. This exchange is justified by the input/output symmetry of the line section. 

Expressions (19) and (20) provide a very general mathematical model for a multi-conductor 

transmission line. This is a model based on traveling wave principles. Let (19) and (20) be 

rewritten as follows: 

 , ,L sh L aux L I I I   (21) 

where, Ish,L =YCVL is the shunt currents vector produced at terminal L by injected voltages VL. 

Iaux,L =HIrfl,0 is the auxiliary currents vector consisting of the reflected currents at terminal 0, 
Irfl,0= I0+ YCV0 and the transfer functions matrix H=e-(YZ)L. 
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In the same way as it has been previously done for (19), expression (20) is conveniently 

represented as follows: 

  0 ,0 ,0sh aux I I I   (22) 

with, Ish,0 =YCV0 , Iaux,0 =HIrfl,L ,and Irfl,L= IL+ YCVL . 

Expressions (21) and (22) constitute a traveling wave line model for the segment of length L 

depicted in figure 1. The former set of expressions represents end L of the line segment, 

while the latter set represents end 0. A schematic representation for the whole model is 

provided by figure 2. Note that the coupling between the two line ends is through the 

auxiliary sources Iaux,0 and Iaux,L. 

 

Figure 2. Frequency domain circuit representation of a multi-conductor line.  

The line model defined by expressions (21) and (22) is in the frequency domain. Power 

system transient simulations require this model to be transformed to the time domain. For 

instance, the transformation of (21) to the time domain yields:  

 0 ,0 ,0sh aux i i i   (23) 

with 

 ,0 *sh C Li y v   (24) 

and 

 ,0 ,0*aux rfli h i
 (25) 

Note that at (23), (24), (25) the lowercase variables represent the time domain images of their 

uppercase counterparts at (22) and that the symbol * represents convolution. Reflected 

currents can be represented as  

 , , ,2rfl L sh L aux L i i i   (26) 

Expressions (23)-(26) constitute a general traveling–wave based time–domain model for line 

end 0. The model corresponding to the other end is obtained by interchanging sub–indexes 

“0” and “L” at (23)-(26). Equation (23) essentially provides the interface of the line–end 0 

model to the nodal network solver that, for power system transient analysis, usually is the 

EMTP (Dommel, 1996). Expressions (24) and (25) require the performing of matrix–to–vector 
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convolutions that are carried out conveniently by means of State–Space methods (Semlyen 

& Abdel-Rahman, 1982). State–Space equivalents of (23) and (24) arise naturally as YC and H 

are represented by means of fitted rational functions (Semlyen & Dabuleanu, 1975).  

4. Phase domain line model  

Since rational fitting and model solutions are carried out directly in the phase domain, the 

model described here is said to be a phase domain line model. Rational fitting for this model 

is carried out using the Vector fitting (VF) tool (Gustavsen, 2008). In the case of YC, the whole 

fitting process is done in the phase domain, whereas for H initial poles and time delays are 

first calculated in the modal domain. 

4.1. Rational approximation of Yc 

The following rational representation has been proposed for YC in (Marti, 1982) and 

(Morched et al., 1999):  

 0
1

Ny
i

C
i is q

  

G

Y G   (27) 

where Ny is the fitting order, qi represents the i–th fitting pole, Gi is the corresponding 

matrix of residues and G0 is a constant matrix obtained at the limit of YC when s=j. Note 

in (27) that common poles are used for the fitting of all the elements of YC obtained by fitting 

the matrix trace and finally the fitting of the matrices of residues Gi and of proportional 

terms G0 is done in the phase domain. Section 7 provides an overview of the VF procedure 

and further information is to be found in (Gustavsen & Semlyen, 1999) and (Gustavsen, 

2008). 

4.2. Rational approximation of H 

Rational fitting of transfer matrix H is substantially more involving than the one of YC above. 

To attain an accurate and compact (low order) rational representation for H it is essential to 

factor out all terms involving time delays (Marti, 1982). The major difficulty here is that its 

elements could involve a mix of up to N different delay terms due to the multimode 

propagation on an N–conductor line (Wedepohl, 1965). Separation of matrix H into single-

delay terms is obtained from the following modal factorization (Wedepohl, 1965):  

 1
m

H MH M   (28) 

where Hm is a diagonal matrix of the form  

 1 2[ , ,..., ]N LL L
m diag e e e    H   (29) 

and =(YZ) is the propagation constant of a conductor line (Wedepohl, 1965). As the triple 

product in (28) is performed by partitioning M in columns and M–1 in rows, the following 

expression is derived: 
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1

i
N L

i
i

e 


 H D   (30) 

where Di is the rank–1 matrix obtained from pre–multiplying the i–th column of M by the i–
th row of M–1. Matrix Di in fact is an idempotent (Marcano & Marti, 1997). The exponential 

factors at (30) can be further decomposed as follows:  

 ; 1,2, ,i i iL L se e e i N        (31) 

where  exp iL   is a minimum phase–shift function (Bode, 1945) and i is the time delay 

associated to the velocity of the i–th mode. Hence: 

 
1

i i
N L s

i
i

e e  


 H D


  (32) 

The time delays in (32) can be initially estimated by applying Bode’s relation for minimum 

phase complex functions (Bode, 1945) to the magnitudes of exp(-iL) in (30). Although (32) 

provides the desired separation of H as a sum of terms, each one involving a single delay 

factor, the following consideration is brought in for computational efficiency (Morched et 

al., 1999). Modal delays often occur in groups with almost identical values. Suppose that a 

number Ng of these groups can be formed and that (32) can be modified as follows:  

 
1

k
Ng

s
k

k
e 


 H H   (33) 

where Ng is less or equal to N, and k is the representative delay for the k–th group. Clearly, 

by comparing (33) and (32): 

 
1

1,2,...,i i
Ik L s

k i
i

e e k Ng  


 H D

  (34) 

with Ik being the number of modal terms in the k–th group. To determine whether a set of 

exponential factors can be grouped or not, the maximum phase shifts associated to their 

time delays are compared. The set is grouped into a single delay group if the phase shift 

differences are below a pre-established value typically chosen at 10 (Morched et al., 1999). 

Each term kH at (34) can now be considered free of delay factors and can be fitted as follows: 

 
( )

,

1 ,

1,2,...,
Nh k

k i
k

i k i

k Ng
s p

 


R
H   (35) 

where Nh(k) is the fitting order for the k–th term kH , pk,i represents its i–th fitting pole and 

Rk,i is the corresponding matrix of residues. Note in (35) that common poles are being used 

to fit all elements at each matrix kH . As (35) is introduced in (33), the following rational 

form is obtained for H:  

 
( )

,

1 1 ,

k
Ng Nh ks k i

k i k i

e
s p



 
  



R
H   (36) 
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Initial estimates for the poles as well as time delays are obtained in the modal domain. The 

poles result from applying VF to the sum of the modal exponential factors conforming each 

delay group. The time delays proceed from Bode’s formula as it has been said before. With 

all the poles pk,i and group delays k of (36) being estimated in the modal domain, the overall 

fitting of H is completed in the phase domain by obtaining the matrices of residues Rk,i and 

recalculating the poles (Gustavsen & Nordstrom, 2008). The fitting parameters so obtained 

can be taken as final or can be further refined by an iterative process. VF is applied 

throughout all these fitting tasks and detailed descriptions of these processes can be found 

in (Gustavsen & Nordstrom, 2008; Gustavsen & Semlyen, 1999). 

