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1. Introduction 

For each of the five basic senses, information about the external world begins as a physical 

representation in the brain. This representation exists in the structure of sensory neural 

activity, such as the flow of ions across neural membranes and the action potentials (or 

spikes) that neurons produce. At some point the brain achieves a transition – from tangible 

electrophysiology to something more. In other words, neural activity becomes a basic 

sensation that we are aware of and that we can name. For example, sensations like ‘slow’ or 

‘fast’, ‘far’ or ‘near’, are some of the simplest features that we can assign to a visual stimulus 

and are some of the basic attributes that we can perceive. 

But the transition from neural activity to perception is not simple and remains largely  

unknown. This process is not intractable, however, and enormous effort has been made by 

neuroscientists to solve it. In particular, much progress has been made to reveal how small 

fluctuations in cortical activity are correlated with perceptual behavior. We refer to this 

correlation as ‘behavioral sensitivity’. New observations suggest that both bottom-up 

sensory mechanisms (such as neural noise) and top-down processes (such as attention) have 

a role to play in establishing behavioral sensitivity. How do we separate these two 

contributions? 

Figure 1 illustrates the problem of untangling the link between a visual cortical neuron’s 

activity and a subject’s perceptual behavior. In the simplest model (Figure 1A), a visual 

cortical neuron contributes in a bottom-up manner to downstream networks that underlie 

perceptual behavior. In this case, a neuron is behaviorally sensitive because its activity is 

directly linked to the perception of the visual stimulus. In the alternative extreme (Figure 

1B), a visual cortical neuron has no direct influence on the perceptual decision, but is  
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Figure 1. Two neural mechanisms for a cortical neuron’s behavioral sensitivity. A cortical neuron exhibits 

behavioral sensitivity if its activity is correlated with perceptual behavior. For both mechanisms in 

A&B, information about the stimulus is encoded by visual cortical neurons and used to drive perceptual 

behavior. The arrows do not represent this flow of stimulus information; what they show are the source 

and destination of trial-to-trial variability. A, In the bottom-up mechanism, noisy sensory activity 

causes the variation in perceptual behavior. In this case, there is a causal link between the variability in 

visual cortical neurons and the variability in perceptual behavior. B, In the top-down mechanism, the 

subject’s attentional state varies from trial-to-trial, causing variable perceptual behavior. However, 

feedback projections also allow the attentional state to affect the firing rates of visual cortical neurons.  

In this case, there is a non-causal link between variability in visual cortical activity and perceptual 

behavior. C, Different sources of variation that could contribute to bottom-up sensory and top-down 

attentional variability in cortical neurons. Note that the bottom-up and top-down hypotheses shown 

here are the two possible extremes. The brain may actually implement any number of hybrid models, 

incorporating components from both hypotheses. 

modulated by top-down attentional signals that affect both its activity and the perceptual 

behavior. In both models a neuron can theoretically exhibit the same behavioral sensitivity, 

but in the top-down scenario it has no role in the perceptual process. As we will discuss, 

both bottom-up sensory and top-down attentional mechanisms can be at play, depending on 

the perceptual task. To distinguish among the many possible contributions to a neuron’s 
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behavioral sensitivity (Figure 1C), it is first important to understand the properties of 

behavioral sensitivity and how it is measured. 

2. Area MT and visual motion perception as a model system 

We can use the specialization of visual cortical neurons to begin understanding how they 

support visual perception. This is accomplished by comparing the activity of a neuron to the 

responses of an observer performing a perceptual task [1]. Neurons from the Middle 

Temporal area of visual cortex (MT i.e. area V5; [2]) are well suited to this purpose. In 

addition, the methods applied to the study of MT are generally applicable to other areas of 

visual cortex. MT is a part of the dorsal processing stream and it receives most of its sensory 

input from areas V1, V2 and V3 – while it sends output chiefly to parts of the parietal cortex 

[3]. In each hemisphere, area MT contains a complete topographical representation of the 

contralateral visual hemifield, and any one neuron receives visual information from a 

discrete patch of visual space, known as the neuron’s receptive field (RF). MT neurons are 

highly selective for both the direction and speed of visual motion, and produce crisp 

responses to preferred stimuli that fall within their RFs [4]; they are also selective for stimulus 

size [5] and binocular disparity [6]. 

Although V1, V2, and V3 neurons can also be selective for the direction and speed of visual 

motion, a relatively high proportion of MT neurons have an emergent Gestalt sensitivity to 

the motion of objects formed from separate components. For example, when shown two 

superimposed sine-wave gratings that move in different directions, V1 neurons mainly 

respond to the motion of only one component grating or the other; however, a number of MT 

neurons will treat the two gratings as a single object, responding to the coherent motion of 

both [7, 8]. Similarly, MT neurons can detect the coherent motion of separate dots – as if the 

dots were painted on an invisible pane of glass that was moving – even when the coherent 

dots are embedded within another field of dots that move randomly and incoherently [9]. 

Importantly, MT has been shown to take part in the perception of coherent dot motion – as 

lesioning MT causes a severe deficit in a subject’s ability to discriminate between opposite 

directions of motion [10], and microstimulating MT biases a subject to report motion in the 

preferred direction of the stimulation site [11]. Altogether, the robust responses and selectivity 

of MT neurons to visual motion, plus their involvement in motion perception, make them an 

excellent choice for comparison against the perceptual capabilities of a subject [1]. 

3. A neuron’s stimulus sensitivity 

The classic studies of Newsome and colleagues demonstrated the power of a careful 

comparison between neural activity and perceptual behavior [9, 12]. Experiments were 

performed to carefully measure the discrimination sensitivity of MT neurons from monkey 

subjects performing a two-alternative, forced-choice (2AFC), motion-discrimination task. 

