
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322417467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 0

On New High Order Iterative Schemes for Solving

Initial Value Problems in Epidemiology

Sandile Motsa and Stanford Shateyi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48264

1. Introduction

Most problems arising from mathematical epidemiology are often described in terms of
differential equations. However, it is often very difficult to obtain closed form solutions of
such equations, especially those that are nonlinear. In most cases, attempts are made to
obtain only approximate or numerical solutions. In this work, we revisit the SIR epidemic
model with constant vaccination strategy that was considered in [11], where the Adomian
decomposition method was used to solve the governing system of nonlinear initial value
differential equations.

In this work we develop new accurate iterative schemes which are based on extending Taylor
series based linearization method to obtain accurate and fast converging sequence of hybrid
iteration schemes. At first order, the hybrid iteration scheme reduces to quasilinearization
method (QLM) which was originally developed in [1]. More recently Mandelzweig and his
co-workers [8–10] have extended the application of the QLM to a wide variety of nonlinear
BVPs and established that the method converges quadratically. In this work we demonstrate
that the proposed hybrid iteration schemes are more accurate and converge faster than the
QLM approach.

To implement the method we consider the SIR model that describes the temporal dynamics
of a childhood disease in the presence of a preventive vaccine. In SIR models the population
is assumed to be divided into the standard three classes namely, the susceptibles (S), who can
catch the infection but are so far uninfected, the infectives (I), those who have the disease and
can transmit it to the susceptibles, and the removed (R), who have either died or who have
recovered and are therefore immune.

The governing equations for the problem are described [11] by

dS

dt
= (1 − P)πN − β

SI

N
− μS, (1)

dI

dt
= β

SI

N
− (κ + μ)I, (2)

©2012Motsa and Shateyi, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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dR

dt
= PπN + κI − μR, (3)

where S(t), I(t) and R(t) denote the susceptibles, infectives and the removed classes
respectively.

The total population is denoted by N = S + I + R, μ is the death rate, P is the fraction of
citizens vaccinated at birth each year, β is the average contact rate, π is the constant birth rate,
and κ is the rate at which an individual recovers from the disease and enters the removed
group which also contains vaccinated individuals. Equations (1 - 3) are solved using the new
hybrid iteration schemes and the results are compared with results from the Runge-Kutta
MATLAB in-built solver ode45.

2. Numerical solution

To simplify the formulation of the solution, equations (1) - (3) are scaled by dividing by N. We
define new variables z1 = S/N, z2 = I/N and z3 = R/N. This leads to z1 + z2 + z3 = 1 and
if we assume that π = μ, the scaled new system becomes

z′1(t) = (1 − P)π − βz1(t)z2(t)− πz1(t), z1(0) = s0, (4)

z′2(t) = βz1(t)z2(t)− (π + κ)z2(t), z2(0) = i0, (5)

where s0 and i0 are given constants. The solution for z3(t) can be obtained from z3 = 1 − z1 −

z2.

Previous studies [4–7, 12] have shown that the long term behaviour of systems like (4) - (5)
can be classified into two categories namely, endemic or eradication. From the long term
behaviour of z1(t) and z2(t) it holds that the solution asymptotically approaches a disease
free equilibrium (DFE) or the endemic equilibrium (EE) where

lim
t→+∞

(z1(t), z2(t)) = DFE = (1 − P, 0), (6)

lim
t→+∞

(z1(t), z2(t)) = EE =

(

1 − P

Rv
,

π

β
(Rv − 1)

)

. (7)

Here Rv, the vaccination reproduction number, is the threshold that determines the stability
of the equilibria and is defined by

Rv =
β(1 − P)

γ + π
. (8)

It was shown in [11] that the DFE is locally stable if Rv < 1 and the EE is locally stable
provided 1 < Rv ≤ 4(κ + π)/π. In this work, we use develop new iteration schemes to solve
the system (4) - (5) using parameters that yield both the DFE and EE.

