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1. Introduction

The seek of uniform, propagative wave train solutions of the fully nonlinear potential

equations has been a major topic for centuries. [5] was the first to propose an expression of

such waves, the so called Stokes’ waves. However, pioneer works of [6] emphasized that such

waves might be unstable, providing a geometric condition for this stability problem. Later on,

[1] showed analytically that Stokes’ waves of moderate amplitude are unstable to long wave

perturbations of small amplitude travelling in the same direction. This instability is named the

Benjamin-Feir instability (or modulational instability). This result was derived independently

by [7] in an averaged Lagrangian approach, and by [8] who used an Hamiltonian formulation

of the water wave problem. Using this approach, the latter author derived the nonlinear

Schrödinger equation (NLS), and confirmed the previous stability results.

Within the last fifty years, the study of this instability became central for fundamental and

applied research. The modulation instability is one of the most important mechanisms for the

formation of rogue waves [9]. A complete review on the various phenomena yielding to rogue

waves can be found in the book of [10]. In the absence of forcing and damping, Stokes’ waves

of specific initial steepness are submitted to this instability, when they encounter perturbations

of specific wave numbers [11, 12]. In this case, they encounter a nonlinear quasi-recursive

evolution, the so called Fermi-Pasta-Ulam recurrence phenomenon ([13]). This phenomenon

corresponds to a series of modulation - demodulation cycles, during which initially uniform

wave trains become modulated, leading possibly to the formation of a huge wave. Modulation

is due to an energy transfer from the wave carrier to the unstable sidebands. In the wave

number space, these unstable sidebands are located in a finite narrow band centered around

the carrier wave number. During the demodulation, the energy returns to the fundamental

component of the original wave train. Using the Zakharov equation, [14] questions the
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relevance of the Benjamin-Feir index to indicate the intensity of modulational instability.

Indeed, this index is often used to quantify the intensity of interactions between a carrier wave

and the finite amplitude sidebands. However, [14] emphasized that nonlinear interactions

occur also for sidebands located beyond the Benjamin-Feir instability domain.

A damped nonlinear Schrödinger equation (dNLS) was derived by [15] who revisited the

Benjamin-Feir instability in the presence of dissipation. They studied numerically the

evolution of narrow bandwidth waves of moderate amplitude. More recently [2] investigated

theoretically the modulational instability within the framework of the dNLS equation and

demonstrated that any amount of dissipation stabilizes the modulational instability in the

sense of Lyapunov. Namely, they showed that the zone of unstable region, in the wavenumber

space, shrinks as time increases. As a result, any initially unstable mode of perturbation

will finally become stable. [2] have confirmed their theoretical predictions by laboratory

experiments for waves of small to moderate amplitude. Later, [3] developed fully nonlinear

numerical simulations which agreed with the theory and experiments of [2].

From the latter study we could conclude that dissipation may prevent the development of

the Benjamin-Feir instability. This effect questions the occurrence of modulational instability

of water wave trains in the field. [16] speculated about the effect of dissipation on the

early development of rogue waves and raised the question whether or not the Benjamin-Feir

instability was able to spawn a rogue wave.

Nevertheless, these authors did not take the effect of wind into account. When considering

the occurrence of modulational instability in the field, the role of wind upon this instability

in the presence of dissipation needs to be addressed. Based on this assumption, [4] derived

a forced and damped nonlinear Schrödinger equation (fdNLS), and extended the analysis

of [2] when wind input is introduced. The influence of wind was introduced through a

pressure term acting at the interface, in phase with the wave slope, accordingly to Miles’

theory [17]. This quasi-laminar theory of wind wave amplification is based on the Miles’

shear flow instability. This mechanism of wave amplification is a resonant interaction between

water waves and a plane shear flow in air which occurs at the critical height where the

wind velocity matches the phase velocity of the surface waves. Stokes waves propagating

in the presence of such a forcing, when not submitted to modulational instability, encounter

an exponential growth. They demonstrated, within the framework of fdNLS equation, that

Stokes’ waves were unstable to modulational instability as soon as the friction velocity is

larger than a threshold value. Conversely, for a given friction velocity it was found that

only carrier waves presenting frequencies (or wavenumbers) lower than a threshold value are

subject to Benjamin-Feir instability. Otherwise, due to dissipation, modulational instability

restabilizes in the sense of Lyapunov.