4.3. State-space analysis 

With the rational representation of YC and H state–space forms to evaluate ish,0 and iaux,0 arise 

naturally. Consider first the case of ish,0. Taking (22) and introducing (27) yields  

 ,0 0 0
1

Ny

sh i
i

  I G V W   (37) 

where 

 0 1,2,...,i
i

i

i Ny
s q

 

G

W V   (38) 

Application of the Inverse Laplace Transform to (37) and (38) gives the following 

continuous-time-state-space (CTSS) form for ish,0: 

 ,0 0 0
1

Ny

sh i
i

  i G v w   (39) 

and 

 0 1,2,...,i
i i i

d
q i Ny

dt
  

w
w G v   (40) 

The CTSS form to evaluate iaux,0, is derived now. On replacing the fitted form of H given by 

(36) into (22):  

 
( )

,0 ,
1 1

Ng Nh k

aux k i
k i 

  I X   (41) 

with 

 ,
, ,

,

1,2,...,
;

1,2,...,
k

L

sk i
k i rfl

k i

R i Ny
I e

k Ngs p
 




X   (42) 

Application of the Inverse Laplace Transform to (41) and (42) renders the following CTSS 

form: 
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( )

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x   (43) 

 ,
, , , ,

1,2,...,
( );

1,2,...,
k i

k i k i k i rfl L k

d i Ny
p t

k Ngdt



  



x
x R i   (44) 

CTSS forms (39), (40), (43) and (44) provide the basis for a phase domain line model (Morched 

et al., 1999). Nevertheless, their solution by a digital processor requires the conversion to 

discrete–time state–space (DTSS). This is accomplished by applying a numerical differentiation 

rule to the CTSS forms. The one adopted here is the mid–point rule of differentiation, which is 

equivalent to the trapezoidal integration rule extensively used in EMTP (Dommel, 1969, 1992). 

Application of this rule to (44) with t as the solution time step results in:  

 , , , , , ,

1,2,...,
' [ ( ) ' ( )];

1,2,...,k i k i k i k i rfl L k rfl L k

i Ny
a t t

k Ng
 


    


x x R i i   (45) 

where ak,i=(2+tpk,i)/ (2-tpk,i) and ,k iR =(tRk,i)/ (2-tpk,i). xk,i are discrete-state variables and 

primed variables denote their value at one previous time step x’k,i= xk,i(t-t). The discrete–

time version of (43) maintains its original form: 

( )

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x  

Transmission line simulation of EMTs requires the use of time steps t smaller than any of 

the travel times k in the line. Hence, (45) provides the update of state vectors xk,i using only 

past values of variables already available, either from initial conditions or from previous 

simulation time steps.  

The differentiation mid–point rule is now applied to (40): 

  0 0' ( ' ); 1,2,...,i i i ia v v i Ny   w w G  (46) 

where ai=(2+tqi)/ (2-tqi) and iG =(tGi)/ (2-tqi) 

Expression (46) is not a proper DTSS form, as wi depends on the present–time value of v0 

which still is to be determined (Gustavsen & Mahseredjian, 2007). This problem is fixed here 

with the following redefinition of the state variable vector:  

 1
0( ) / ( 1); 1,2,...,i i i iv a i Ny   y G w  (47) 

Introducing (47) in (46) and (39) the following expressions are obtained:  

 0' ' ; 1,2,...,i i ia v i Ny  y y   (48) 

 ,0 0 ,0sh y aux i Gv i   (49) 
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where  

,0
1

ˆ
Ny

y aux i i
i




i G y ; ˆ ( 1)i i ia G G ; 0
1

Ny

i
i

 G G G  

Expression (48) is a proper DTSS form for the sequential evaluation of ish,0 at the phase 

domain line model.  

Finally, the introduction of (43) and (49) in (23) results in: 

 0 0 ,0hist i Gv i   (50) 

with 

( )

,0 ,0 ,0 ,
1 1 1

ˆ
Ny Ng Nh k

hist y aux aux i i k i
i k i

x
  

     i i i G y  

Expression (50), along with (48) and (49), provides a discrete time–domain model for end 0 

of the line segment at figure 1. The expressions for the model at end L are simply obtained 

by exchanging sub–indexes 0 and L at (48), (49) and (50). Obviously, state variables “yi” and 

“xk,i” of end L model are different from those of end 0. Figure 3 provides a discrete–time 

circuit–model for the line segment of length x=L. This model is based on expression (50) and 

its companion for line end L. Note that the model consists of parallel arrangements of shunt 

conductances and auxiliary sources of currents comprising historic terms of ends (or nodes) 

0 and L. Figure 3 model is thus in an appropriate form for computer code implementation. 

In this chapter, the Matlab environment has been chosen for this end. 

 

Figure 3. Discrete time domain circuit representation of a multi-conductor line. 

5. Line model implementation in Matlab 

The discrete–time line model depicted in figure 3 and defined by (50) has been programmed 

by these authors in Matlab as an M–code function (see Appendix). This function consists of 

two sub–blocks, one for each multi-conductor line end. This model is to be used with a 

nodal network solver, a complete explanation on the nodal solver can be found in (Dommel, 

1969 & 1992). Expression (50) constitutes essentially the interface between the line model 

and the nodal solver. Each one of the two sub–blocks in the line model performs iteratively 

the six tasks that are described next for line–end 0 sub–block. Figure 4 provides the block 

diagram of the complete line/cable model, along with its interfacing with the nodal solver. 
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Step 1. State–variable and history–current values are assumed known, either from initial 

conditions or from previous simulation steps. These values are used by the nodal solver 

to determine line end (nodal) voltages v0 and vL. 

Step 2. Shunt current due to the characteristic admittance of the line is calculated by (49) 

repeated here for convenience: 

,0 0 ,0sh y aux i Gv i  

Step 3. Auxiliary current source value, due to the reflected traveling waves at the remote 

line end, is updated by (43): 

( )

,0 ,
1 1

Ng Nh k

aux k i
k i 

  i x  

Step 4. Vector of reflected currents at the local line–end (node) “irfl,0” is calculated for the 

present time by means of (26) being modified to suit line–end 0:  

,0 ,0 ,02rfl sh aux i i i  

This vector is delivered to end L sub–block through a delay buffer. Although branch current 

vector i0 usually is not explicitly required, it is conveniently evaluated here by (50): 

0 0 ,0hist i Gv i  

Step 5. Internal states inside the line model are updated by (48) and (45): 

0' 'i i ia v y y  

, , , , , ,' [ ( ) ' ( )]k i k i k i k i rfl L k rfl L ka t t     x x R i i  

Step 6. The vector of history currents for end (node) 0 is updated by means of (50) and the 

update is delivered to the nodal-network solver. 