3. Method of solution

To develop the method of solution, we assume that the true solution of (4 - 5) is zs,α (s = 1, 2)
and zs,γ are the initial approximations. We introduce the following coupled system,

Ljzj + f j(z1,γ, z2,γ) +
2

∑
s=1

(zs − zs,γ)
∂ f j

∂zs
(z1,γ, z2,γ) + gj(z1, z2) = Ψj, (9)
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gj(z1, z2) = f j(z1, z2)− f j(z1,γ, z2,γ)−
2

∑
s=1

(zs − zs,γ)
∂ f j

∂zs
(z1,γ, z2,γ), (10)

where

L1z1 = z′1 + πz1, L2z2 = z′2 + (π + κ)z2 , (11)

f1(z1, z2) = βz1z2, f2(z1, z2) = −βz1z2, Ψ1 = (1 − P)π, Ψ2 = 0. (12)

This idea of introducing the coupled equations of the form (9-10) have previously been used
in [3] the construction of Newton-like iteration formulae for the computation of the solutions
of nonlinear equations of the form f (x) = 0.

We write equation (9) as

Ljzj +
2

∑
s=1

zs
∂ f j

∂zs
(z1,γ, z2,γ) + gj(z1, z2) = Φj(z1,γ, z2,γ), (13)

where

Φj(z1,γ, z2,γ) = Ψj +
2

∑
s=1

zs,γ
∂ f j

∂zs
(z1,γ, z2,γ)− f j(z1,γ, z2,γ). (14)

We use the quasilinearization method (QLM) of Bellman and Kalaba [1] to solve equation
(13). The QLM determines the (i + 1)th iterative approximation zj,i+1 as the solution of the
differential equation

Ljzj,i+1 +
2

∑
s=1

zs,i+1

∂ f j

∂zs
(z1,γ, z2,γ)+ gj(z1,i, z2,i)+

2

∑
s=1

(zs,i+1 − zs,i)
∂gj

∂zs
(z1,i, z2,i) = Φj(z1,γ, z2,γ),

(15)
which can be written as

Ljzj,i+1 +
2

∑
s=1

[

∂ f j

∂zs
(z1,γ, z2,γ) +

∂gj

∂zs
(z1,i, z2,i)

]

zs,i+1 = (16)

2

∑
s=1

zs,i

∂gj

∂zs
(z1,i, z2,i)− gj(z1,i, z2,i) + Φj(z1,γ, z2,γ),

subject to
z1,i+1 = s0, z2,i+1 = i0. (17)

We assume that zj,0 is obtained as a solution of the linear part of equation (13) given by

Ljzj,0 +
2

∑
s=1

zs,0

∂ f j

∂zs
(z1,γ, z2,γ) = Φj(z1,γ, z2,γ), (18)

which yields the iteration scheme

Ljzj,r+1 +
2

∑
s=1

zs,r+1

∂ f j

∂zs
(z1,r, z2,r) = Φj(z1,r, z2,r). (19)

We note that equation (19) is the standard QLM iteration scheme for solving (4 - 5).
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When i = 0 in (16) we can approximate zj as

zj ≈ zj,1. (20)

Thus, setting i = 0 in (16) we obtain

Ljzj,1 +
2

∑
s=1

[

∂ f j

∂zs
(z1,γ, z2,γ) +

∂gj

∂zs
(z1,0, z2,0)

]

zs,1 =
2

∑
s=1

zs,0

∂gj

∂zs
(z1,0, z2,0)

−gj(z1,0, z2,0) + Φj(z1,γ, z2,γ), (21)

which yields the iteration scheme

Ljzj,r+1 +
2

∑
s=1

[

∂ f j

∂zs
(z1,r, z2,r) +

∂gj

∂zs
(z

(0)
1,r+1, z

(0)
2,r+1)

]

zs,r+1 =
2

∑
s=1

z
(0)
s,r+1

∂gj

∂zs
(z

(0)
1,r+1, z

(0)
2,r+1)