As it was mentioned, this physical result is based on the solution of an approached model,

the fdNLS equation. Thus, a proper verification is required. However, the phenomenon at

hand is based on the long-time behavior of the modulated wave train when propagating

in the presence of wind and dissipation. This remark explains the difficulty to provide an

experimental verification of the theory. This physical problem is then especially well adapted

for a numerical verification. This verification was performed in a first time by [18], who

investigated the development of the modulational instability under wind action and viscous
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dissipation within the framework of fully nonlinear potential equations. This work is an

extension of that of [3] when wind input is considered. Later on, [19] emphasized that the

equations empirically introduced by [3] were not completely representative of the dispersion

relation in the presence of damping, and corrected the equations to overcome this problem, in

accordance with the demonstration of [20] and [21].

This work aims to emphasize how numerical simulations can provide useful information to

validate long term results based on weakly nonlinear theory. Furthermore, the numerical

approach presented here constitutes an extension of the results of [4] to higher orders of

nonlinearity and larger band spectra, too. The long time evolution of modulated wave trains

can be investigated in a way not allowed by fdNLS equation. The numerical simulations

enable to produce results concerning the long time behavior of the modulated wave train.

Especially, the phenomenon of permanent frequency downshift will be investigated.

In section 2, the governing equations of the problem are presented. Section 3 presents the

weakly nonlinear model obtained by [4], and summarizes their results. The numerical model

used to investigate the long time behavior of the modulated wave train is developed in section

4. The initial conditions used to support the numerical strategy for validating the theory

introduced by [4] is presented in section 5. Finally, the results obtained are described in section

6.

2. Governing equations of the problem

The approach used in this study is based on the potential flow theory. The fluid is assumed to

be incompressible, inviscid, and animated by an irrotational motion. Thus, the fluid velocity

derives from a potential φ. However, non-potential effects due to wind and viscosity can be

taken into account through a modification of the boundary conditions at the surface.

The wind has already been introduced in the dynamic boundary condition through a pressure

term acting at the free surface in several numerical potential models. Among them, one

may cite [22], [23] and [24] who introduced and discussed this approach for BIEM methods

and [25], [26], and [27] who extended it to HOS methods. The pressure term used here

is based on the Miles’ theory [17], accordingly to the approach of [4]. The viscosity was

introduced heuristically by [3] who used the HOS method to address the question raised

in [2] on the restabilisation of the Benjamin-Feir instability of a Stokes wave train in the

presence of dissipation. The introduction was made through the addition of a damping

term in the dynamic boundary condition. However, a proper derivation of the kinematic

and dynamic boundary condition in the presence of viscosity was made by [20], and later on

by [21]. A modification of both kinematic and dynamic condition was found, resulting in a

slight difference in the dispersion relation, as it was discussed by [19]. Finally, the system of

equations corresponding to the potential theory, in the presence of wind and viscous damping

reads

φxx + φzz = 0 for −∞ < z < η(x, t) (1)

∇φ → 0 for z → −∞ (2)

377Numerical Simulations of Water Waves’ Modulational Instability Under the Action of Wind and Dissipation



4 Will-be-set-by-IN-TECH

ηt + φxηx − φz − 2νηxx = 0 for z = η(x, t) (3)

φt +
1

2

[

(φx)
2 + (φz)

2
]

+ gη = −
Pa

ρ
− 2νφzz for z = η(x, t), (4)

where φ(x, z, t) refers to the velocity potential, η(x, t) is the free surface elevation, Pa(x, t) is

the atmospheric pressure due to the wind action, applied at the free surface, and where g, ρ,

and ν are respectively the gravity, the water density and the water kinematic viscosity. In this

system of equations, the influence of wind has to be specified. In the absence of wind, the

term Pa/ρ is equal to zero. Otherwise, the wind action is modeled through the term initially

introduced by [17], which reads

Pa(x, t) =
ρair βu2

∗

κ2

∂η

∂x
(x, t), (5)

where ρair is the air density, u∗ the friction velocity, κ is the von Karman constant, and β a

parameter depending on the friction velocity u∗ and the wave carrier velocity c0.

