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1. Introduction 

The primary cilium is a microtubule-based extension of the plasma membrane, which is 

present in almost all cell types. Ciliary microtubules extend from a basal body (or mother 

centriole), which docks at the apical membrane. Elegant studies have been carried out to 

determine the mechanism that regulates the docking of the mother centriole at the 

membrane for cilia formation. Cilia function as antennae of the cell to detect chemical and 

physical changes of the microenvironment [1-5]. Owing to their near-ubiquitous nature, cilia 

are involved in diverse cellular functions, such as patterning of left-right asymmetry (nodal 

cilia), limb development, bone morphogenesis, and neurosensory functions 

(mechanosensation, olfaction, and photoreception). Cilia are also implicated in several 

developmental cascades, such as Wnt signaling, sonic hedgehog signaling, and platelet 

derived growth factor receptor signaling pathways. Such functions of cilia are brought 

about by the ability of the ciliary membrane to concentrate a specific subset of membrane 

proteins in the ciliary compartment as compared to the rest of the cell membrane [6-8].  

Cilia are generated by an elaborate process of formation of multiple protein complexes and 

molecular motor dependent transport of membrane cargo from the proximal to the distal tip, 

thereby extending the microtubule-based axoneme and the ciliary membrane. Such transport, 

called Intraflagellar Transport, was initially identified in green alga Chlamydomonas reinhardtii 

and is composed of more than 20 IFT subunits arranged in two distinct complexes, IFT-A and 

IFT-B [9-10]. They interact with motors and transport cargo along axoneme [11]. Microtubules 

are polarized with a plus end (growing tip), and a minus end (at the proximal end of cilia). The 

anterograde motor Kinesin (heterotrimeric Kinesin-2 or homodimeric Kif17) mobilizes 

proteins to the distal (plus) end while cytoplasmic dynein 2 carries cargos to the proximal end 

of cilia [12-15]. Similarly, IFT-A and IFT-B play complementary roles in ciliary transport. The 

complex B, contributing to anterograde transport, is indispensable for the ciliogenesis and 
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maintenance.  In contrast, complex A, involved in the retrograde transport, does not play 

essential role in ciliary assembly [11]. Defects in IFT disturb the ciliogenesis or ciliary 

maintenance.  Even slight defects in the composition of the ciliary membrane or in the 

generation and/or maturation of cilia result in developmental and degenerative disorders in 

humans, such as Bardet-Biedl Syndrome (BBS), Joubert Syndrome (JBTS), Meckel-Gruber 

Syndrome (MKS), Senior-Løken Syndrome (SLSN), Usher Syndrome (USH), renal cystic 

diseases, and photoreceptor degeneration and blindness [6-7, 16-18]. 

2. Photoreceptor sensory cilium and its components 

In photoreceptors (rods and cones), cilia are highly specialized and modified into a very 

distinct part of the cell, which consists multiple membranous discs and initiates 

phototransduction cascade in response to light. The details of the phototransduction cascade 

in photoreceptors have been elegantly described elsewhere and will not be covered in this 

chapter.  

There are three major compartments that compose the sensory cilia of photoreceptor: the outer 

segment (OS), transition zone (TZ) and basal body (Figure 1). Like other primary cilia, 

photoreceptor cilia are 9+0 microtubule-based structures that are nucleated from the basal 

body. The mother centriole consists of triplet microtubules and recruits proteins and initiates 

axoneme assembly. The region adjacent to the basal body is TZ (also called connecting cilium; 

CC), and consists of doublet microtubules [19-20]. These microtubules are linked to the plasma 

membrane via transition fibers and Y-linkers, the two distinct structures of TZ [21]. TZ, is a 

narrow conduit between OS and IS [22]. It is estimated to be 200~500 nm long and 170 nm in 

diameter. TZ carries out critical transport function by acting as a gate between the IS and the 