−gj(z
(0)
1,r+1, z

(0)
2,r+1) + Φj(z1,r, z2,r), (22)

where z
(0)
j,r+1 is the solution of

Ljz
(0)
j,r+1 +

2

∑
s=1

z
(0)
s,r+1

∂ f j

∂zs
(z1,r, z2,r) = Φj(z1,r, z2,r). (23)

The general iteration scheme obtained by setting i = m (m ≥ 2) in equation (16), hereinafter
referred to as scheme-m is

Ljzj,r+1 +
2

∑
s=1

[

∂ f j

∂zs
(z1,r, z2,r) +

∂gj

∂zs
(z

(m−1)
1,r+1 , z

(m−1)
2,r+1 )

]

zs,r+1 =
2

∑
s=1

z
(m−1)
s,r+1

∂gj

∂zs
(z

(m−1)
1,r+1 , z

(m−1)
2,r+1 )

−gj(z
(m−1)
1,r+1 , z

(m−1)
2,r+1 ) + Φj(z1,r, z2,r),

(24)

where z
(m−1)
j,r+1 is obtained as the solution of

Ljz
(m−1)
j,r+1 +

2

∑
s=1

[

∂ f j

∂zs
(z1,r, z2,r) +

∂gj

∂zs
(z

(m−2)
1,r+1 , z

(m−2)
2,r+1 )

]

z
(m−1)
s,r+1 =

2

∑
s=1

z
(m−2)
s,r+1

∂gj

∂zs
(z

(m−2)
1,r+1 , z

(m−2)
2,r+1 )

−gj(z
(m−2)
1,r+1 , z

(m−2)
2,r+1 ) + Φj(z1,r, z2,r).

(25)

The initial approximation for solving the iteration algorithms, scheme-m is obtained by
solving the linear part of the governing equations (4 - 5). This gives

z1,0 = (1 − P)(1 − e−πt) + s0e−πt, z2,0 = i0e−(π+κ)t. (26)

The iteration schemes (19),(24 - 25) can be solved numerically using standard methods such
as finite difference, finite elements, spline collocation methods,etc. In this study we use the
Chebyshev spectral collocation method to solve the iteration schemes. For brevity, we omit
the details of the spectral methods, and refer interested readers to ([2, 13]). Before applying the
spectral method, it is convenient to transform the domain on which the governing equation is
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defined to the interval [-1,1] on which the spectral method can be implemented. We use the
transformation t = tF(τ + 1)/2 to map the interval [0, tF ] to [-1,1], where tF is a finite time.
The basic idea behind the spectral collocation method is the introduction of a differentiation
matrix D which is used to approximate the derivatives of the unknown variables z at the
collocation points as the matrix vector product

dz

dt
=

N

∑
k=0

Djkz(τk) = DZ, j = 0, 1, . . . , N, (27)

where N + 1 is the number of collocation points (grid points), D = 2D/tF , and Z =
[z(τ0), z(τ1), . . . , z(τN)]T is the vector function at the collocation points τj.

Applying the Chebyshev spectral method to (19), for instance, gives

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

D + π I + a11 a12

a21 D + (π + κ)I + a22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

z1,r+1(τ0)
z1,r+1(τ1)

...
z1,r+1(τN)
z2,r+1(τ0)
z2,r+1(τ1)

...
z2,r+1(τN)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Φ1,r+1(τ0)
Φ1,r+1(τ1)

...
Φ1,r+1(τN)
Φ2,r+1(τ0)
Φ2,r+1(τ1)

...
Φ2,r+1(τN)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥



, (28)

where

aji =
∂ fi

∂zi
(29)

and I is an (N + 1)× (N + 1) identity matrix.