Steps 1 to 6 are iterated Nt times until Ntt spans the total simulation time of interest. 

5.1. Handling of line-travel delays 

It follows from expressions (43) and (45) that the calculation of iaux,0 requires the reflected 

currents vector irfl,L being evaluated with various time delays , …, Ng. Recall that the 

delays are due to the travel time needed by a wave to travel from one line end to the other. 

Past values of irfl,L can be obtained either from line initial conditions or from previous 

simulation steps; nevertheless, these values are given by samples regularly distributed t 
seconds apart. Since the involved travel times (or line delays) usually are not integer 

multiples of t, the required values of irfl,L must be obtained by means of interpolations. The 

standard procedure for this is to interpolate linearly (Dommel, 1992) and this is adopted 

here. 
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Evaluation of the delayed values require a memory buffer spanning at least the largest 

travel time 

 max 1 2max{ , ,..., }Ng    ,  (51) 

and buffer length Nb is calculated as follows: 

 max 1bN
t

 
   

  (52) 

 

 

Figure 4. Line/Cable model’s complete flow diagram. 

If a propagation delay is an integer multiple of t, the required value of irfl can be readily 

retrieved from the memory buffer. This is illustrated by figure 5 where the simulation time 

step is t=0.03 ms and the travel time is =0.10 ms. It can be seen that at simulation time t= 

0.24 ms the required history value at 0.09ms is available from the table. 

On a multiphase system, nevertheless, it is highly improbable that all the propagation times 

can be made integer multiples of a single value of t suitable for transient simulations. Thus, 
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the required values must be obtained through interpolation. Figure 6 illustrates this case, 

where a simulation time step t=0.04 ms is assumed instead of the t=0.03 ms one at figure 

5. Notice that now the required history value, for a time delay of 0.09ms, is not readily 

available. 

Suppose now that the required value irfl(t–) is between the k–th and the (k+1)–th stored 

samples of irfl. Let  be the fractional part of /t, that can be obtained as follows: 

 ,
t t
 

 
     

  (53) 

with, 0 < <1. The estimated value of irfl(t–) by linear interpolation is thus: 

 , , , ,( ) ( ) [ ( ) ( )].rfl L k rfl L rfl L rfl Lt t r t t k t t k t t            i i i i   (54)  

Figure 7 illustrates the memory buffer management, either for irfl,0 or for irfl,L. At the first 

simulation time step corresponding to time t=0t, calculated irfl is stored at memory 1, and 

so on until step Nb which is the buffer size limit. Beyond this limit, memory cells 1, 2, 3 and 

on, are overwritten as figure. 7 shows, since their previously stored values are not needed 

any longer.  

 

Figure 5. Interpolation scheme: t integer multiple. 

 

Figure 6. Interpolation scheme: t non integer multiple. 

t(ms) irfl,0 irfl,L

0.0 * *

0.03 * *

0.09 * *

0.12 * *

0.15 * *

0.18 * *

0.21 * *

0.24 * *

t(ms) irfl,0 irfl,L

0.0 * *

0.04 * *

0.08 * *

0.12 * *

0.16 * *

0.20 * *

0.24 * *
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Figure 7. History buffer management.  

Linear interpolation is an order 1 numerical procedure and the trapezoidal rule used for the 

rest of the line model is of order 2. The question arises as to whether or not the order 2 

quadratic interpolation should be adopted instead. This has been investigated at (Gutierrez–

Robles et al., 2011) and it has been found that the increase in accuracy is marginal.  

6. Application examples 

The simulation results presented as follows are obtained with the Matlab implementation of 

the model being described here. These results are compared against those from the phase 

domain line model in EMTP-RV. Two examples are presented next, first an aerial 9–conductor 

line and, finally, one for an underground cable. Also a basic m-code for the described phase 

domain line model is provided at the appendix. The code is given along with the companion 

routines to perform the first example presented in (Ramos- Leaños & Iracheta, 2010). The 

reader can readily modify the provided m-code for other applications of interest.  

6.1. Aerial line case 

The transversal geometry of this test case is shown in figure 8. Phase conductors are 1192.5 

ASCR 54/19 and ground wires are 7 No 5 AWLD. This case consists of three coupled three–

phase transmission lines. First line (or circuit 1) is composed of conductors 1 to 3, second 

line (or circuit 2) includes conductors 5 to 6 and the third line (or circuit 3) comprises 

conductors 7 to 9. The line length is 150 km. The test circuit is shown in figure 9 where the 

source is 169 kV, Y-grounded, source impedance is determined by its zero and positive 

sequence data in Ohms: R0=2, R1=1, X0=22, X1=15, and closing times are 0 s for phase a, 0.63 

ms for phase b and 0.4 ms for phase c. The simulation time step is 5 s. 

 

Figure 8. Aerial line transversal geometry. 
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Figure 9. Test circuit for the case of a nine–conductor line. 

Simulation results are presented in figure 10 where the receiving end voltage waveforms of 

circuit 1 are shown, those for phase a are in blue, those for phase b are in green and those for 

phase c are in red. A dashed line is used for waveforms obtained with EMTP-RV, while a 

solid line is used for the results with the line model in Matlab. Notice that the two sets of 

results overlap and not difference can be seen. Figure 10 provides the differences between 

the two sets of results. Note that the largest difference is around 3e-9. 

 

Figure 10. (a) Over voltages at receiving end for conductors 1, 2 and 3, (b) Differences between results 

with Matlab model and with EMTP–RV. 

6.2. Underground cable case 

The underground cable system used for this test consists of three single–phase coaxial cables, its 

transversal layout is shown in figure 11. The Corresponding connection diagram is provided in 

figure 12. Circuit parameters are given in table 1, the cable length is 6.67km and the time step 

used for the simulation is 1 s. The applied excitation is by a 3ph 169kV ideal source. 

The simulation experiment consists in the simultaneous energizing of the three cable cores. 

The results presented in figure 13 correspond to the core voltages at the far end. Phase a 

voltages are in blue, phase b voltages are in green and those for phase c are in red. A dashed 

line is used for the results obtained with EMTP-RV, while a solid line is used for the Matlab 
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model results. Notice that both sets of results overlap and that no difference can be seen by 

eye. Figure 13 also shows the difference between the two sets of results which is around 4e-

9. Compared to the 1.69e+5 amplitude of the excitation source, this difference shows the 

outstanding accuracy of the Matlab model.  

 

Figure 11. Cable layout. 

Radius of inner solid conductor (m) 0.015

Resistivity nuclei/sheath (ohm/m) 4.25e-8/2.84e-8

Inner/Outer radius of sheath (m) 0.0258/0.0263

Relative permittivity of 1st & 2nd insulation 2.5

Table 1. Cable data. 

 

Figure 12. Cable test circuit. 