OS. The sensory OS of photoreceptors is enriched in membrane proteins, such as rhodopsin, 

the cyclic nucleotide gated (CNG) channel, membrane guanylyl cyclases, and peripherin-2 [22-

25]. Moreover, the TZ is the only link between the two segments and all proteins need to be 

transported via this narrow bridge-like structure to the OS. Hence, the TZ serves as a 

bottleneck as well as a track to generate and maintain the sensory cilium. Several proteins, 

most of which are associated with human retinal degenerative diseases, are enriched at the TZ 

of photoreceptors. These include RPGR (retinitis pigmentosa GTPase regulator), CEP290, and 

Nephrocystin-1 (NPHP1). The microtubules then extend in the form of axoneme. Depending 

upon the species and cell-type examined, the axoneme can extend to half or full length of the 

OS. The axoneme is recognized by the fact that it consists of singlet microtubules. Not much is 

known about the specific function of the axoneme. However, functional analysis of RP1 

(retinitis pigmentosa 1) protein that localizes specifically to the axoneme of photoreceptors 

indicated that it might be involved in stabilizing the OS discs. The membranous discs arranged 

in a perpendicular orientation to the axoneme and axoneme is believed to prove a structural 

support to the OS discs.  

In addition to maintaining a specific composition of the OS, the photoreceptors also undergo 

massive protein trafficking. In fact, photoreceptors are most active neurons in the human 

body and have high-energy demands. This is due to the fact that photoreceptors shed their 
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distal discs at a high rate. It is estimated that 10% of the distal tips of the OS is shed every 

day by undergoing phagocytosis by the overlying retinal pigmented epithelium (RPE) cells 

[26]. As no protein synthesis occurs in the OS, all components necessary for the renewal of 

OS discs are synthesized in the IS and transported to the OS at a very high rate. 

Approximately 2000 opsins transported to the OS per second in a normal human 

photoreceptor. Even slight disturbances in the synthesis and transport of proteins to the OS 

results in photoreceptor degeneration and blindness.  

 

Figure 1. Schematic representation of a rod photoreceptor cell. The membranous discs in the outer 

segment are enclosed in the plasma membrane. The photoreceptors are rich in mitochondria, which are 

concentrated around the apical inner segment 

3. Docking of cargo and selection at the TZ of photoreceptors 

Even though the OS proteins can be targeted to the cilia, they are first docked at the basal 

body or adjacent membrane. Multiple models have been proposed for the site of docking of 

the cargo vesicles [27]. These propose docking directly at the basal body, docking at the 

lateral plasma membrane and then movement of vesicles in the plasma membrane towards 

to the ciliary compartment, or docking at a privileged domain of the apical plasma 

membrane. In vertebrate photoreceptors, such a privileged domain was identified as 

periciliary ridge. Opsin-laden vesicles were identified at this privileged region as well as 
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transiently in the TZ or CC of photoreceptors [25]. More recently, several ciliary disease 

proteins mutated in Usher Syndrome, were identified at the periciliary ridge and are thought 

to make a connecting link between the apical plasma membrane and the ciliary membrane [28-

29]. If such a domain plays a direct role in cargo docking awaits further investigations, 

specifically geared towards ascertaining the composition of this microdomain. 

After gaining access to the periciliary ridge, the cargo is transported into the TZ, which acts 

as a ‘check post’. Due to its elegant meshwork-like structure with Y-shaped linkers that 

connect the axonemal microtubules to the plasma membrane, its composition of this 

structure has been the subject of many recent studies. Remarkable studies identified a 

network of multiprotein complexes of ciliary disease proteins that are found at the TZ and 

act as diffusion barrier to limit the trafficking of membrane cargo into the ciliary 

compartment [22, 30-33]. These proteins include RPGR, RPGR-interacting protein 1 

(RPGRIP1) [34-35], CEP290/NPHP6 [36-37], MKS-associated proteins and other JBTS and 

NPHP-associated proteins [6, 38]. Interestingly, these proteins exist in discrete multiprotein 

complexes at the TZ. A direct role of TZ proteins in acting as a barrier was established when 

Witman and colleagues showed that mutation in Chlamydomonas CEP290 causes 

accumulation of non-ciliary membrane proteins to enter cilia and vice versa [39]. However, 

such a function of CEP290 in photoreceptors still needs to be investigated.  