3. Weakly nonlinear approach: The nonlinear Schrödinger equation

The Nonlinear Schrödinger equation can be obtained from the fully nonlinear potential theory

by using the multi-scale method. The equations are expanded in Taylor series, around a small

parameter, ε, the wave steepness. In the presence of forcing and dissipation, this work was

performed initially by [15], who obtained a forced and damped version of this equation. The

equation obtained is an approximation of the system of equations (1 - 4), correct to the third

order in ε. Recently, [4] used the forced and damped nonlinear Schrödinger equation (fdNLS),

i(ψt + cgψx)−
ω0

8k2
0

ψxx − 2ω0k2
0|ψ|

2ψ = i
Wω0k0

2gρ
ψ − 2iνk2

0ψ (6)

to investigate both damping and amplification effects on the Benjamin-Feir instability. Herein,

W = ρairβu2
∗/κ2 represents the wind effect, cg = ω0/2k0 is the group velocity of the carrier

wave, and where all the parameters ν, ρ, ρair, g, u∗, and κ are the parameters defined in

previous section. Equation (6) describes the spatial and temporal evolution of the envelope

of the surface elevation, ψ, for weakly nonlinear and dispersive gravity waves on deep

water when dissipation, due to viscosity, and amplification, due to wind, are considered. If

considering the right hand side of this equation, it can be rewritten as

i

(

Wω0k0

2gρ
− 2νk2

0

)

ψ = iKψ. (7)

[4] found that the stability of the envelope depends on the sign of the constant K. For values

of K < 0, solutions are found to be stable, while for values of K ≥ 0, solutions are unstable.

Physically, they interpreted this result in terms of frequency of the carrier wave ω0 and friction

velocity u∗ of the wind over the waves. They plotted the critical curve separating stable

envelopes from unstable envelopes. Namely, they showed that for a given friction velocity

u∗, only carrier wave of frequency ω0 which satisfies the following condition are unstable to
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modulational perturbations

4νκ2ω0

β(κc0/u∗)su2
∗
< 1 (8)

This condition can be rewritten as follows

A2Ω

β(A)
< 1 (9)

where A = κc0/u∗ is associated to wind whereas Ω = ω0/(sg2/4ν)1/3 is associated to

dissipation. Note that A2Ω/β(A) is equal to the ratio between the rate of damping and

the rate of amplification and illustrates the competition between dissipative effects and

wind input. The non dimensional numbers A and Ω correspond to the wave age and non

dimensional carrier wave frequency. The modulational instability was found to be sustained

as soon as the friction velocity is larger than a threshold value. Conversely, for a given friction

velocity, it was found that only carrier waves presenting frequencies (or wavenumbers) lower

than a threshold value are subject to Benjamin-Feir instability. Otherwise, due to dissipation,

modulational instability restabilizes in the sense of Lyapunov.

4. Fully nonlinear approach: The High Order Spectral method

Within the framework of two-dimensional flows, a High-Order Spectral Method is used to

solve numerically the basic partial differential equations corresponding to equations (1 - 4).

The lateral conditions correspond here to space-periodic conditions. The horizontal bottom

condition corresponds to infinite depth. The velocity potential is expanded in a series of

eigenfunctions fulfilling both these lateral and bottom conditions. A spectral treatment is

well adapted to investigate numerically the long time behavior of periodic water waves

encountering the modulational instability.