The subjects had to report whether the coherent motion in a patch of randomly moving dots 

was in the preferred or null (preferred + 180°) direction of an isolated MT neuron. It was 

critical to match the direction, speed, and location of dot motion to the neuron’s RF 
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preferences. This ensured that the subject was responding to the same stimulus as the 

neuron. But more importantly: it maximized the chance that spikes recorded from the 

neuron were used by the subject to perform the task. 

The direction of motion was randomly drawn on every trial so that the subject would have 

to watch the coherent dots carefully, in order to make a correct choice. However, the 

strength of coherent motion was also varied from trial to trial by changing the percentage of 

dots that moved together. This varied the difficulty of the task and therefore the subject’s 

performance, which provided a frame of reference. The neuron’s ability to discriminate the 

direction of coherent dot motion at any one difficulty level could be directly compared 

against the performance of the subject. 

 

Figure 2. Area under the receiver operating characteristic (ROC) curve. A, Hypothetical example of two 

spike-count distributions, from trials grouped by conditions X and Y. Spike counts range between 0 and 

the maximum value, cmax. B, The curved line, located above the dashed ‘chance’ line, represents the 

ROC curve that is constructed from the distributions in Panel A by classifying their values with the 

ideal observer (see Appendix). Classification performance is tested for every possible value of the 

classification criterion, c, which includes all possible spike counts between 0 and cmax. Thus, each value 

of c corresponds to a point in the ROC curve; the arrow shows how increasing values of c are mapped. 

The grey region is the area under the ROC curve. C, Behavioral sensitivity (or stimulus sensitivity) are 

defined as the area under the ROC curve that compares a distribution of failed-trial (or noise) spike 

counts (grey) versus a distribution of correct-trial (or signal) spike counts (open). The area under the 

ROC curve quantifies the difference between the two distributions. 

sensitivity
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A receiver operating characteristic (ROC) analysis (Figure 2) was used to quantify the 

discrimination sensitivity of MT neurons in the 2AFC task (see Appendix). For this, two 

distributions of spike counts were compared against each other, the distribution of counts 

from trials when the coherent motion was in the neuron’s preferred direction (distribution Y 

in Figure 2A) versus the distribution of counts from trials with coherent motion in the null 

direction (distribution X in Figure 2A). The resulting ROC areas (Figure 2B) described the 

probability that an ideal observer could tell which direction had been presented to the 

subject, based on the distribution of MT spike counts. This was computed separately for each 

level of coherent motion strength and compared directly against the subject’s performance. It 

was found that the average MT neuron could account for the subject’s discrimination 

sensitivity – at least under the particular conditions of the experiment [see 13]. 

The discrimination sensitivity of MT neurons in a 2AFC task is mirrored in experiments 

where the subject performs a slightly different task: motion detection. In such a task, the 

subject reports a change in the coherence of dot motion. The sensitivity of an MT neuron is 

judged by how different its firing rate is before and after the motion stimulus changes. 

Figure 3A shows an example motion detection task in which a monkey monitors a cloud of 

randomly moving dots (grey). At the start of each trial, all of the dots move independently 

(random dot motion) for a random duration. The subject was trained to release a lever in 

response to a brief (50 ms) period of coherent dot motion (motion pulse). Random dot 

motion resumed following the motion pulse. Trials were considered a failure if the subject 

did not release the lever following the coherent motion pulse. Importantly, the dots were 

located in the RF (dashed circle) of the MT neuron under study, and the coherent motion 

was always in the neuron’s preferred direction and speed. Again, this maximized the chance 

that the recorded spikes contributed to the subject’s performance. 

The response of an example neuron – recorded from a monkey performing the motion 

detection task – is shown in Figure 3B. Each spike is represented as a black tick mark, and 

each row of ticks is the neuron’s response on one trial. Trials are sorted vertically by 

whether the subject was successful (correct trials, white background) or not (failed trials, 

grey background). In addition, correct trials are sorted by the duration between the motion 

pulse and the subject’s response time. All tick marks are aligned to the start of the 50 ms 

motion pulse (dashed line). Before the motion pulse, the neuron produced a baseline 

number of spikes in response to the random dot motion. Following the start of the motion 

pulse, however, the neuron responded with a vigorous burst of spikes. The stark contrast of 

the neuron’s responses show that it was very sensitive to the motion pulse. 

The stimulus sensitivity of this example neuron is quantified using the ROC metric (Figure 

2), similar to the one used by Newsome and colleagues. First, the spikes are counted on each 

trial in two analysis windows (black bars); one spans the 100 ms before the motion pulse (b), 

counting spikes produced in response to the random dot motion; the other spans the 100 ms 

after the burst of spikes began, counting spikes fired in response to the motion pulse (a). The 

distribution of spike counts from both windows are shown in Figure 3C. The neuron’s 

sensitivity to the motion pulse is found by comparing the distribution of spikes after the 

motion pulse (Figure 3C, open bars) versus the distribution of spikes before the motion 
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pulse (Figure 3C, grey bars) using an ROC curve (refer to Figure 2). For this measure of 

stimulus selectivity, a value of 0.5 would indicate no difference between spike counts before 

and after the motion pulse, showing that a neuron’s response had no information about the 

visual stimulus. In comparison, values of stimulus selectivity approaching 0 indicate more 

spikes before the motion pulse, while values approaching 1 indicate more spikes after the 

motion pulse. As expected, the stimulus sensitivity of this neuron is very high (0.92), meaning 

that this neuron conveyed reliable information about the occurrence of the motion pulse. 

 

Figure 3. Stimulus and behavioral sensitivity of an example MT neuron. A, The perceptual task. A monkey 

directed its gaze to a fixation point (cross) and monitored a patch (grey) of randomly moving dots 

overlapping the neuron’s receptive field (dashed circle). At a random time, the dots moved coherently for 

50 ms (motion pulse) in the neuron’s preferred direction and speed before reverting back to random dot 

motion. The trial was a success (correct trial) if the subject released a lever after the motion pulse. The 

trial was a failure if the subject did not respond. B, Raster of spike responses recorded 

electrophysiologically from an example MT neuron, while the animal subject performed the task in A. 