4. Ciliary disorders of retina (retinal ciliopathies) 

As the OS of photoreceptors is a sensory cilium, the degenerative diseases that affect the 

formation or function of the OS can be categorized as a ciliary disorder. However, for 

simplicity, we will discuss only those cilia-dependent retinopathies that occur due to defects 

in ciliary TZ proteins and result in defective trafficking of proteins to the OS. Inactivation of 

the IFT in conditional Kif3a-/- mice and Tg737orpk, a hypomorphic allele of IFT88, results in 

opsin accumulation in the IS [40-41]. Mutations in rhodopsin that affect its trafficking to OS 

are associated with degenerative blindness disorders of the retina [42-47]. Moreover, 

ablation of IFT subunit IFT20, which localizes to Golgi and cilia, also results in entrapment 

of opsins in the IS [48]. Ciliary proteins RP1 and RPGRIP1, mutations in which result in 

RP/LCA are required for cilia-dependent OS generation [35, 49-50].  Pleiotropic disorders, 

such as Senior-Loken Syndrome, Joubert Syndrome, and Bardet-Biedl Syndrome, are also 

caused by mutations in ciliary proteins and share retinal degeneration as a common 

phenotype [51-53] (Table 1). In this chapter, we will specifically discuss RPGR and RP2, 

which are mutated in X-linked forms of retinopathies and CEP290, which is a frequent cause 

of Leber congenital amaurosis (LCA), a childhood blindness disorder (Figure 2).  

4.1. Non-syndromic retinal ciliopathies 

Retinitis Pigmentosa (RP). RP, detected in 1:3000 people worldwide, is a group of severe 

blindness disorders that is caused by progressive loss of rod and cone photoreceptors. It is 

inherited in autosomal recessive, autosomal dominant as well as X-linked manner. Patients 

exhibit symptoms of night blindness and loss of peripheral vision (due to rod death) in the 
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first two decades of life, which is followed by complete blindness due to loss of cone 

photoreceptors [54-55]. Loss of cones can either be due to the fact that the causative gene is 

also expressed in cone photoreceptors or due to starvation or loss of availability of trophic 

factors secreted from the rods (majority cell type in photoreceptor layer; 95-97%) if the 

mutation is in a rod-specific gene [56-57].  

 

Figure 2. Schematic representation of the localization of the ciliary proteins being discussed in this 

chapter. As shown, RPGR localizes to the transition zone and basal body and RP1 is concentrated at the 

distal axoneme, which extends into the outer segment. RPGRIP1 tethers RPGR at the transition zone. 

RP2 is detected at the Golgi as well as transition zone in photoreceptors. CEP290/NPHP6 is detected at 

the transition zone, basal body, as well as in the cytosol.   

Some forms of RP are caused by defects in genes that encode for ciliary proteins. These 

include RPGR, RP1, RP2, and TOPORS [50, 56-60]. RP1 and TOPORS are two ciliary proteins 

mutated in adRP. However, they localize to distinct ciliary compartments: RP1 localizes to 

the axoneme whereas TOPORS is concentrated in the basal body and transition zone of 

photoreceptors (Figure 2). The RPGR and RP2 genes are mutated in X-linked forms of RP 

and together account for more than 90% of XLRP cases [61-64]. Among these, RPGR 

mutations are found in 70-80% of XLRP and more than 25% of simplex RP males with no 

family history. On the other hand, RP2 mutations account for 6-10% of XLRP cases. There is 

considerable clinical heterogeneity among cases of XLRP, which has affected the ability to 

differentiate between RPGR and RP2 patients in the clinic. This has prompted investigations 

into genotype-phenotype correlation studies. Such studies are relatively well documented 

for RPGR patients owing to their majority occurrence as compared to RP2 mutations [65-67]. 
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Nonetheless, recently, a comprehensive analysis of a large group of RP2 patients revealed 

interesting observations: a majority of RP2 patients seem to exhibit an early involvement of 

the macula (the central region of the retina) [68].  