4.1. Mathematical formulation

We first introduce the following dimensionless variables into equations (1), (2), (3) and (4):

x̃ = k0x, z̃ = k0z, η̃ = k0η, t̃ =
√

gk0t, φ̃ = φ/
√

g/k3
0 and p̃ = p/ (ρg/k0) , (10)

where x, z, η, t, φ and p are dimensional variables, and where k0 is a reference wave number.

Hence, the kinematic and dynamic boundary conditions become

∂η̃

∂t̃
+

∂φ̃

∂x̃

∂η̃

∂x̃
−

∂φ̃

∂z̃
− 2

νk0

c0

∂2η̃

∂x̃2
= 0 on z̃ = η̃(x̃, t̃), (11)

∂φ̃

∂t̃
+

∇φ̃2

2
+ η̃ + P̃a + 2

νk0

c0

∂2φ̃

∂z̃2
= 0 on z̃ = η̃(x̃, t̃). (12)

Following [8], we introduce the velocity potential at the free surface φ̃s(x̃, t̃) = φ̃(x̃, z̃ =
η̃(x̃, t̃), t̃) into these equations, and it comes, after dropping the tilde for sake of readability,
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∂η

∂t
= −φsx ηx + w

(

1 + η2
x

)

+ 2
νk0

c0
ηxx on z = η(x, t) (13)

∂φs

∂t
= −η −

1

2
φ2

sx
+

1

2
w2

(

1 + η2
x

)

+ 2
νk0

c0

φsxx − wηxx

1 + η2
x

− Pa on z = η(x, t) (14)

with

w =
∂φ

∂z
(x, z = η(x, t), t) (15)

The main difficulty in this approach is the computation of the vertical velocity at the free

surface, w. Following [28], the potential φ(x, z, t) is written in a finite perturbation series up

to a given order M,

φ(x, z, t) =
M

∑
m=1

φ(m)(x, z, t). (16)

The term φ(m) is of order O(εm), where ε, a small parameter, is a measure of the wave

steepness. Then expanding each φ(m) evaluated on z = η in a Taylor series about z = 0,

we obtain

φs(x, t) =
M

∑
m=1

M−m

∑
l=0

ηl

l!

∂(l)

∂zl

(

φ(m)(x, z = 0, t)
)

. (17)

At a given instant of time, φs and η are known, and we can estimate φ(m) at each order εm:

φ(1)(x, z = 0, t) = φs(x, t), m = 1, (18)

...

φ(m)(x, z = 0, t) = −
m−1

∑
l=1

ηl

l!

∂l

∂zl
φ(m−l)(x, z = 0, t), m ≥ 2. (19)

The boundary conditions, together with the Laplace equations ∇2φ(m) = 0 define a series

of Dirichlet problems for φ(m). For 2π−periodic conditions in x, say, φ(m) can be written as

follows in deep water

φ(m)(x, z, t) =
∞

∑
j=1

φ
(m)
j e−jzeijx. (20)

Note that φ(m)(x, z, t) satisfies automatically the Laplace equation and the boundary condition

∇φ(m) → 0 when z → −∞.

4.2. Computation of the vertical velocity

Substitution of equation (20) into the set of equations (18 - 19) provides an expression of the

modes φ
(m)
j . The vertical velocity at the free surface is then

w(x, t) =
M

∑
m=1

M−m

∑
l=0

ηl

l!

∂l+1

∂zl+1
φ(m)(x, z = 0, t) (21)
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This expression might be substituted into the kinematic and dynamic boundary conditions

(13) and (14), yielding to the evolution equations for φs and η. Another version of HOSM

developed by [29] can be used. The difference between both methods lies in the way of

computing w from φs. [29] assume a power series for w as

w(x, t) =
M

∑
m=1

w(m), (22)

where

w(m) =
m−1

∑
l=0

ηl

l!