 

Figure 13.  (a) Receivng end core voltages, (b) absolute error.  
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7. Vector fitting 

The goal of VF is to approximate a complex function of frequency by means of a rational 

function; that is, a quotient of two polynomials of the frequency variable (Gustavsen & 

Semlyen, 1999). The function to be approximated could be trascendantal or could be 

specified by its values at a number of frequency points. The form of the approximation 

obtained with VF is that of a partial fraction expansion: 

 
1

( )
N

n

n n

r
f s

s p


   (55) 

VF estimates the system parameters by means of a two-stage linear least–squares 

procedure. First a set of initial poles for the partial fraction basis (55) is selected and 

relocated iteratively until a prescribed convergence criterion is attained. Then, 

convergence is tested by means of a second linear least–squares procedure in which the 

previously obtained poles are fixed and the corresponding residues are taken as the 

unknown parameters.  

Consider the following relation (Gustavsen & Semlyen, 1999): 

 
1 1

( ) 1 ,
N N

n n

n nn n

r r
f s

s p s p 

 
     

 
 

  (56) 

where, N is the order of approximation, np  represents the unknown poles and n̂r and nr  are 

unknown residues. Poles are initialized by values distributed logarithmically over the 

frequency range of interest. Expression (56) is now rewritten as follows: 

 
1 1

( ) ( ).
N N

n n

n nn n

r r
f s f s

s p s p 

 
     

 
 

  (57) 

An over–determined least squares equation–system is then obtained by evaluating (57) at a 

number M of specific frequencies, with M>2N: 

 ,Ax b   (58) 

where A is the M2N matrix whose elements depend on the poles, x is the 2N–dimension 

vector of unknown residues and b is the M–dimension vector with the values of the function 

to be approximated (Gustavsen & Semlyen, 1999). Special care is taken to accommodate next 

to each other those complex–conjugate pairs of pole–residues that can arise. Expression (58) 

is solved through an iterative process represented symbolically as follows: 

 ( 1) ( ) ,j j A x b   (59) 

were (j–1) and (j) represent super–indexes and j is the iteration index. A(0) is obtained from 

the initial poles with logarithmic distribution over the frequency range of interest 
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(Gustavsen & Semlyen, 1999). As (59) is solved in the first iteration, a second step is to use 

the obtained residue values to recalculate new poles for the function to be fitted f(s). This is 

accomplished by computing the eigenvalues of the following matrix Q (Gustavsen & 

Semlyen, 1999): 

 ,T Q W gx   (60) 

where W is a diagonal matrix containing previously calculated poles np , g is a vector of 

ones and x  is a vector containing the r  terms only. The reason for using (60) is explained 

next. Let (56) be rewritten as follows: 
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It is clear in (61) that the two polynomials containing the poles np  cancel each other, and 

that the zeros nz  become the poles of f(s). Notice further that the denominator on the left–

hand–side of (61) can be written as follows: 
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  (62) 

Zeros nz  are then obtained by finding the roots of (Gustavsen & Semlyen, 1999) 

 
1 1, 1
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 
     

 
     (63) 

which is equivalent to finding the eigenvalues of Q in (60) (Gustavsen & Semlyen,  

1999). 

The newly found set of poles is replaced in (55) to determine a new set of residues rn. This is 

again an over–determined linear system. The fitting error is tested at this stage for each 

available sample of f(s). If the error level is not acceptable, the new poles are used to restart 

the procedure as with (56). If the desired error limit is not met after a pre-specified number 

of iterations, then, the order of approximation N is increased and the iterative procedure is 

restarted (Gustavsen & Semlyen, 1999).  

Even in most cases where initial poles are not chosen adequately, VF is capable of finding a 

solution at the expense of more iterations. In some cases an iteration can produce unstable 

poles; these poles simply are flipped into the left–hand–side part of the complex plane (i.e., 

the stable part) and a new solution is searched (Gustavsen & Semlyen, 1999). 
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8. Conclusions 

Proper design and operation of present-day power systems and apparatuses each time 

require accurate simulations of their electromagnetic transient performance. An important 

aspect of these simulations is the realistic representation of transmission lines by digital 

computer models. The ULM is the most general line model available today, mostly with 

EMTP–type programs. By being of relatively recent creation, this model still is a subject for 

substantial improvements in accuracy, stability and computational efficiency. It has been 

postulated in this work that, both, researchers and power system analysts will benefit 

considerably from the full understanding of the theoretical basis of the ULM, as well as from 

counting with a ULM–type code that is easy to understand and modify. It has been 

contended also that the best way to carry out ULM research and development is by 

providing a model version in an interpretive environment and Matlab has been the platform 

chosen for this. This chapter provides a comprehensive description of the theoretical basis of 

ULM, phase domain line model. In addition to this, full description of a ULM prototype in 

Matlab has been provided here, along with executable code and typical application 

examples. 
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Appendix 

CODE EXECUTION 

The following code provides the line model described in the paper and it is embedded into 

an application example. It simulates the simultaneous energizing of a 150 km long aerial 

line. At the source side the three voltage sources have a 600  Thevenin impedance. The 

program asks for the type of source (unit step or three phase sinusoids). At the load end the 

line is open. Figure 14 shows the geometry of the simulated line. Figure 15 shows the 

sending and receiving voltages for the unit step source, while Figure 16 shows the sending 

and receiving voltages for the sinusoidal source. 

Note at Figure 15 that waveforms for phases A and C are equal and their plots are 

superposed. This is because the symmetry of the line and the excitation. 
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Main program 

clear all 

clc 

 % m file to set line data 

LineData 

 % Per unit length parameters 

[Zg,Zt,Zc,Yg,ZL,YL] = LineParameters(Mu,Eo,Rsu,Geom,Ncon,Ns,w); 

 % Modal Parameters 

for k=1:Ns 

   [Yc(:,:,k),Vm(k,:),Hm(k,:)] = ABYZLM(ZL(:,:,k),YL(:,:,k),lenght,w(k)); 

end 

%  Characteristic Admittance Fitting 

[YcPoles,YcResidues,YcConstant,YcProportional] = YcFit(Yc,f,Ns,Ncon); 

 % Hk fit 

[HkPoles,HkResidues,HkConstant,HkProportional,md] = 

HkFitTrace(Hm,Vm,ZL,YL,f,Ns,lenght,Ncon); 

% m file to execute simulation loop. 

SimulationLoop 

Code to Load LineData  

% Line Geometry 

% column 1—conductor number 

% column 2-- x position of each cond in m 

% column 3-- y position of each cod in m 

% column 4-- radii of each conductor 

% column 5-- number of conductor in bundle 

% column 6-- distance between  conductors in bundle 

% column 7—conductor resistivity  

% column 8—conductor relative permitivity 

% column 9-- line lenght in m 

 Geom=[1    0 20  0.0153  3  0.4  2.826e-8  1e3 150e3 

               2   10 20  0.0153  3  0.4  2.826e-8 1e3 150e3 

               3   20 20  0.0153  3  0.4  2.826e-8  1e3 150e3]; 

 lenght  = Geom(1,9);               % Line lenght 

Ncon  = Geom(max(Geom(:,1)),1);  % # of cond 

Rsu  = 100;               % Earth resistivity Ohm-m 

Mu  = 4*pi*1E-7;             % Henry's/meters 

Eo  = (1/(36*pi))*1E-9;   % Farads/meters 

Rhi  = 9.09E-7;   % Ohm-m resistivity of the iron. 