RPGR: The RPGR gene consists of 19 exons and encodes for multiple alternatively spliced 

transcripts. There are two major transcripts: RPGR1-19 and RPGRORF15. As the name suggests, 

the RPGR1-19 isoform consists of exons 1-19 whereas RPGRORF15 isoform consists of exons 1-15 

and terminates in intron 15. Both these isoforms therefore, contain a common amino-terminal 

part comprising of exons 1-15. A part of this region, encoded by exons 2-11 contains a domain 

of the protein that is homologous to RCC1 (regulator of chromosome condensation 1), a 

guanine nucleotide exchange factor (GEF) for small GTPases involved in nucleocytoplasmic 

trafficking of proteins. This domain of RPGR is termed RCC1-like domain (RLD). The 

carboxyl-terminal region is distinct between these two isoforms. While the RPGR1-19 isoform 

possesses an isoprenylation motif at the extreme carboxyl-terminus, the RPGRORF15 isoform 

encodes for an unusual stretch of Glutamic acid and Glycine rich (Glu/Gly rich) domain 

(Figure 3). At DNA level, the terminal exon of this isoform contains purine-rich repeats [60, 62, 

64, 69]. Ablation of the Rpgr gene in mice affects opsin trafficking and results in photoreceptor 

degeneration, starting at around 6 months of age [70]. Similar phenotype was detected in two 

naturally occurring canine models of RPGR mutation, although the severity of disease was 

different in the two mutants [71]. First direct correlation of a function of RPGR in cilia was 

obtained when it was shown that RPGR localizes predominantly to the TZ of photoreceptors 

and interacts with other ciliary and transport proteins [72-73]. More recently, it was found that 

silencing of rpgr in zebrafish embryos results in shorter cilia and developmental anomalies, 

reminiscent of ciliary dysfunction [74-75]. These findings indicate that RPGR is involved in 

regulating the trafficking of proteins at the TZ. Mechanistic insights into RPGR function were 

obtained when it was shown that RPGR possesses enzymatic activity. RPGR acts as a GEF for 

the small GTPase RAB8A, which is involved in cilia formation and maturation. As a GEF, 

RPGR catalyzes the conversion of the inactive, GDP-bound RAB8A to active GTP-RAB8A to 

facilitate the trafficking of cargo vesicles [76]. The precise function of RPGR as a GEF in 

photoreceptors still needs to be delineated. 

RP2: The RP2 gene is composed of 5 exons and encodes a protein of 350 amino acids. The 

structure of RP2 reveals two major domains: an amino-terminal domain homologous to 

tubulin binding cofactor C (TBCC) homology domain and a carboxyl-terminal nucleoside 

diphosphate kinase domain [77-79] (Figure 3). The purified RP2 protein possesses GTPase 

activating protein (GAP) activity towards the small GTPase ARL3 (ADP Ribosylation Factor-

Like protein 3). As a GAP, RP2 assists in the conversion of GTP-bound ARL3 to ARL3-GDP 

[80]. Although some human mutations affect this association or activity, the precise role of 

RP2 as a GAP in photoreceptors is still not clear. The amino terminus of RP2 is palmitoylated 

and myristoylated and hence, may associate with cell membrane. In fact, RP2 has been found 

to associate with the plasma membrane of cells and of photoreceptors [81]. In addition, RP2 is 

also present at the basal body of primary cilia and undergoes trafficking into the cilia like IFT 