∂l+1

∂zl+1
φ(m−l)(x, z = 0, t). (23)

In fact, the version of [29] differs from the version of [28] not only in the expression of the

approximated vertical velocity at the surface, but also in its subsequent treatment in the free

surface equations. According to [29], the surface equations must be truncated at consistent

nonlinear order if they are to simulate a conservative Hamiltonian system. This requires to

treat carefully all nonlinear terms containing w in the prognostic equations. In contrast to the

series used by [28], those used by [29] are naturally ordered with respect to the nonlinear

parameter . The [28] formulation is not consistent, after truncation, with the underlying

Hamiltonian structure of the canonical pair of free-surface equations. Thus, the formulation

of [29] preserves the Hamiltonian structure of the prognostic equations.

5. Initial conditions for the numerical simulations

From a numerical point of view, one part of the initial condition is obtained by considering a

Stokes wavetrain (η̄, φ̄) which is computed using the approach first introduced by [30]. A very

high-order Stokes wave of amplitude a0 and wavenumber k0 is calculated iteratively. In the

absence of wind and dissipation, the infinitesimal perturbation components (η′, φ′) calculated

through a perturbative approach developed by [31] correspond to a Benjamin-Feir instability

of wavenumber δk. The perturbed Stokes wave is obtained by adding the infinitesimal

perturbations at the sidebands k0 ± δk of the fundamental and its harmonics. For fixed

values of (A, Ω) two kinds of initial conditions are used when wind and dissipation are

considered. The first kind (unseeded case) corresponds to the unperturbed Stokes’ wave

(η, φ) = (η̄, φ̄), whereas the second kind (seeded case) corresponds to the perturbed Stokes’

wave (η, φ) = (η̄, φ̄) + ε(η′, φ′ + φ̄zη′), with ε = 10−3. In both cases, we consider a Stokes

wavetrain such as a0k0 = 0.11 and k0 = 5. The wavenumber of the modulational instability is

δk = 1. This choice of the perturbation wave number corresponds to the closest approximation

of the most unstable wave number that can be fitted in the computational domain. The order

of nonlinearity was taken equal to M = 6. In other words, nonlinear terms have been retained

up to sixth-order. The highest wavenumber taken into account in the simulations is kmax = 50,

corresponding to the ninth harmonic of the fundamental wavenumber. The number of mesh

points was taken equal to N = 750, satisfying the stability criterion N > (M + 1) × kmax.

In the absence of wind and damping, the unperturbed initial condition leads to the steady

evolution of the Stokes’ wavetrain, whereas the perturbed initial condition leads to the well

known Fermi-Pasta-Ulam recurrence. We propagate these initial wavetrains under various

381Numerical Simulations of Water Waves’ Modulational Instability Under the Action of Wind and Dissipation
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conditions of wind and dissipation, to analyze the behavior of the modulational instability of

the Stokes wavetrain.

6. Results and comparisons

0 100 200 300 400 500 600 700 800 900 1000
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0.4

0.6
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1.2

t/T

a
(t
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a

0

Figure 1. Time evolution of the normalized amplitudes of the fundamental mode (k = 5), subharmonic
mode (k = 4) and superharmonic mode (k = 6) for (A, Ω) = (4, 0.59). Fundamental mode amplitude
(—), subharmonic mode amplitude (—) and superharmonic mode amplitude (—) for an initially
unperturbed Stokes’ wave (unseeded case). Fundamental mode amplitude (—), subharmonic mode
amplitude (—) and superharmonic mode amplitude (—) for an initially perturbed Stokes’ wave (seeded
case). T is the fundamental wave period.

One of the difficulties involved in this study is to define clearly the stability. Indeed, since

Stokes’ waves are propagating under the action of wind and viscosity, this flow cannot be

considered stationary nor periodic. Discussing of the combined influence of wind forcing

and damping on the modulational instability, however, implies to define a reference flow.