Ral = 2.61E-8;   % Ohm-m res of the aluminum. 

Rhg  = 2.71E-7;  % Ohm-m  res of the sky wires. 
Ns  = 500;                           % Number of samples 
f  = logspace(-2, 6, Ns);      % Vector of log spaced Frequencies 
w = 2*pi*f;   % Vector of freqs in radian/sec. 

Function LineParameters 

function [Zg,Zt,Zc,Yg,ZT,YT]=LineParameters (Mu,Eo,Rsu,Geom,Ncon,Ns,w) 
 % Function to compute the distances between conductor 
[Dij,dij,hij]=Height(Geom); 
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Zg  = zeros(Ncon,Ncon,Ns); 

Zt  = zeros(Ncon,Ncon,Ns); 

Zc  = zeros(Ncon,Ncon,Ns); 

Yg  = zeros(Ncon,Ncon,Ns); 

Zcd = zeros(Ncon,Ns); 

Zaf = zeros(Ncon,Ns); 

P  = (1./sqrt(j*w*Mu/Rsu));  % Complex depth 

Pmatrix = log(Dij./dij);    % Potential Coeff. Matrix  

Pinv    = inv(Pmatrix);       % Inverse of Pmatrix 

% Loop to compute matrices at all frequencies  

for kl = 1:Ns 

   % Geometric impedance 

   Zg(:,:,kl) = (j*w(kl)*Mu/(2*pi))*Pmatrix; 

   % Earth impedance 

   for km = 1:Ncon 

      for kn = 1:Ncon 

         if km == kn 

            Zt(km,km,kl) = (j*w(kl)*Mu/(2*pi))* 

            log(1+P(kl)./(0.5*hij(km,km))); 

         else 

           num  = hij(km,kn)^2 + 4*P(kl)*hij(km,kn) +  

            4*P(kl)^2 + dij(km,kn)^2; 

            den = hij(km,kn)^2 + dij(km,kn)^2; 

            Zt(km,kn,kl) = (j*w(kl)*Mu/(4*pi))* 

           log(num/den); 

         end 

      end 

   end 

   % Geometric admittance 

   Yg(:,:,kl) = (j*w(kl)*2*pi*Eo)*Pinv; 

end 

% Conductor impedance 

for kd = 1:Ncon; 

   Rcon = Geom(kd,4); %  conductor radii in m. 

   Nhaz = Geom(kd,5);  % # of conductor in bundle 

   Rpha = Geom(kd,7); % Resistivity in Ohm-m. 

   Zcd(kd,:)  = (1/Nhaz)*Rpha./(pi.*Rcon.^2);  

   Zaf(kd,:)  = (1/Nhaz)*(1+j).*(1./(2.*pi.*Rcon)) .* 

   sqrt(0.5.*w.*Mu.*Rpha); 

   Zc(kd,kd,:) = sqrt(Zcd(kd,:).^2 + Zaf(kd,:).^2); 

end 

% Outputs 

ZT = Zg + Zt + Zc ;  % Total impedance 

YT = Yg ;                   % Total admittance 

Function ABYZLM 

function [Yc,Vm,Hmo] = ABYZLM(Z,Y,Lo,w) 

 [M, Lm] = eig(Y*Z);   % Eigenvalues of YZ 
Minv = inv(M);  % Inverse of eigenvectors matrix 
Yc  = inv(Z)*(M*sqrt(Lm)*Minv);  %  Characteristic Admittance 
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Gamma   = sqrt(diag(Lm));             % Propagation constants. 

Vm = w./imag(Gamma);     % Modal Velocities 

Hmo = diag(expm(-sqrtm(Lm)*Lo));  % Modal propag. Matrix H 

Function YcFit 

function [YcPoles,YcResidues,YcConstant, YcProportional]=YcFit(Yc,f,Ns,Ncon) 

% Trace of characteristic admittance matrix 

for k = 1:Ns 

    Ytrace(k,1) = trace(Yc(:,:,k)); 

end 

Npol = 6;                                % Number of poles 

[Ps] = InitialPoles(f,Npol);   % Set initial poles 

s    = j*2*pi*f.';               % Vector of values of variable "s" 

Ka=2; % 1.-Strictly proper, 2.-Proper, 3.-Improper 

for khg=1:20 

   % Fit the trace of Yc (Poles) 

   [YcPoles]=Poles(Ytrace.',s,Ps,Ns,Ka);   

   Ps=YcPoles; 

end 

% Residues and constant term for Yc from poles of trace of Yc 

for k = 1:Ncon 

   for l = 1:Ncon 

      Hs(:,1) = Yc(k,l,:); % k-l term of  admittance 

      [C,D,E]=Residue(Hs.',s,YcPoles,Ns,Ka);  

      YcResidues(k,l,:) = C;       % k-l residues term  

      YcConstant(k,l)  = D;       % k-l constant term 

      YcProportional(k,l)=E; %k-l proportional term 

   end 

end 

Function HkFitTrace 

function [HkPoles,HkResidues,HkConstant, HkProportional,md]=HkFit(Hm,Vm,ZL,YL,f,Ns, 

lenght,Ncon); 

 % Minimum phase of each mode 

md = ModeDelay(Hm.',f,lenght,Vm.',Ns,Ncon); 

% Computing Idempotents  

for k=1:Ns 

   % Function to calculate Idempotents of Y*Z 

   [Hk] = HmIdem(ZL(:,:,k),YL(:,:,k),lenght,f(k), md,Hm(k,:)); 

   HkIdem(:,:,:,k) = Hk; % Idempotents 

end 

for m = 1:3 

   for k=1:Ns 

      TraceHk(m,k) = trace(HkIdem(:,:,m,k)); 
   end 
end 
s = j*2*pi*f.';       % Vector of the variable "s" 

Ka =1;%1.-Strictly proper,  2.-Proper,  3.-Improper 

Npol = 5;                            % Number of poles 

[Ps] = InitialPoles(f,Npol); % Set the initial poles 
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for m = 1:3 

   Hk = TraceHk(m,:); 

   for khg=1:10 

      [HkPol]=Poles(Hk,s,Ps,Ns,Ka); 

      Ps=HkPol; 

   end 

   HkPoles(m,:)=Ps; 

end 

% Residues for Idempotent matrices of 

% Hm from the poles of each trace. 

for m = 1:3 

   for k = 1:Ncon 

      for l = 1:Ncon 

         Hs(:,1) = HkIdem(k,l,m,:);  % k-l term 

         [C,D,E]=Residue(Hs.',s,HkPoles(m,:),Ns,Ka); 