[59]. RP2 interacts with ciliary protein polycystin-2 and assists in the trafficking of polycystin-

2 to the cilia. Recent studies have shown that ciliary localization of RP2 is regulated by 
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importins, proteins involved in nucleocytoplasmic trafficking [82]. These data suggest a 

potential role of such machinery in regulating protein import into the cilia. Silencing of RP2 

in cells results in the swelling of the distal tip of the cilium but spares the rate of trafficking of 

the IFT machinery. Further investigation revealed that RP2 is involved in the secretion of 

polycystin-2 from ciliary tip to the external microenvironment. One possible scenario is that 

RP2 may not be directly involved in the secretion rather assists in the trafficking and delivery 

of an accessory cargo that is required for the secretion of polysystin-2 and other such proteins 

from the ciliary tip. In photoreceptors, RP2 also localizes to the basal body, TZ as well as 

Golgi. Silencing of RP2 was also shown to fragment Golgi and may affect Golgi to cilia 

trafficking in cells [89]. The in vivo effect of ablation of RP2 in photoreceptors will provide 

critical clues to its involvement in cilia formation, function and protein trafficking.  

Leber congenital amaurosis (LCA). LCA is considered the most severe form of retinal 

degenerative disease that occurs in the childhood or early adulthood, with an incidence of 1 

in 30,000 births worldwide. Defective retina exhibits perturbations in the initial 

development of photoreceptors [83]. Like RP, LCA also exhibits considerable genetic and 

clinical heterogeneity. To date, mutations in 18 genes have been identified to cause LCA 

(RetNet, http://www.sph.uth.tmc.edu/Retnet). Of these, four genes, CEP290, RPGR-

interacting protein 1 (RPGRIP1), LCA5 or lebercilin and Tubby-like protein 1, encode for 

ciliary proteins. We will discuss CEP290 and RPGRIP1 below. 

CEP290. Mutations in the cilia-centrosomal protein CEP290 are frequently observed in LCA, 

with an incidence of 22-25% cases [37]. The CEP290 gene consists of 55 exons and encodes a 

protein of 2,479 amino acids (Figure 3). The CEP290 is a multidomain protein and consists of 

several coiled-coil domains. Involvement of CEP290 in early onset retinal degeneration was 

determined when a naturally occurring mouse model called rd16 (retinal degeneration 16) was 

identified to carry an in frame deletion in the Cep290 gene. The rd16 mouse exhibits early onset 

severe retinal degeneration, characteristic of LCA in humans, and is accompanied by partial 

mislocalization of RPGR to the IS. The domain of CEP290 that is deleted in the rd16 mouse is 

termed DRD (deleted in rd16 domain) [84]. The deletion renders the CEP290 protein prone to 

degradation; however, expression of truncated CEP290 protein can be detected in the retina 

and other tissues in the rd16 mouse [36]. CEP290 localizes predominantly to the CC/TZ of 

photoreceptors and interacts with selected ciliary and transport assemblies, including retinal 

disease proteins Retinitis Pigmentosa GTPase Regulator (RPGR) and RPGR-interacting protein 

(RPGRIP1), which are mutated in RP and LCA, respectively [36].  

In cell culture studies, CEP290 has been shown to regulate cilia assembly program by 

modulating the localization of RAB8A and Pericentriolar Material 1 (PCM1) [85-86]. 

Additionally, studies using Chlamydomonas CEP290 indicated that it is involved in the 

stabilization of the diffusion barrier formed by the Y-linkers [39]. It was recently 

demonstrated that CEP290 interacts with a novel ciliary protein RKIP (Raf-1 Kinase 

Inhibitory Protein) and modulates its intracellular protein levels. Silencing of cep290 in 

zebrafish or mutation in the rd16 retina results in aberrant accumulation of RKIP; high levels 

of RKIP subsequently result in mislocalization of RAB8A [84]. Moreover, CEP290 interacts 

with BBS6; relative dosage of the two proteins seems to be critical in modulating the 
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formation of OS, cochlear cilia, and olfactory cilia [87]. These studies further demonstrated 

the diverse roles of CEP290 in modulating the formation, maturation, and function of cilia. 