In order to do so, we first consider the evolution of the unperturbed Stokes’ waves in the

presence of forcing and dissipation (unseeded case). It is checked that the instability does not

develop spontaneously in the laps of time considered. Afterwards, we consider the evolution

of the initially perturbed Stokes’ wave train under the same conditions of wind forcing and

damping (seeded case). The nonlinear evolution of the Stokes’ wavetrain perturbed by the

modulational instability in the presence of wind and dissipation is then compared to that

of the reference flow. In that way, the deviation from the reference flow can be interpreted

in terms of modulational instability, and the influence of wind forcing and dissipation can

be analyzed. Following our previous works [18, 19], the evolution of the energy of the

perturbation is thus obtained.
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Figure 2. Time evolution of the normalized amplitudes of the fundamental mode (k = 5), subharmonic
mode (k = 4) and superharmonic mode (k = 6) for (A, Ω) = (4, 0.61). Fundamental mode amplitude
(—), subharmonic mode amplitude (—) and superharmonic mode amplitude (—) for an initially
unperturbed Stokes’ wave (unseeded case). Fundamental mode amplitude (—), subharmonic mode
amplitude (—) and superharmonic mode amplitude (—) for an initially perturbed Stokes’ wave (seeded
case). T is the fundamental wave period.

Figures 1 and 2 present the time evolution of the amplitudes of three components of the water

waves’ spectrum. The mode k = 5 is the fundamental mode, while modes k = 4 and k = 6

are sidebands, respectively the subharmonic and the superharmonic. Each of these figures

present to two kinds of initial conditions, namely the unseeded and the seeded cases. The two

figures correspond to two different conditions of wind forcing and damping.

Figure 1 shows the time evolution of the normalized amplitudes a(t)/a0 of the fundamental

mode k = 5, subharmonic mode k = 4 and superharmonic mode k = 6 with and without

perturbations for the modulational instability. For both cases, the simulations correspond to a

wind parameter A = 4 and to a viscosity parameter Ω = 0.59. Within the framework of the

NLS equation, [4] showed that the wave train is unstable to modulational instability for these

values of A and Ω. From this figure, it appears that both wavetrains (unseeded and seeded

cases) present a similar evolution during the first hundred periods of propagation, T being

the fundamental wave period. Then, the behavior of the wavetrain is strongly affected by

the development of the modulational instability. For the unperturbed case (unseeded case),

the fundamental component increases, since no occurrence of the modulational instability is

expected. However, due to the accumulation of numerical errors, the spontaneous occurrence

of the modulational instability cannot be avoided, but not before t = 900T. On figure 3 one

can observe the persistence of the modulational instability through the evolution of the free

383Numerical Simulations of Water Waves’ Modulational Instability Under the Action of Wind and Dissipation
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surface. Indeed, it is observed that the wave packet is alternatively modulated, leading to the

formation of a large wave, and demodulated, corresponding to a state which is closer from

the origin. This is an expression of the Fermi-Pasta-Ulam quasi-recurrence.

Figure 2 corresponds to (A, Ω)=(4, 0.61). Wind condition is similar to the previous numerical

simulation, but the dissipative effect considered is stronger. This case correspond to a linearly

stable case of the modulational instability, as obtained by [4] in the framework of the NLS

equation. From this figure, one can see that wind energy goes to the subharmonic mode

whereas dissipation reduces the fundamental and superharmonic components, as previously

observed. However, modulation of modes decrease, and they present a monotonic behavior.

For unseeded case, as expected, we observe an exponential decay of the fundamental mode.

Note that there is no natural occurrence of the subharmonic mode of the modulational

instability as it was found in figure 1. For seeded case, the first maximum of modulation

that occurs at t = 410T is followed by partial damped modulation/demodulation cycles.

Figure 4 illustrates the disappearance of the modulational instability through the evolution of

the free surface. In this case dissipation prevails over amplification due to wind and [2] have

obtained linear and nonlinear stability of modulational perturbations within the framework

of the dissipative NLS equation. More specifically they showed that dissipation reduces the

set of unstable wavenumbers as time increases. Consequently every mode becomes stable.

The result of this numerical simulation agrees with that of [2] and [3] who considered only

dissipation. In their approach, a solution is said to be stable if every solution that starts close

to this solution at t = 0 remains close to it for all t > 0, otherwise the solution is unstable.