The analysis windows (a and b) were used to obtain the spike counts in C&D. C, The distribution of spike 

counts from before (window ‘b’ in panel B, grey) and after (window ‘a’ in panel B, open) the motion 

pulse used to obtain the ROC score that quantified the neuron’s stimulus sensitivity. D, The distribution 

of spike counts from failed trials (grey) and correct trials (open) after the motion pulse (window ‘a’ in 

panel B) used to obtain the ROC score that quantified the neuron’s behavioral sensitivity. Note that this 

neuron is exemplary and that few visual cortical neurons exhibit this level of behavioral sensitivity. 
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Whether the subject is detecting or discriminating motion, ROC analysis can be used to 

quantify the sensitivity of neurons to the stimulus; thus, both are referred to here as 

‘stimulus sensitivity’. While lesion, microstimulation, and stimulus sensitivity studies show 

that MT is involved in motion perception and can account for its capabilities – they do not 

explain how MT activity becomes the perception of motion. This requires the estimation of 

the neural link to perceptual behavior, referred to as ‘behavioral sensitivity’. 

4. A neuron’s behavioral sensitivity 

The classic studies of Newsome and colleagues highlighted the large variation in the choices 

made by subjects and in the number of spikes fired by MT neurons. In response to 

statistically identical stimuli, subjects would sometimes report the wrong direction and their 

neurons would sometimes fire as if the opposite direction had been shown. However, this 

variation presented an exciting opportunity – because the ROC curve is a versatile tool and 

can be used to compare any two distributions of neural activity. Celebrini and Newsome 

[14] performed a ground-breaking analysis: they measured the correlation between the 

number of spikes fired by a neuron and the choice that the subject was about to make. 

They began by grouping trials based on the ‘preferred’ or ‘null’ motion discrimination 

report made by the subject. Then they computed the ROC curve comparing the distribution 

of null-trial spike counts (distribution X in Figure 2A) versus the distribution of preferred-

trial spike counts (distribution Y in Figure 2A). The area under this ROC curve is the 

probability that the ideal observer could correctly predict which direction of motion the 

subject would choose, using spike counts. This kind of ROC metric was named ‘choice 

probability’ when it was later used to analyze MT neurons [15]. However, we will refer to 

this ROC metric, and other like it, as ‘behavioral sensitivity’, because it measures how much 

the neural response predicts perceptual behavior. It is important to keep in mind that 

behavioral sensitivity does not measure the correlation between spike counts and perception 

itself – only the perceptual report, which may not always be faithful to what was actually 

perceived. 

Similar to stimulus sensitivity, a behavioral sensitivity of 0.5 shows that there was no 

difference in the number of spikes fired prior to either choice (Figure 2C, left). If more spikes 

were fired prior to choices coinciding with the neuron’s preferred direction, then behavioral 

sensitivity would rise towards 1, to indicate a positive correlation (Figure 2C, middle and 

right). On the other hand, if more spikes were fired prior to null direction choices, then 

behavioral sensitivity would sink towards 0, to indicate a negative correlation. On average, 

MT neurons had a weak but significant, positive correlation with the subject’s upcoming 

choice of motion direction [15]. Since then, behavioral sensitivities have been observed 

between MT spike counts and the subject’s upcoming choice when discriminating coherent 

dot motion direction [16-18], speed [19, 20], disparity [21, 22], and cylindrical rotation [23-

25]. Similar behavioral sensitivities have been observed between a subject’s discrimination 

performance and spike counts from cortical areas V2 [26, 27] and MST [14, 28, 29]. 
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When subjects are tested on their ability to detect a change in coherent dot motion (Figure 

3A), the ROC curve is made by comparing the distribution of spike counts from failed trials 

(distribution X in Figure 2A) versus the distribution of spike counts from successful trials 

(distribution Y in Figure 2A). The area under this curve is the probability that the ideal 

observer can correctly predict the subject’s detection performance, and so it was called 

‘detect probability’ [13]. Again, we shall refer to this metric as behavioral sensitivity. A 

behavioral sensitivity above 0.5 indicates that the neuron fired more prior to successful 

detections – while behavioral sensitivity below 0.5 indicates that the neuron fired more prior 

to failures. Using behavioral sensitivity, correlations have been observed between MT spike 

counts and the subject’s ability to detect a change in coherent motion strength [13, 30] and 

speed [31], while similar behavioral sensitivities have been observed between a subject’s 

detection performance and spike counts from cortical areas V1 [32], V4 [33, 34], and VIP [13]. 

An example of how to compute behavioral sensitivity is shown for the same example MT 

neuron and task as before (Figure 3). This time, spike counts are only taken from the 

analysis window after the motion pulse (Figure 3B, bar ‘a’), but they are grouped by 

whether the trial was correct or failed. The distributions of spike counts on correct (open, Y 

in Figure 2A) and failed (grey, X in Figure 2A) trials is shown in Figure 3D. As this neuron 

was likely to fire more spikes on correct trials, its behavioral sensitivity was very high (0.88); 

thus, one could reliably predict the animal’s behavior from the neural responses.  

5. Properties of behavioral sensitivity 

The example neuron’s behavioral sensitivity (shown in Figure 3) is unusually strong. In 

general, the average sensitivity of visual neurons to perceptual behavior is much weaker. 

Table 1 lists the population averages over a number of studies; for most, it was under 0.6. 

Nevertheless, all averages were significantly greater than chance (0.5). 