 

Figure 3. Schematic representation of the primary structure of RPGR, RP2, and CEP290. The two major 

isoforms of RPGR: RPGR1-19 and RPGRORF15 are depicted. The RCC1-like Domain (RLD) is encoded by 

exons 2-11 of RPGR. The RPGR1-19 isoform possesses a carboxyl terminal isoprenylation (IsoPr) site. The 

RP2 protein consists of amino terminal myristoylation /palmitoylation (My/Pa) site, tubulin binding 

cofactor C (TBCC) domain and a nucleoside diphosphate kinase (NDK) domain. The CEP290 protein is 

a multidomain molecule. Both human and mouse CEP290 protein are shown. In rd16 mouse, there is a 

deletion in the myosin-tail homology domain of the CEP290 protein. SMC: Structural Maintenance of 

Chromosomes; CC: coiled coil. 
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RPGRIP1. RPGRIP1 is a ciliary protein that associates directly with the TZ microtubules. 

Mutations in RPGRIP1 have been identified in a small percentage of LCA cases. In mice, 

ablation of the Rpgrip1 gene results in defective OS development and early onset retinal 

degeneration. RPGRIP1 was identified as an interacting partner of RPGR in photoreceptors. 

Like rd16 retina, the Rpgrip1-/- mouse retina exhibits mislocalization of RPGR to the IS of 

photoreceptors and its absence from the TZ. These studies indicate that RPGRIP1 tethers 

RPGR to the TZ. In addition to RPGR, RPGRIP1 also directly interacts with NPHP4; disease-

causing mutations in both these proteins perturb this interaction [35, 88]. 

Syndromic Ciliopathies. In addition to non-syndromic retinal cilipathies described above, 

photoreceptor degeneration is a common feature in multiple syndromic ciliopathies, such as 

Senior-Løken Syndrome (cystic kidneys and retinopathy), Joubert Syndrome (cerebellar 

vermis hypoplasia, cystic kidneys, and retinal coloboma) and Bardet-Biedl Syndrome (BBS; 

obesity, mental retardation, polydactyly and retinal degeneration) [6]. Interestingly, some of 

the proteins described above are also mutated in syndromic ciliopathies and/or associate 

with other ciliopathy proteins in the cilia. For example, some RPGR patients exhibit extra-

retinal phenotypes, such as hearing defects, respiratory infections, sperm dysfunction, and 

primary cilia dyskinesia. CEP290, on the other hand, is also mutated in syndromic 

ciliopathies JBTS, MKS, and BBS.  

Joubert Syndrome (JBTS). JBTS is an autosomal recessive disorder characterized by cerebellar 

vermis hypoplasia and retinal coloboma. A characteristic clinical feature of JBTS is the 

appearance of ‘molar tooth sign’, which represents a malformation of midbrain-hindbrain 

junction. Mutations in several ciliary proteins, such as CEP290/NPHP6, NPHP3, 

RPGRIP1L/NPHP8, AHI1, MKS3, and NPHP1 are associated with JBTS.  

Meckel-Gruber Syndrome (MKS). MKS is characterized by embryonic lethality as a result of 

malformation or malfunction of multiple organs during development. Some characteristic 

clinical features include microphthalmia (small eye), renal dysplasia, polydactyly, and situs 

inversus. Interestingly, some of the genes that are mutated in JBTS are also associated with 

MKS. These include CEP290/NPHP6, RPGRIP1L/NPHP8, MKS1, MKS3, CC2D2A, and 

TMEM216. It has now been demonstrated that the type of mutation, location of the mutation 

and the relative combination of the different alleles can determine the outcome of the 

disorder.  