4. Results and discussion

In this section we present the results of solving the governing equations (4-5) using the
iteration scheme-m. For illustration purposes we present the results for m = 0, 1, 2 to illustrate
the effect of increasing m in the accuracy and convergence of the iteration schemes. The
number of collocations points in all the results presented here is N = 40. In order to assess
the accuracy of the proposed method, the present numerical results were compared against
results generated using the MATLAB initial value solver ode45. In the numerical simulations
presented here, following [11], the governing parameters were carefully selected in order to
represent the cases which give rise to both the disease free equilibrium (DFE) and endemic
equilibrium (EE). We consider the following cases

1. Case 1: s0 = 1, i0 = 0, β = 0.8, κ = 0.03, π = 0.4, P = 0.9.

In this case we observe that Rv = 0.186 < 1, hence we expect the disease to be eradicated
from the population after some time.

2. Case 2: s0 = 0.8, i0 = 0.2 β = 0.8, κ = 0.03, π = 0.4, P = 0.9.

In this case we observe that Rv = 0.186 < 1 and as expected, using these parameters, the
disease should be eradicated as t → ∞.

71On New High Order Iterative Schemes for Solving Initial Value Problems in Epidemiology
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3. Case 3: s0 = 0.8, i0 = 0.2 β = 0.8, κ = 0.03, π = 0.4, P = 0.

In this caseRv = 1.86 > 1 which leads to the endemic equilibrium (no disease eradication).

4. Case 4: s0 = 0.8, i0 = 0.2 β = 0.8, κ = 0.03, π = 0.4, P = 0.3.

In this case Rv = 1.32 > 1 which leads to the endemic equilibrium (no disease eradication).

The results for Case 1 are shown on Figs. 1 - 2. In this case, the initial guess and the first few
iterations match the numerical solution all the iterative schemes in the plots of s(t), r(t). We
observe that s(t) decreases monotonically with time while r(t) increases with time. The graph
of the profile for i(t) is not shown because i(t) = 0 in this particular case.
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Figure 1. Case 1: Comparison of the numerical solution of the population fractions s(t) against the
results from the iteration schemes-0, 1 and 2

Figs. 3 - 5 show the numerical approximation of the profiles of the different classes for Case 2.
Again, all the iterative schemes rapidly converge to the numerical solution. The population of
the susceptibles decreases with time and that of the removed (those recovered with immunity)
increases with time. The infected population initially increases and reaches a maximum, then
gradually decreases to zero as t → ∞.

Figs. 6 - 8 show the numerical approximation of the profiles of the different classes for Case 3.
It can be noted from the graphs that the Scheme-2 converges fastest towards the numerical
results. Only 10 iterations are required for full convergence in Scheme-2 compared to 14
iterations in Scheme-1 and 28 iterations in Scheme-1.

Figs. 8 - 11 shows the variation all the population groups with time for Case 4. Again, we
observe that Scheme-2 converges fastest towards the numerical results. Only 5 iterations
are required for full convergence in Scheme-2 compared to 6 iterations in Scheme-1 and 12
iterations in Scheme-1.
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Figure 2. Case 1: Comparison of the numerical solution of the population fractions r(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 3. Case 2: Comparison of the numerical solution of the population fractions s(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 4. Case 2: Comparison of the numerical solution of the population fractions i(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 5. Case 2: Comparison of the numerical solution of the population fractions r(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 6. Case 3: Comparison of the numerical solution of the population fractions s(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 7. Case 3: Comparison of the numerical solution of the population fractions i(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 8. Case 3: Comparison of the numerical solution of the population fractions r(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 10. Case 4: Comparison of the numerical solution of the population fractions i(t) against the
results from the iteration schemes-0, 1 and 2
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Figure 11. Case 4: Comparison of the numerical solution of the population fractions r(t) against the
results from the iteration schemes-0, 1 and 2
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5. Conclusion

In this work, a sequence of new iteration schemes for solving nonlinear differential equations
is used to solve the SIR epidemic model with constant vaccination strategy. The proposed
iteration schemes are derived as an extension to the quasi-linearization method to obtain
hybrid iteration schemes which converge very rapidly. The accuracy and validity of the
proposed schemes is confirmed by comparing with the ode45 MATLAB routine for solving
initial value problems. It is hoped that the proposed method of solution will spawn further
interest in computational analysis of differential equations in epidemiology and other areas of
science.
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