A typical behavioral sensitivity distribution for an example population of MT neurons is 

shown in Figure 4A. These neurons were recorded from two experiments, while monkeys 

performed either a motion detection [35] or a speed detection task [31]. These two 

experiments were combined because they were both detection tasks that used short, 

transient stimuli (~50 ms), as illustrated in Figure 3A. The mean behavioral sensitivity was 

weak, but significantly greater than 0.5 (mean = 0.54, two-sided t-test, p < 0.01). Therefore, 

behavioral sensitivity in visual neurons is a robust result, even though most neurons are 

only weakly sensitive to the subject’s upcoming behavior. 

A second key observation is that neurons with high stimulus sensitivities are also highly 

sensitive to the subject’s perceptual behavior. A tempting interpretation is that the brain can 

determine which neurons are best able to support the subject’s performance on a task, then 

assign them a special role in guiding the subject’s behavior. To illustrate this relationship, 

we plot the distribution of stimulus sensitivities for the same example population of MT 

neurons in Figure 4B (mean stimulus sensitivity = 0.58, two-sided t-test, p < 0.01). To 

compare stimulus and behavior sensitivities, we first normalized each metric for each 

animal subject using a Z-score, in order to eliminate changes in the mean from affecting our  
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Study Task Cortical Area 
Behavioral 

Sensitivity 

Liu and Newsome 2005 [19] Speed discrimination MT 0.52 

Gu et al. 2008 [28] Heading discrimination MST 0.52 

Sasaki and Uka 2009 [22] Direction discrimination MT 0.53 

Cohen and Maunsell 2010 [33] Orientation detection V4 0.53 

Cohen and Newsome 2009 [17] Direction discrimination MT 0.54 

Britten et al. 1996 [15] Direction discrimination MT 0.55 

Purushothaman & Bradley 2005 [16] Direction discrimination MT 0.55 

Law and Gold 2008 [18] Direction discrimination MT 0.55 

Price and Born 2010 [20] Speed discrimination MT & MST 0.55 

Nienborg and Cumming 2006 [26] Disparity discrimination V2 0.56 

Sasaki and Uka 2009 [22] Disparity discrimination MT 0.57 

Bosking and Maunsell 2011 [30] Coherence detection MT 0.58 

Smith, Zhan, and Cook 2011 [35] Coherence detection MT 0.58 

Celebrini and Newsome 1994 [14] Direction discrimination MST 0.59 

Uka and DeAngelis 2004 [21] Disparity discrimination MT 0.59 

Herrington and Assad 2009 [31] Speed detection MT 0.59 

Cook and Maunsell 2002 [13] Coherence detection MT 0.60 

Palmer and Cheng 2007 [32] Gabor detection V1 0.61 

Herrington and Assad 2009 [31] Speed detection LIP 0.63 

Dodd et al. 2001 [23] 3D rotation discrimination MT 0.67 

Cook and Maunsell 2002 [13] Coherence detection VIP 0.70 

Table 1. Average behavioral sensitivity across different studies. 

analysis. The results of plotting the normalized stimulus sensitivity versus the normalized 

behavioral sensitivity is shown in Figure 4C and illustrates a significant correlation 

(Spearman’s coefficient, R = 0.50, p < 0.01). The correlation between stimulus and behavioral 

sensitivity is an important property of visual neurons that is often observed [13-16, 18, 20, 

21, 24, 28, 30, 35-38]. 
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Figure 4. Stimulus and behavioral sensitivity are correlated. A, The distribution of behavioral sensitivity for 

an example population of MT neurons, recorded during a motion detection task similar to that in Figure 

3A. B, The distribution of stimulus sensitivity for the same population of neurons. In A&B, the height of 

each histogram bin shows the relative proportion of neurons with a sensitivity that falls within the bin’s 

range. C, The relationship between stimulus and behavioral sensitivity for the same population of 

neurons. Behavioral and stimulus sensitivity were normalized for each monkey so as not to introduce 

any spurious correlations when the data was combined. The Spearman’s correlation coefficient is R = 

0.50 (p < 0.01). The best-fit, linear regression line is y = 0.46x + 0, where x is normalized stimulus 

sensitivity and y is normalized behavioral sensitivity.  Data are combined from two experiments using 

four monkeys [31, 35]. 

The relationship of stimulus and behavioral sensitivity has, itself, two interesting properties. 

First, stimulus sensitive neurons seem to become behaviorally sensitive once the subject is well 

trained to perform the perceptual task [18, 37]; in fact, behavioral sensitivity only appears in 

neurons that can support the subject’s task strategy [21, 39]. Second, the correlation between 

stimulus and behavioral sensitivity tightens when attention is directed to the neuron’s RF 

(Nicolas Masse, unpublished observation). Altogether, these observations suggests that the 

most informative neurons are recruited by the brain to drive perceptual behavior. 

There is evidence that the recruitment of informative neurons is a dynamic process, and 

adjusts to changing task demands. For instance, when two different types of motion-

disparity stimuli are presented under different task conditions, the same MT neuron may 

show signs of involvement in the subject’s perception of one stimulus, but not another [25]. 

If the same task is used but the stimulus is presented through different modalities, only the 

MST neurons that respond in a similar manner to both modalities have strong behavioral 

sensitivities [28]. When the type of stimulus is consistent, behavioral sensitivity for the same 

MT neuron can vary as the direction of motion is dialed closer to or further from its 
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preferred direction, in both a motion detection [30] or discrimination [16] task; a similar 

result holds for MST neurons during heading discrimination [29]. Lastly, when the type of 

stimulus is consistent but the subject performs two different perceptual tasks, behavioral 

sensitivity of the same MT neuron may be selective for the behavior on one task, but not the 

other [22]. These results suggest that the brain is constantly attempting to optimize the pool 

of visual neurons that it uses to drive perceptual behavior. 