         HkResidues(k,l,m,:)   = C; % k-l-m term 

         HkConstant(k,l,m)   = D; % k-l-m constant 

         HkProportional(k,l,m) = E; % k-l-m prop 

      end 

   end 

end 

SimulationLoop program 

Ts   = 0.016;                % Observation time 

Nt   = fix(Ts/Dt);      % Number of time steps 

t1   = fix(md./Dt);    % Delay of H in samples 

t0   = fix(max(md)./Dt);    % Maximum time delay as expressed in 

% number of samples 

t    = (0:Dt:(Nt+t1)*Dt-Dt);     % Vector of time 

Ks = menu('CHOOSE THE TYPE OF INPUT SOURCE' , '1 -unit step' , '2 -sinusoidal'); 

if Ks == 1  % unit step source 

    Isr  = ones(Ncon,Nt+t0); 

elseif Ks ==2  % sinusoidal source 

    Isr(1,:) = sin(337*t); 

    Isr(2,:) = sin(337*t+2*pi/3); 

    Isr(3,:) = sin(337*t+4*pi/3); 

end 

NpYc = length(YcPoles); % Number of poles of Yc 

NpH = length(HkPoles); % Number of poles for the first  

% Idempotent matrix 

Ng = 3;                   %Number of groups 

 % Initialize the states for both nodes 

ZA = zeros(Ncon,NpYc); % State variables 

ZB  = zeros(Ncon,NpYc);  % State variables 

YA  = zeros(Ncon,NpH,Ng);  % State variables 

YB  = zeros(Ncon,NpH,Ng);   % State variables 

IfarA = zeros(Ncon,t0+3);  % Current at node A 
IfarB = zeros(Ncon,t0+3);     % Current at node B 
VO  = zeros(Ncon,1);    % Voltage at node A 

Vi  = zeros(Ncon,Nt+t0);       % Voltage at node A 



 
An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients 293 

VL  = zeros(Ncon,1);       % Voltage at node B 

Vf  = zeros(Ncon,Nt+t0);       % Voltage at node B 

IO  = zeros(Ncon,1);       % Current at node A 

Ii  = zeros(Ncon,Nt+t0);       % Current at node A 

IL  = zeros(Ncon,1);       % Current at node B 

If  = zeros(Ncon,Nt+t0);       % Current at node B 

Iri = zeros(Ncon,Nt+t0);      % Current at Y source 

Irf = zeros(Ncon,Nt+t0);     % Current at Y charge 

 IfarAint = zeros(Ncon,Ng); % Current at node A 

IfarBint = zeros(Ncon,Ng);     % Current at node B 

% Constants for the state ZA and ZB 

Ai(:,1) = (1+(Dt/2)*YcPoles)./(1-(Dt/2)*YcPoles); 

Au(:,1) = ((Dt/2)./(1-(Dt/2)*YcPoles)); 

Bi(:,1) = (Ai+1).*Au; 

Gy = zeros(Ncon,Ncon); 

for nm = 1:NpYc 

    Di(:,:,nm)    = YcResidues(:,:,nm)*Bi(nm); 

    Gy  = Gy + YcResidues(:,:,nm)*Au(nm); 

end 

% Constants for the states YA and YB 

for k = 1:Ng 

    K1(:,k) = (1+(Dt/2)*HkPoles(:,k))./(1-(Dt/2)*HkPoles(:,k)); 

    Ka(:,k) = (((Dt/2))./(1-(Dt/2)*HkPoles(:,k))); 

    Ku(:,k) = (K1(:,k)+1).*Ka(:,k); 

end 

for k = 1:Ng 

    for nm = 1:NpH 

     K2(:,:,nm,k) =  HkResidues(:,:,nm,k).*Ka(nm,k); 

     K3(:,:,nm,k) = HkResidues(:,:,nm,k).*Ku(nm,k); 

    end 

end 

Gy  = Gy + YcConstant;   % Admitance of the Ish 

Yi  = diag(eye(3)*[1/600; 1/600; 1/600]);       % Admittance of the source, connected at node A 

Gys = inv(Gy + Yi);  % Impedance to calculate VO 

Yr  =diag(eye(3)*[1/1e6; 1/1e6; 1/1e6]);     % Admittance of load connected at node B 

Gyr = inv(Gy + Yr);  % Impedance to calculate VL 

% Contants terms to perform the interpolation 

tm =md - t1*Dt;  % Time for the interpolation 

% Linear interpolation constants 

c1 = tm/Dt; 

c2 = 1-c1; 

c3 = ones(Ng,1); 

% Pointers for the interpolation and the buffer 

h1 = t1+1; 

h2 = t1+2; 

h3 = t1+3; 

 for k = t0+2:Nt+t0-3 

         IfarA(:,1) = IL + Gy*VL + sum(ZB(:,:),2); 

        IfarB(:,1) = IO + Gy*VO + sum(ZA(:,:),2); 

     % Linear interpolation 
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    for m = 1:Ng 

        IfarAint(:,m) = c2(m)*IfarA(:,t1(m)) + c3(m)*IfarA(:,h1(m)) + c1(m)*IfarA(:,h2(m)); 

        IfarBint(:,m) = c2(m)*IfarB(:,t1(m)) + c3(m)*IfarB(:,h1(m)) + c1(m)*IfarB(:,h2(m)); 

    end 

    IfarA(:,2:h3) = IfarA(:,1:h2); 

    IfarB(:,2:h3) = IfarB(:,1:h2); 

    for m = 1:NpYc 

        ZA(:,m) = Ai(m)*ZA(:,m) + Di(:,:,m)*VO; 

        ZB(:,m) = Ai(m)*ZB(:,m) + Di(:,:,m)*VL; 

    end 

    for l = 1:Ng 

        for m = 1:NpH 

            YA(:,m,l) = K1(m,l)*YA(:,m,l) + K2(:,:,m,l)*IfarAint(:,l); 

            YB(:,m,l) = K1(m,l)*YB(:,m,l) + K2(:,:,m,l)*IfarBint(:,l); 

        end 

    end 

    HistO = - sum(ZA(:,:),2) + sum(sum(YA(:,:,:),3),2); 

    HistL  = - sum(ZB(:,:),2) + sum(sum(YB(:,:,:),3),2); 

    VO = Gys*(Isr(:,k)+HistO); 

    VL = Gyr*HistL; 

    IO = Gy*VO - HistO; 

    IL = Gy*VL - HistL; 

    Vi(:,k) = VO; 

    Vf(:,k) = VL; 

    Ii(:,k) = IO; 

    If(:,k) = IL; 

end 

Iri = Yi*Vi; 

Irf = Yr*Vf; 

vt = (0:Dt:length(Vi(1,:))*Dt-(t0+4)*Dt)'; 

N = length(vt); 

a1 = t1+1; 

a2 = Nt+t1-3; 

figure(1),plot(vt,Vi(:,a1:a2),':',vt,Vf(:,a1:a2)) 

ylabel('Amplitude in volts') 

xlabel('Time in seconds') 

legend('Sending end phase A' , 'Sending end phase B' , 'Sending end phase C' , 'Receiving end phase A' , 

'Receiving end phase B' , 'Receiving end phase C') 

Function Height 

function[Dij,dij,hij]=Height(Geom) 

Ls   = Geom(max(Geom(:,1)),1); 

Req  = zeros(Ls,1); 