Senior-Løken and Bardet-Biedl Syndromes. Senior-Løken Syndrome (SLSN) is characterized by 

renal cystic disease Nephronophthisis (NPHP) and retinal degeneration. Mutations in 

NPHP5 (or nephroretinin) are associated with SLSN; 100% of NPHP5 patients exhibit retinal 

degeneration. It was demonstrated that NPHP5 localizes to the cilia and interacts with 

RPGR in the retina. The retinal phenotype is partly attributed to the perturbed interaction of 

NPHP5 with RPGR in photoreceptors. Bardet-Biedl Syndrome (BBS), on the other hand, 

involves retinal degeneration, cystic renal disease, cognitive impairment, obesity, infertility 

and polydactyly as some of the main features. To date, mutations in 16 genes, all of which 

encode for ciliary proteins have been identified in BBS. These include BBS1-BBS12, MKS1, 

CEP290, SDCCAG8, and SEPT7.  
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In addition to the above-mentioned syndromic ciliopathies, there are several other disorders 

that have been elegantly described elsewhere and are not discussed in this chapter. All these 

disorders result from defective ciliary development or function. As cilia are involved in 

regulating numerous signaling cascades, including Wnt signaling, planar cell polarity, 

hedgehog signaling and cell cycle control, defects in these pathways have also been 

implicated as a cause of associated disorders. The involvement of signaling cascades in 

photoreceptor ciliary development and function is not completely understood.  

 

Table 1. This table depicts selected diseases classified as cilia dependent retinopathies, including non-

syndromic as well as syndromic forms. Notably, retinal degeneration is a commonly occurring 

phenotype in all these disorders. 

5. Conclusion 

As a number of retinal ciliopathy proteins have now been identified the TZ of 

photoreceptors, the next step is now to delineate the mechanism by which these proteins 

modulate the function of the TZ and regulate photoreceptor OS development and function. 

The existence of discrete multiprotein complexes at the TZ indicates that these complexes 

are involved in the selection and trafficking of specific cargo moieties to the OS. Mutations 

in the constituent proteins may impair the function of some of the complexes and trafficking 
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of cognate cargo while other complexes may function normally to extend the life of the 

photoreceptor. However, if the ciliary protein mutated in disease were involved in the 

trafficking of proteins regulating the development of OS discs, such as rhodopsin, one 

would expect a severe and early onset retinal degeneration. It has been shown that RPGR, 

NPHP proteins and BBS proteins (BBSome) exist in multiprotein complexes and regulate 

ciliary trafficking.  

Some of the TZ proteins possess enzymatic activity. As discussed above, RPGR is a GEF for 

RAB8A while RP2 is a GAP for ARL3. Such activity of these proteins may impart specificity 

to the cargo vesicle docking and fusion to the ciliary membrane for crossing the TZ barrier. 

Moreover, modulating the activity of these proteins may provide insights into developing 

therapeutic paradigms for associated disorders. It should however, be noted that some TZ 

proteins are also present in other subcellular compartments of the cell. For example, some 

RPGR isoforms are detected in the basal body and Golgi; RP2 localizes to Golgi and CEP290 

localizes to the cytosol and basal body, in addition to the TZ. These observations beg the 

question: Are these proteins also involved in extraciliary functions or are these proteins 

participate in alternative pathways to ultimately regulate cilia dependent cascades. It was 

recently shown that CEP290 interacts with RKIP, which is involved in modulating MAP 

Kinase signaling cascades. In addition, CEP290 modulates intracellular levels of RKIP and 

likely controls its degradation. Hence, CEP290’s involvement in intracellular signaling and 

in protein degradation pathways may be linked to cilia formation or function. However, 

further investigations are necessary to establish such links and to further delineate the roles 

of TZ proteins in regulating protein trafficking and photoreceptor OS development and 

function. 
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