Several further properties of behavioral sensitivity are apparent in Table 1. Two of the 

studies examined neurons from different cortical areas using the same perceptual task ([13] 

coherence detection, MT & VIP; [31] speed detection, MT & LIP). Each study found that 

behavioral sensitivity was stronger in the areas further along the hierarchal processing 

stream (LIP and VIP). Similarly, a disparity discrimination study found behavioral 

sensitivity in V2 neurons but not in V1 [26]. Extensive investigation of somatosensory cortex 

has also shown that behavioral sensitivity grows along the hierarchal stream [40, 41]. These 

studies suggest that the closer a neuron is to downstream decision centers, the better its 

behavioral sensitivity becomes. 

However, even lower level visual areas can demonstrate relatively strong behavioral 

sensitivity. Although V1 neurons had no sensitivity in a disparity-discrimination task [26], 

V1 is not thought to be directly involved in disparity perception [42]. On the other hand, V1 

neurons are much better suited to supporting the perception of simpler stimuli, such as 

Gabor patches; accordingly, behavioral sensitivity emerges in V1 neurons when the subject 

detects Gabors [32]. Similarly, MT neurons are thought to participate in the perception of 

both motion [10, 11] and disparity [43]. When the subject discriminates a stimulus that 

requires the perception of both factors, MT neurons become more sensitive to the upcoming 

behavior [23]. Thus, the behavioral sensitivity of a neuron seems to reflect the extent to 

which it can support the subject’s perception of a given stimulus. 

A critical observation is that the strength of behavioral sensitivity is strongly contextual 

[reviewed by 44]. When subjects are presented with ambiguous stimuli, MT neurons 

maintain sensitivity to the subject's upcoming behaviour, in 2AFC motion direction [15] and 

cylindrical rotation [23] discrimination tasks. Ambiguous stimuli carry no meaningful 

signal; that is, both directions of motion or rotation are equally well represented. In this case, 

the subject can make no correct choice based on the stimulus and is forced to guess. 

Although the ambiguous motion direction stimuli are not altogether different from the 

ambiguous rotation stimuli, MT neurons have much stronger behavioral sensitivities when 

the subject attempts to discriminate the latter. The main factor accounting for this is that the 

subject is looking for two-dimensional, linear motion in the first case – and three-

dimensional, cylindrical rotation in the second. 

A second effect of context is that behavioral sensitivity can strengthen over time on the same 

trial, following the onset of the stimulus [13, 21, 23, 27, 28, 30] but this is not always the case 

[15]. An important point to note is that behavioral sensitivity may rise even while the 

stimulus parameters remain constant. However, some results suggest that the duration of 

behavioral sensitivity is confined to the time in each trial when the neuron receives useful 

stimulus information [15, 21, 35].  
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One last contextual effect was demonstrated in a recent study of V2 neurons [27]; the 

subject’s motivation to perform a perceptual task was varied by changing the expected 

reward size. Smaller rewards, and therefore less motivation, were accompanied by a 

decrease in behavioral sensitivity. 

A final property of behavioral sensitivity is that it persists when stimulus variation is 

removed. In both a motion direction discrimination [15] and motion detection [13] task, 

stimulus variation was removed by repeating the same random dot sequence on multiple 

trials. In conjunction with contextual effects, these results strongly suggest that behavioral 

sensitivity comes from mechanisms internal to the brain. 

6. Bottom-up sensory versus top-down attentional contributions to 

behavioral sensitivity 

The sensitivity of visual cortical neurons to the subject’s impending perceptual behavior is a 

robust result. Ironically, this fundamental observation has generated some controversy. The 

trouble is to explain which neural mechanisms produce behavioral sensitivity. Recently, two 

competing theories have emerged. 

The first is the bottom-up hypothesis (Figure 1A). Formulated by Newsome and colleagues 

[15, 36], it was built upon a foundation of earlier results from psychophysics and 

neurophysiology, suggesting that the value of a perceived stimulus feature is coded by the 

collective firing rates from a population of sensory neurons [reviewed by 1]. A population is 

required when the stimulus responses of individual neurons are noisy; but, by averaging 

together the noisy responses of a population, an accurate representation of the stimulus can 

be obtained and used to drive behavior. Bottom-up sources of variation (Figure 1C) may 

include noise in the stimulus, noisy output from earlier stages of visual processing (e.g. 

retina, LGN), random eye movements [45], stochastic voltage channels [46], and autogenous 

noise from local networks [47, 48]. The central idea is that variability in perceptual 

performance comes directly from the noisy cortical representations of the stimulus. 

In the context of the 2AFC direction discrimination task discussed above [12], Shadlen et al. 

[36] built a bottom-up model using two pools of noisy MT neurons; the first pool preferred 

motion in one direction, and the second pool preferred motion in the opposite direction. The 

responses of all neurons in a pool were summed together, and the two pooled signals were 

used by the model to asses the direction of motion: it chose the preferred direction of 

whichever pooled response was stronger. Because a direct, causal connection was 

established between the spike counts of each MT neuron and the model’s choice of 

direction, the model neurons had behavioral sensitivities above 0.5. 

For purely bottom-up models, however, the impact of a sensory neuron on perceptual 

behavior should never change – nor should its behavioral sensitivity. And yet, behavioral 

sensitivity changes contextually depending on what the subject is looking for, how long the 

subject has viewed the stimulus, and the subject’s motivation level. A bottom-up model can 

not fully account for these observations, suggesting that high-order processes are involved 
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in the behavioral sensitivity of neurons. The alternative top-down hypothesis (Figure 1B) 

was formulated to explain these results – in which signals are despatched to sensory cortex 

from high-order areas of the brain. 

In this model, the subject’s attentional state varies from trial-to-trial, resulting in variable 

perceptual performance [see discussion of 15, 27, see review 44]; for example (Figure 1C), 

changes in spatial attention, prior expectation, motivation, or simply alertness can all affect 

the subject’s chance of success. If the same processes alter the firing rates of sensory 

neurons, then sensory spike counts would have a non-causal correlation with the subject’s 

performance. In other words, visual cortical neurons could exhibit behavioral sensitivity 

without actually affecting the perceptual behavior. Attention is a good example of a process 

that varies from trial to trial and affects both firing rates and perceptual performance [33, 

34]. 