 % Equivalent bundle radii 

k4  = sqrt(2*(Geom(:,6)/2).^2); 
for nc = 1: Ls; 
   if Geom(nc,5)==1 
      Req(nc) = Geom(nc,4); 
   else 

      Req(nc) = (Geom(nc,4).*Geom(nc,5).*k4(nc).^ 
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(Geom(nc,5)-1)).^(1./Geom(nc,5)); 

   end 

end 

% Direct and image distances among conductors 

for xl = 1:Ls; 

   for yl = 1:Ls; 

      if xl==yl 

         dij(xl,yl)=Req(xl); 

         y1=Geom(yl,3); 

         hij(xl,yl)=2*y1; 

         Dij(xl,yl)=hij(xl,yl); 

      else 

         x=abs(Geom(yl,2)-Geom(xl,2)); 

         y=abs(Geom(yl,3)-Geom(xl,3)); 

         dij(xl,yl)=sqrt(x^2 + y^2); 

         y1=Geom(xl,3); 

         y2=Geom(yl,3); 

         hij(xl,yl)=y1+y2; 

         x=abs(Geom(yl,2)-Geom(xl,2)); 

         y=hij(xl,yl); 

         Dij(xl,yl)=sqrt(x^2 + y^2); 

      end 

   end 

end 

Function InitialPoles 

function [Ps]=InitialPoles(f,Npol) 

 even  = fix(Npol/2); % # of complex initial poles 

p_odd = Npol/2 - even; % Auxiliary variable to check if number 

% of initial poles is odd 

disc  = p_odd ~= 0;  %   0 for  even Nr of initial poles  &  1 – for  

% odd Nr. 

% Set a real pole in case of disc == 1 

if disc == 0    % Even Nr of initial poles 

    pols = []; 

else            % Odd Nr of initial poles 
    pols = [(max(f)-min(f))/2]; 
end 
% Set the complex initial poles 
bet = linspace(min(f),max(f),even); 
for n=1:length(bet) 
   alf=-bet(n)*1e-2; 
   pols=[pols (alf-j*bet(n)) (alf+j*bet(n)) ]; 
end 
Ps = pols.';  % Column vector of initial poles 

Function Poles 

function [A]=Poles(Fs,s,Pi,Ns,Ka); 
Np  = length(Pi);   % Length of vector  containing starting poles 

CPX  = imag(Pi)~=0;  %  0 for  real pole and 1 for  complex pole 
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rp  = 0;   % Initialize the index for real poles 

cp  = 0;   % Initialize the index for complex poles 

RePole = [];  % Initialize the vector of real poles 

CxPole=[];%Initialize the vector of complex poles 

% Loop to separate real poles and complex poles 

for k = 1:Np 

   if CPX(k) == 0     % Real Pole 

      rp = rp + 1; 

      RePole(rp) = Pi(k); 

   elseif CPX(k) == 1 % Complex pole 

      cp = cp + 1; 

      CxPole(cp) = Pi(k); 

   end 

end 

Lambda = Pi.'; 

RePole = sort(RePole);       % Sort real poles 

CxPole = sort(CxPole);       % Sort complex poles 

Lambda = [RePole CxPole];  % Concatenate poles 

I  = diag(ones(1,Np));   % Unit  matrix 

A  = [];                     % Poles 

B  = ones(Ns,1);      % the weight factor 

C      = [];                  % Residues 

D      = zeros(1);       % Constant term 

E      = zeros(1);        % Proportional term 

KQA    = ones(Ns,1); 

 

cpx = imag(Lambda)~=0;  %  0 if pole is real and 1 if pole is 

% complex. 

dix = zeros(1,Np);      % Initializes vector of pole types 

if cpx(1)~=0      % If the first pole is complex 

   dix(1)=1;        %  real part 

   dix(2)=2;     %  imag part 

   k=3;           % continue dix for third position 

else 

   k=2;  % If the first pole is real continue dix for the second position 

end 

% complete the classification of the poles 

for m=k:Np  

   if cpx(m)~=0         % If the pole is complex 

      if dix(m-1)==1 

         dix(m)=2;    % If the previous position has the real part put 2  

% to identifies the imag part 

      else 

         dix(m)=1;    % 1 for the real part of a complex pole 

      end 

   end 

end 

% Creates matriz A  divided in four parts A = [A1 A2 A3 A4] 

% A1 = Dk 

% A2 = B.*ones(Ns,1) 
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% A3 = B.*s 

% A4 = -Dk*Fs 

Dk=zeros(Ns,Np);  % Initialize  matrix with zeros 

for m=1:Np    % Iterative cycle for all poles 

   if dix(m)== 0                 % For a real pole 

      Dk(:,m) = B./(s-Lambda(m));   

   elseif dix(m)== 1  % For the real part 

      Dk(:,m)=B./(s-Lambda(m)) + 

                      B./(s-Lambda(m)'); 

   elseif dix(m)== 2   % For the imag part 

      Dk(:,m) = i.*B./(s-Lambda(m-1)) -  

                        i.*B./(s-Lambda(m-1)'); 

   end 

end 

% Creates work space for matrix A 

A1 = Dk; 

A2 = B.*ones(Ns,1);  

A3 = B.*s;   

for col = 1:Np 

   A4(:,col) = -(Dk(:,col).*Fs.'); 

end  

% Asigns values to A 

if Ka == 1 

    A = [A1 A4];  % Strictly proper rational fitting 

elseif Ka == 2 

    A = [A1 A2 A4]; % Proper rational fitting 

elseif Ka == 3 

    A = [A1 A2 A3 A4]; % Improper rational fitting 

else 

    disp('Ka need to be 1, 2 or 3') 

end 

% Creates matrix b = B*Fs 

b = B.*Fs.'; 

% Separating real and imaginary part 

Are = real(A);    % Real part of matrix A 

Aim = imag(A);    % Imaginary part of matrix A 

bre = real(b);    % Real part of matrix b 

bim = imag(b);    % Imaginary part of matrix b 

An = [Are; Aim];  % Real and imaginary part of A 

bn = [bre; bim];   % Real and imaginary part of b 

% Routine to applies the Euclidian norm to An 

[Xmax Ymax] = size(An); 

for col=1:Ymax 

  Euclidian(col)=norm(An(:,col),2); 

  An(:,col)=An(:,col)./Euclidian(col); 

end 

% Solving system 

Xn = An\bn; 

Xn = Xn./Euclidian.'; 

% Put the residues into matrix C 
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if Ka == 1 

   C = Xn(Np+1:Ymax);  % Strictly proper fitting 

elseif Ka == 2 

   C = Xn(Np+2:Ymax);     % Proper rational fitting 

elseif Ka == 3 

   C = Xn(Np+3:Ymax);% Improper rational fitting 

else 

   disp('Ka need to be 1, 2 or 3') 

end 

% C complex when the residues are complex 

for m=1:Np 

   if dix(m)==1 

      alfa = C(m);  % real part of a complex pole 

      betta = C(m+1); % imag part of a complex pole 

      C(m)   = alfa + i*betta;  % the complex pole 

      C(m+1) = alfa - i*betta;  % the conjugate 

   end 

end 

% Now calculate the zeros for sigma 

BDA = zeros(Np); 