To include nonlinear stability analysis they introduced a norm and considered stability in the

sense of Lyapunov.

In our previous work [18], we assumed that the dominant mode describes the main behavior

of a wave train, and we introduced a norm measuring the distance between the fundamental

modes of the unperturbed and perturbed Stokes wave corresponding to unseeded case and

seeded case respectively. However, it is more consistent to consider the energy of the

perturbation, as it was stated in [19]. Thus, another norm can be introduced as

EN(t) =

∫ ∞

−∞
(akS

(t)− akUS
(t))2dk

∫ ∞

−∞
a2

kUS
(0)dk

, (24)

where akUS
(t) is the amplitude of the component of water elevation η of wave number k,

for the initially unperturbed wave train (unseeded case), and akS
(t) is the amplitude of the

component of water elevation η of wave number k, for the initially perturbed wave train

(seeded case). This norm corresponds to the potential energy of the perturbation. Its value

characterizes the deviation of the perturbed solution from the unperturbed solution. Figure

5 shows the time evolution of this norm for two sets of parameters (A, Ω) = (4, 0.59)
and (A, Ω) = (4, 0.61). For the two cases we can observe two regimes. The first regime

corresponds to the development of the modulational instability and shows that it is the

nonlinear interaction between the fundamental mode and its sidebands which dominates with

a weak effect of the wind forcing and the dissipation. The second regime corresponding to the

oscillatory evolution of the norm is dominated by the competition between wind forcing and

dissipation. The nonlinear interaction between the fundamental mode and the sidebands is
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Figure 3. Surface wave profiles at different times, obtained while propagating initial condition
corresponding to seeded case with (A, Ω) = (4, 0.59). From top to bottom
t/T = 1, 291, 436, 596, 793, 846.
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Figure 4. Surface wave profiles at different times, obtained while propagating initial condition
corresponding to seeded case with (A, Ω) = (4, 0.61). From top to bottom
t/T = 1, 410, 496, 601, 676, 885.
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Figure 5. Time evolution of the norm En for (A, Ω) = (4, 0.59) (—) and (A, Ω) = (4, 0.61) (—).
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Figure 6. Theoretical (—) and numerical (– · –) marginal stability contour lines. (◦) correspond to
numerical results obtained in the framework of the equations suggested by [3]. The theoretical curve
corresponds to the figure 1 of [4].
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not the dominant mechanism. The magenta curve exhibits oscillations around an averaged

value growing exponentially, whereas the yellow curve exhibits the same oscillations around

a constant value. We can claim that the norm, EN , presents globally exponential growth or

asymptotical saturation corresponding to instability and stability respectively. Herein, the

stability can be interpreted in terms of asymptotic stability. The first case is said to be unstable

whereas the second case corresponds to a stable solution. In the latter case we expect that the

solution will remain close to the unperturbed solution. In other words, nonlinear interactions

are affected by the non conservative effects that are wind and dissipation, leading to a long

time disappearance of these interactions.

Many numerical simulations have been run for various values of the parameters A and Ω.

Figure 6 shows a stability diagram which presents comparison between the present numerical

results and those of [4] obtained theoretically. The marginal curve corresponding to the

fully nonlinear equations is very close to the theoretical marginal curve obtained within the

framework the NLS equation. The region above the critical curve corresponds to stable cases,

whereas the region beneath corresponds to unstable cases. Bars in figure 6 correspond to

uncertainty on stability or instability. Numerical results obtained in our previous work [18]

within the framework of equations suggested by [3] are plotted for the sake of reference

(◦). The way of introducing damping effect into the kinematic boundary condition has little

influence on the results, especially for young waves. The present numerical simulations

demonstrate that the results derived by [4] within the framework of the NLS equation are

correct in the context of the fully nonlinear equations.