It is important to note that the bottom-up and top-down models, as described, are the two 

possible extremes at each end of a spectrum. For simplicity’s sake, they have been discussed 

separately. But the brain could implement a hybrid model [e.g. 37]. 

7. Evidence of bottom-up and top-down sources of behavioral sensitivity 

Despite almost twenty years of study, there is no clear proof that one mechanism for 

behavioral sensitivity is entirely correct. The bottom-up hypothesis is attractive because it 

ties together a number of observations parsimoniously; neurons are weakly sensitive to the 

subject’s behavior when they are responding to an informative stimulus, when they are able 

to support perception of the stimulus features, and when they are able to support the 

subject’s task strategy. Furthermore, a neuron’s behavioral sensitivity scales with its 

sensitivity to the stimulus (Figure 4C). These properties are accounted for if the brain pools 

the output from a select set of informative neurons to form perceptual decisions, while 

ignoring output from uninformative neurons. The action of pooling offers a reason that the 

average behavioral sensitivity is weak: because the impact on behavior of any one neuron is 

diluted in the population response. However, the size of a neural pool required to form 

perceptions is unknown. There is some evidence that perceptual decisions are formed using 

only a few, highly informative neurons [38]. But the complication of correlated activity 

between neurons [49, 50] may require neural populations on a scale of hundreds [36]. 

A further attraction of the bottom-up hypothesis is that computational models with a 

bottom-up structure are able to emulate the subject’s behavior, neural responses and neural 

behavioral sensitivity, for a variety of tasks [13, 35-37]. Unfortunately, bottom-up models 

have difficulty explaining other properties of behavioral sensitivity without resorting to 

complex mechanisms. Although it would seem sensible that a subject should guide visual 

judgements using the most informative visual cortical neurons, it is uncertain how a purely 

bottom-up mechanism could recruit them. A simple way would be to change the synaptic 

weighting downstream of sensory areas, strengthening the connections from informative 

neurons and weakening the connections from uninformative neurons. This technique is able 
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to alter the mean behavioral sensitivity of a simulated neural population [37]. Unexpectedly, 

synaptic weight changes alone cannot account for the correlation between a neuron’s 

stimulus and behavioral sensitivities (Figure 4C). 

Correlations between the spiking activity of neurons can be the determining factor of 

behavioral sensitivity, especially for large pools of neurons [36]. Weak, inter-neural 

correlations have been observed throughout the brain [29, 49, 51-54] – with diverse 

implications [reviewed by 50]. Importantly, the level of correlation between neurons can 

inflate their behavioral sensitivities in two ways: in a bottom-up model, it reduces the 

independence of sensory neurons and tightens the covariance of any single one with the 

pooled response [36]; it can also cause neurons with no impact on perception to mimic other 

neurons that directly support perception [17, 55]. These effects of correlation on behavioral 

sensitivity increase for larger pools of neurons, while the effect of synaptic weighting 

decreases [36]. Thus, one cannot model the relationship between a neuron’s stimulus and 

behavioral sensitivity (Figure 4C) with synaptic weight changes, alone. However, if the 

correlation between two neurons is scaled by the similarity of their RF tuning and by the 

similarity of their stimulus sensitivity, then selectively weighting the more informative 

neurons can reproduce the observed relationship between stimulus and behavioral 

sensitivity [37]. Although an interplay between stimulus sensitivity, behavioral sensitivity, 

and the correlation between neurons is predicted, very little empirical verification has been 

published to date [24]. 

Bottom-up models also fail to explain the contextual variation of behavioral sensitivity. If 

top-down signals are able to selectively modulate the activity of targeted sensory neurons, 

then the top-down hypothesis is better placed to explain contextual variation, dynamic 

changes in behavioral sensitivity from trial to trial, and the relationship between stimulus 

and behavioral sensitivity. Attention [56] can modulate the activity of select neurons as well 

as affect the subject’s behavior; thus it is a good candidate for the source of top-down 

behavioral sensitivity. Trial-to-trial fluctuations in attention could equally as well have been 

the source of behavioral sensitivity in studies that otherwise supported a bottom-up model 

[15, 21, 35]. Furthermore, two recent multielectrode studies were able to estimate the level of 

attention on each trial, from the collective responses of many simultaneously recorded 

neurons [33, 34]; it was found that fluctuations in attention could account for the behavioral 

sensitivity of V4 neurons. Thus, a top-down mechanism is better able to account for some 

properties of behavioral sensitivity than a bottom-up mechanism. 

8. Local field potentials and top-down mechanisms of behavioral 

sensitivity 

Whether the behavioral sensitivity is due to top-down or bottom-up mechanisms depends 

entirely upon whether or not cortical neurons receive top-down signals in the first place. 

Specifically, attentional signals that predict the subject’s upcoming performance. But how 

can such signals be measured and separated from bottom-up visual inputs? When 

microelectrodes are used to record a voltage trace from the brain, they deliver far more 
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information than just neural spiking activity. The short, discrete, high frequency waveforms 

of spikes ride on top of lower frequency changes in voltage. 

Cortical local field potentials (LFP) are defined as the 1-200 Hz frequency bandwidth of the 

electrode voltage trace, and they result from the collective activity of neurons within 

approximately 250μm of the electrode tip [57, 58] – roughly the same spacial scale as a 

cortical column [59]. Because cortical tissue has no bandpassing effect on LFPs [60] and 

because their measurement is robust to the choice of microelectrode [61], LFPs are a clean 

way of taking neural activity measurements that are comparable across studies. Neurons 

generate LFPs in many ways [see review 62], including sub-threshold membrane activity 

and local oscillatory interactions between excitatory and inhibitory neurons; but an 

important source of LFP fluctuations are synaptic potentials in the dendrites: in other words, 

LFPs indirectly measure the input received by the local population of neurons. 