KQA = ones(Np,1); 

% Loop to calculate the zeros of sigma which are the new poles 

for km = 1:Np 

   if dix(km)== 0          % For a real pole 

      BDA(km,km) = Lambda(km); 

   elseif dix(km)== 1  % For a cp with - imag part 

      BDA(km,km)   = real(Lambda(km)); 

      BDA(km,km+1) = imag(Lambda(km)); 

      KQA(km)      = 2; 

      Aux = C(km); 

      C(km) = real(Aux); 

   elseif dix(km)== 2 % For a cp with + imag part 

      BDA(km,km)   = real(Lambda(km)); 

      BDA(km,km-1) = imag(Lambda(km)); 

      KQA(km)      = 0; 

      C(km)  = imag(Aux); 

   end 

end 

ZEROS = BDA - KQA*C.'; 

POLS  = eig(ZEROS).'; 

%Forcing (flipping) unstable poles to make them stable 

uns  = real(POLS)>0; 

POLS(uns) = POLS(uns)-2*real(POLS(uns)); 

 % Sort poles in ascending order. First real poles and then complex poles 

CPX    = imag(POLS)~=0;  % Set to 0 for a real pole and  to1 for a  

%complex pole 

rp  = 0;  % Initialize index for real poles 

cp  = 0;  % Initialize index for complex poles 

RePole = [];  % Initialize the vector of real poles 

CxPole = [];  % Initialize the vector of cp 
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% Loop to separate real and complex poles 

for k = 1:Np 

   if CPX(k) == 0     % Real Pole 

      rp = rp + 1; 

      RePole(rp) = POLS(k); 

   elseif CPX(k) == 1 % Complex pole 

      cp = cp + 1; 

      CxPole(cp) = POLS(k); 

   end 

end 

RePole = sort(RePole);     % Sort real poles 

CxPole = sort(CxPole);     % Sort complex poles 

%  For conjugate pairs store first the one with positive imag part 

CxPole = (CxPole.')'; 

NewPol = [RePole CxPole]; 

A = NewPol.';   % Output 

Function Residue 

function [C,D,E]=Residue(Fs,s,Pi,Ns,Ka); 

Np   = length(Pi); 

CPX = imag(Pi)~=0;  % 0 for a rp and 1 for cp 

rp     = 0;   % Initialize the index for real poles 

cp     = 0;   % Initialize the index for complex poles 

RePole = [];    % Initialize the vector of real poles 

CxPole=[]; %Initialize the vector of complex poles 

% Loop to separate real poles and complex poles 

for k = 1:Np 

   if CPX(k) == 0     % Real Pole 

      rp = rp + 1; 

      RePole(rp) = Pi(k); 

   elseif CPX(k) == 1 % Complex pole 

      cp = cp + 1; 

      CxPole(cp) = Pi(k); 

   End 

end 

RePole = sort(RePole);       % Sort real poles 

CxPole = sort(CxPole);       % Sort complex poles 

CxPole = (CxPole.')'; 

Lambda = [RePole CxPole]; 

I  = diag(ones(1,Np));   % Unit diagonal matrix 

A      = [];                 % Poles 

B      = ones(Ns,1);       % weight factor 

C      = [];                      % Residues 

D      = zeros(1);           % Constant term 

E      = zeros(1);           % Proportional term 
cpx = imag(Lambda)~=0;  % 0 for rp and 1 for cp 
dix = zeros(1,Np);      % Vto identifies poles 
if cpx(1)~=0          % If the first pole is complex 
   dix(1)=1;           % put 1 in dix(1) for the real part 

   dix(2)=2;         % put 2 in dix(2) for the imag part 
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   k=3;            % continue dix for the third position 

else 

   k=2;   % If the first pole is real continue dix for the second  

% position 

end 

% complete classification of the poles 

for m=k:Np  

   if cpx(m)~=0         % If the pole is complex 

      if dix(m-1)==1 

         dix(m)=2;    % If the previous position has the real part, set to % 2 to identify the imag part 

      else 

         dix(m)=1;    % put 1 for the real part of a cp 

      end 

   end 

end 

% Output matrices: 

Dk=zeros(Ns,Np); 

for m=1:Np 

   if dix(m)==0        % Real pole 

      Dk(:,m) = B./(s-Lambda(m)); 

   elseif dix(m)==1    % Complex pole, 1st part 

      Dk(:,m) = B./(s-Lambda(m)) + B./(s-Lambda(m)'); 

  elseif dix(m)==2    % Complex pole, 2nd part 

      Dk(:,m) = i.*B./(s-Lambda(m-1)) - i.*B./(s-Lambda(m-1)'); 

   end 

end  

% Creates work space for matrices A and b 

AA1=Dk; 

AA2=B.*ones(Ns,1);  

AA3=B.*s;   

if Ka == 1 

   AA = [AA1];   % Strictly proper rational fit 

elseif Ka == 2 

   AA = [AA1 AA2];  % Proper rational fit 

elseif Ka == 3 

   AA = [AA1 AA2 AA3]; % Improper fit 

else 

   disp('Ka must be 1, 2 or 3') 

end 

bb  = B.*Fs.'; 

AAre = real(AA);      % Real part of matrix A 

AAim = imag(AA);  % Imaginary part of matrix A 

bbre = real(bb);      % Real part of matrix b 

bbim = imag(bb);      % Imaginary part of matrix b 

AAn = [AAre; AAim];  % Real and imag part of A 

bbn = [bbre; bbim];   % Real and imag part of b 

 [Xmax Ymax] = size(AAn); 

for col=1:Ymax 

   Eeuclidian(col)=norm(AAn(:,col),2); 

   AAn(:,col)=AAn(:,col)./Eeuclidian(col); 
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end 

% Solving system  X 

Xxn=AAn\bbn; 

X=Xxn./Eeuclidian.'; 

% Putting residues into matrix C 

C=X(1:Np); 

% C is complex when the residues are complex 

for m=1:Np 

   if dix(m)==1 

      alfa  = C(m);   % real part of a complex pole 

      betta = C(m+1); % imag part of a complex pole 

      C(m)  = alfa + i*betta;  % the complex pole 

      C(m+1) = alfa - i*betta; % the conjugate 

   end 

end 
% Outputs 
if Ka == 1 
   A  = Lambda.';   % Poles 
   C  = C;          % Residues 
   D  = 0;          % Constant term 
   E  = 0;          % Proportional term 
elseif Ka == 2 
   A  = Lambda.';   % Poles 
   C  = C;          % Residues 
   D  = X(Np+1);    % Constant term 
   E  = 0;          % Proportional term 
elseif Ka == 3 
   A  = Lambda.';   % Poles 
   C  = C;          % Residues 
   D  = X(Np+1);    % Constant term 
   E  = X(Np+2);    % Proportional term 
End 

 

Figure 14. Transversal geometry of aerial line  in example. 
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Figure 15. Voltage responses at sending and receiving ends. Unit step excitation. 

 

Figure 16. Voltage responses at sending and receiving ends. Sinusoidal excitation. 
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