This result provides a validation of the weakly nonlinear theory obtained in the framework of

nonlinear Schrödinger equation. However, the numerical approach allows to investigate the

long time evolution of the wave train, taking into account the strongly nonlinear behavior of

water waves. One phenomenon especially illustrates this nonlinear behavior: the permanent

frequency downshift. This phenomenon was discussed by [32] and [33] within the framework

of gravity waves. These authors considered that dissipation due to breaking wave was

responsible for this permanent downshift. [34] modeled the phenomenon in the presence

of wind and eddy viscosity, and latter on [35] in the presence of only molecular viscosity.

All these works are based on equations valid up to fourth order in nonlinearity, or higher.

Indeed, it is well known that the frequency downshift cannot be observed in the framework

of nonlinear Schrödinger equation, which preserves the symmetry between subharmonic

and superharmonic components. In fact, [36] concluded that in the absence of wind and

dissipation, it was not possible to observe the phenomenon even with higher order equations.

If going back to figure 1, for the initially perturbed case (seeded case), the development of

the modulational instability is responsible for the frequency downshift observed at around

t = 500T. Indeed, one can see that the subharmonic component increases continuously

whereas the fundamental and superharmonic component decrease. The superharmonic

component decreases faster than the fundamental component. Hence, wind energy goes

to the subharmonic mode whereas dissipation reduces the fundamental and superharmonic

components. During the modulation process, a broadening of the spectrum is observed, even

if not presented here for the sake of clarity. Beyond t = 500T, the subharmonic mode k = 4

is dominant in the spectrum. To investigate the effect of wind and damping, another series of

simulations is performed. Namely, the values of A and Ω where chosen to fulfill the condition
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Figure 7. Nondimensional time τdownshi f t = t/T for which the permanent frequency downshift is
observed, plotted as a function of the wave age parameter A. Ω is chosen here to be on the marginal
stability curve presented on figure 6.

K = 0 (see equation (7) for the definition of K). This might be interpreted in terms of balance

between wind forcing and damping, corresponding to an equilibrium state. Furthermore,

in these conditions, the forced and damped nonlinear Schrödinger equation reduces to the

canonical NLS equation. It becomes obvious that the weakly nonlinear theory does not predict

any variation in behavior, since the NLS equation remains unchanged for each values of A
and Ω. However, the results of the numerical simulations are different. Indeed, figure 7

presents the nondimensional time τdownshi f t after which the permanent frequency downshift

is observed, as a function of A. From this figure, it seems obvious that this time is strongly

dependant on the wind speed. The youngest the waves are, the fastest is the downshift.

7. Conclusion

In this work, it was evidence how numerical simulations can provide a good demonstration of

a weakly nonlinear theory that cannot be achieved by means of experimental demonstration.

In this study, an extension of the work of [4] to the fully nonlinear case was suggested. Within

the framework of the NLS equation the latter authors considered the modulational instability

of Stokes wave trains suffering both effects of wind and dissipation. The results they obtained

show that the modulational instability depends on both frequency of the carrier wave and

strength of the wind velocity. They plotted the curve corresponding to marginal stability in

the (A, Ω)-plane. Here, a numerical verification is performed, by means of a fully nonlinear

approach. The long term behavior of a wave group propagating under both actions of wind

and dissipation was obtained thanks to this method. To distinguish stable solutions from
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unstable solutions, a norm based on the potential energy of the perturbations was introduced.

A nonlinear stability diagram resulting from the numerical simulations of the fully nonlinear

equation has been given in the (A, Ω)-plane which coincides with the linear stability analysis

of [4]. In the presence of wind, dissipation and modulational instability it is found that wind

energy goes to the subharmonic sideband whereas dissipation lowers the amplitude of the

fundamental mode of the wave train yielding to a permanent frequency-downshifting. This

permanent frequency downshift is strongly influenced by the wind and dissipation parameter.

If the wave group is at equilibrium in energy input and dissipation, the fdNLS equation

reduces to the classical NLS equation, and predict no influence of the wind. However,

by considering the asymmetry between wave components, induced by strong nonlinearity

(higher than fourth order), a strong influence of the wind and dissipation is observed.
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