Different sources of LFP fluctuations that operate at different time-scales can be partially 

isolated from each other by analyzing LFPs in the frequency domain [63]. The stimulus 

response of visual cortical LFPs from 3 to 90 Hz have been found to resemble the behavior 

of spiking responses from earlier processing stages [64-66], while higher frequency LFPs 

(>80 Hz) resemble the spiking responses of local neurons [67-71] – suggesting that LFPs 

below 80 Hz reflect synaptic activity. Upon closer inspection, it is found that LFPs from 1 to 

12 Hz carry stimulus information that is independent of the stimulus information in LFPs 

above 40 Hz [72, 73]; but the band from 12 to 40 Hz does not carry stimulus information at 

all, raising the question of what its function is. 

As visual neurons receive a substantial proportion of their input recurrently [74], LFPs must 

capture synaptic activity that results from neuromodulatory feedback. Generally, the 

spectral power of gamma band (40-80 Hz) LFPs is increased when attention is directed to 

the recording site’s RF [75-77], although it may decrease as well [78]. In area MT, this 

increase of gamma LFP power resembles the increase in firing rates of neurons in the same 

vicinity; however, beta band (12-24 Hz) LFP power from the same recordings behave 

differently in the face of attention – decreasing instead of increasing [79]. The decrease in 

low frequency LFP power is thought to result from the same attention related feedback that 

causes neurons to decorrelate from each other and reduce the variability of their responses 

[80]; this hypothesis is bolstered by the observation that the coherence of beta band LFPs 

from visual areas at different stages of hierarchal processing is strengthened by goal-

directed attention [81, 82]. The relationship of beta band LFPs to top-down 

neuromodulatory signals – and their distinct response to them – make beta LFPs a good 

candidate measurement of the top-down input that arrives in sensory cortex. 

The first demonstration that LFP spectral power is sensitive to the subject’s upcoming 

perceptual behavior was made from recordings in MT by Liu and Newsome [83]. Their 

innovation was to use distributions of spectral power rather than spike counts to compute 

the behavioral sensitivity of LFPs – by using a ROC curve to compare the distribution of 

power from trials when the subject reported the preferred stimulus of the recording site 

versus the distribution of power from trials when the subject reported the null stimulus. As 
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a result, LFP behavioral sensitivity was a function of LFP frequency. Liu and Newsome 

observed that LFPs above 50 Hz had sensitivities above 0.5, indicating more spectral power 

when the subject was about to choose the preferred stimulus, which was similar to the 

positive spike-count behavioral sensitivities of MT neurons. Lower frequency LFPs, within 

the realm of alpha (8-12 Hz) and beta (12-24 Hz), showed a distinct behavior: they had 

sensitivities less than 0.5, which indicated less spectral power when the subject was about to 

choose the preferred stimulus. Since top-down neuromodulatory signals can explain this 

result, it may be the first demonstration that correlations between neural activity and 

perceptual behavior come from a top-down mechanism. However, it was also found that a 

trial-to-trial shift of LFP spectral power from lower frequencies to high frequencies could 

explain this result, without top-down signals.  

9. Bottom-up and top-down processes work in sequence to produce 

behavioral sensitivity 

Studies of behavioral sensitivity have had difficulty validating either the bottom-up or top-

down hypothesis. But certain aspects of their experimental designs may have led to 

ambiguity. For example, many key studies have used long duration stimuli of 500 ms or 

more [13-16, 19-23, 25, 27, 30, 83]. This is problematic when trying to distinguish between a 

bottom-up and top-down mechanism – because it is impossible to tell when, or even 

whether, the neuron is responding to the stimulus or to top-down attentional signals. Recent 

studies, however, have begun to dissect bottom-up from top-down processes. They suggest 

that both mechanisms contribute to behavioral sensitivity, one after the other (illustrated in 

Figure 5). 

 

Figure 5. Bottom-up and top-down contributions to behavioral sensitivity are sequential. A, The order of 

perceptual events during the presentation of a long-duration stimulus, such as in [27]. The long 

duration stimulus allows a neuron’s behavioral sensitivity to be dominated by top-down contributions. 

B, The order of perceptual events following the presentation of a brief stimulus, as in [35]. Because the 

subject tends to respond before top-down contributions take effect, a neuron’s behavioral sensitivity is 

dominated by bottom-up contributions. 
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Nienborg and Cumming have demonstrated two contrasting processes by developing a 

psychophysical, reverse-correlation technique and comparing the results with the 

behavioral sensitivity of V2 neurons [27, 39]. Psychophysical reverse-correlation provided 

an estimate of the subject’s strategy when performing a disparity discrimination task. More 

importantly, it estimated when the subject was accumulating stimulus information. They 

found that subjects made the most use of stimulus information early in the trial – with later 

information being used progressively less, even though it was equally useful. In 

disagreement with a bottom-up prediction, they found that behavioral sensitivity moved in 

the opposite direction; it was weakest at the start of the trial, and then grew for 

approximately 500 ms before plateauing. A similar rise in behavioral sensitivity over time 

has been observed in other studies [13, 17, 20, 21, 23, 28, 30]. Together, these observations 

suggest an early, sensory accumulation process followed by a later process that was 

predictive of the subject’s upcoming behavior. 

Rapid sensory accumulation and evaluation is necessary to explain any perceptual decision 

that is made before the late rise in behavioral sensitivity [84]. Accordingly, Nienborg and 

Cumming [27] observed behavioral sensitivity that was significantly greater than 0.5 within 

the first 500 ms of stimulation, when the subject made the most use of the stimulus 

information. But because their stimulus was long in duration and always appeared at the 

same time and location, it is impossible to know if the early component of behavioral 

sensitivity resulted from the early, sensory-accumulation process or from the late, 

behaviorally sensitive process (illustrated in Figure 5A). 

Another recent study has looked exclusively at the behavioral sensitivity of MT neurons 

during early sensory accumulation, while subjects performed a motion-detection, reaction-

time task [35]. This was achieved by using a very short (50 ms) motion signal that occurred 

at an unpredictable time and location. Unlike studies that used long stimulus presentation 

times, the neural sensitivity to behavior peaked approximately 100 ms after the motion 

signal began, during the short burst of spikes that neurons fired in response to the motion 

signal. Critically, both the transient neural response and the subject’s perceptual report 

(median RT = 400 ms) occurred well before the time in other studies that a late rise in 

behavioral sensitivity was established. Lastly, all aspects of the behavioral sensitivity time-

courses and of the subject’s perceptual behavior were well accounted for by a purely bottom-

up model. Together, these results suggest that sensory neurons have a bottom-up link to 

perceptual behavior during the early, sensory-accumulation process (illustrated in Figure 5B). 

The late rise in behavioral sensitivity has parallels in other studies as well. In V1 neurons, 

spikes fired in response to a contour are able to distinguish whether it is the target or 

distractor stimulus, approximately 200–600 ms after the contour appeared [85, 86]. Similarly, 

the aperture problem is disentangled by MT firing rates approximately 150 ms after 

stimulus motion begins [8]. Of special interest is the recent evidence that stimulus 

information arrives in MT from outside the RF through top-down channels, approximately 

400-500 ms following the onset of test stimuli in a match-to-sample task [87]. In these cases, 

late sensory neural activity carries information that was not originally available in the initial 

transient response, but likely arrives from a top-down source that has solved the problem at 
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hand. These observations further support the idea that a top-down source of behavioral 

sensitivity engages sensory neurons following the initial transient response. While attention-

like signals could fill the role of a top-down source following the start of the stimulus, it 

would have to allow for other attentional effects that are present earlier in the trial [33, 34, 

52, 88]. 

10. Conclusion 

To study the neural correlates of sensory perception in visual cortex, it is first necessary to 

understand how neural activity becomes selective for the upcoming perceptual behavior of 

a subject. This is referred to as a neuron’s behavioral sensitivity. There has been debate in 

the literature about whether the brain links sensory neural activity to perceptual behavior 

using a bottom-up or top-down mechanism. New results suggest that both mechanisms are 

active, but in a sequential fashion. The initial, transient responses of sensory neurons have a 

direct, bottom-up impact upon the subject’s behavior. Later responses reflect top-down 

signals that are linked to high-order processes, and attention fills the criteria necessary to 

drive top-down behavioral sensitivity. Although potentially difficult, new studies are 

needed to carefully distinguish and compare the contribution of both processes to the 

behavioral sensitivity of visual cortical neurons. 
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Appendix: Area under the receiver operating characteristic (ROC) curve 

The method used to quantify the discrimination sensitivity of MT neurons in a 2AFC task [9, 

12] has since become a common technique of behavioral neurophysiology, and forms the 

basis of all major results reported in this study. The key question is whether the neurons 

fired more spikes in one condition than in another. Traditional parametric methods for 

answering this question place restrictive assumptions on the statistics of neural activity; for 
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example, neurons do not always resemble a Poisson process [89]. Receiver operating 

characteristic (ROC) curves provide an unbiased, non-parametric way of quantifying the 

difference between any two distributions [90] – in this case, the number of spikes fired by a 

neuron on one set of trials versus another. Figure 2 illustrates how a ROC curve is used to 

quantify the difference between two distributions of spike counts (Figure 2A). 

Faced with the problem of classifying a randomly sampled spike count as being from either 

distribution X (filled) or Y (open), the strategy adopted by the ideal observer is to choose a 

criterion level of c and assign any spike count less than c to X, and any spike count above c 

to Y. All possible values of c between 0 and the maximum spike count (cmax) must be tested 

to find the optimal criterion that makes correct classifications the most often. 

To do so, a ROC curve is built by plotting the probability that spike counts sampled from X 

are greater than c against the probability that spike counts sampled from Y are greater than c 

(Figure 2B). When c = 0, all spike counts are greater than c, thus the beginning point of the 

ROC curve is always (1,1). As c is increased (Figure 2B, arrow) the performance of the ideal 

observer using that criterion level is plotted. When c hits cmax, no spike count is greater than c 

and the end point of the curve is (0,0). 

The area under the ROC curve (Figure 2B, grey shading) is the probability that the ideal 

observer will correctly classify any given spike count from either distribution, and ranges 

between 0 and 1 accordingly; this probability is 0.75 for distributions X and Y from Figure 

2A. Therefore, when X and Y are completely distinct from each other, the ideal observer 

correctly classifies 100% of all spike counts (area = 1, Figure 2C, right). On the other hand, if 

there is no distinction between X and Y, then the ideal observer has a 50% chance of correct 

classification – a coin toss (area = 0.5, left). If X and Y from Figure 2A switch positions then 

the difference between them remains the same; this is reflected by the area under the ROC 

curve, which is an equal distance below 0.5 after the switch (0.25 = 0.5 - 0.25, solid curve) as 

it was before (0.75 = 0.5 + 0.25, dotted curve). 

Abbreviations 

LGN – lateral geniculate nucleus 

MT i.e. V5 – middle temporal area of visual cortex 

MST – medial superior temporal area of visual cortex

VIP – ventral intraparietal area of visual cortex 

LIP – lateral intraparietal area of visual cortex 

2AFC – two-alternative forced choice 

LFP – local field potential 

RF – receptive field 

ROC – receiver operating characteristic 

RT – reaction time 
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