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1. Introduction 

There are number of physical situations where plasmas neutrality breaks down through 

boundary layers called plasma sheaths, which are either free or in contact with a wall. The 

plasma sheaths transition problems are at the heart of an industrial revolution whose 

theme is the design of matter on the molecular scale.The study of the charge separation at a 

plasma edge requires generally the solution of the kinetic equations of plasmas which, for a 

collisionless plasma, usually reduce to the well-known Vlasov equation. Some examples for 

the solution of the Vlasov equation for sheaths transition problems have been presented in 

Shoucri, 2008a, 2009a. A problem of interest is the problem involving the generation of 

radial electric fields and poloidal flows to achieve radial force balance at a steep density 

gradient in the presence of an external magnetic field. This problem is of great importance 

in the steep density gradients pedestal of the high confinement mode (H-mode) in 

tokamaks, since it largely affects the edge physics of the H-mode. In the present work, we 

shall study the problem of the generation of a charge separation and the associated electric 

field at the edge of a cylindrical plasma column, in the presence of an external magnetic 

field directed along the cylinder axis. In previous publications on this problem (Shoucri et 

al., 2003, 2004, 2008b, 2009b), we have considered the case where the electrons were frozen 

by the magnetic field lines, with a constant density profile which changes rapidly along the 

gradient over an ion orbit size. Along the gradient the electrons bound by the magnetic 

field cannot move across this field to exactly compensate the ion charge which results from 

the finite ions’ gyroradius. This effect is especially important for large values of the ratio

/i De  , where i  is the ions’ gyroradius and De is the Debye length. Accurate calculation 

of the charge separation is important for the accurate calculation of the self-consistent 

electric field. This requires also an accurate calculation of the exact ion orbits using a 

kinetic equation. In the present work, we use an Eulerian Vlasov code to study the 
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evolution of the ion distribution function for the problem of the charge separation at the 

edge of a cylindrical plasma, in the presence of an external magnetic field directed along 

the cylinder axis. Eulerian codes have the advantage of a very low noise level and make it 

possible to measure accurately a very small charge separation (Shoucri et al., 2003, Shoucri 

et al., 2004 & Shoucri, 2009a,b), and allows accurate results in the low density regions of the 

phase-space. 

It was pointed out in the analysis of H-mode power threshold in a tokamak by Groebner et 

al., 2001, that the changes in the electron density ne and ne in the transition to H-mode are 

small, and changes in Te are barely perceptible in the data. Electrons and ions have a density 

profile which varies rapidly along the gradient over an ion orbit size. In previous 

publications (Shoucri et al., 2003, 2004, Shoucri, 2002, 2008a,b, 2009a,b) the electrons density 

and temperature profiles were kept constant. In the present work we will allow the electrons 

to move, and it will be sufficient for the purpose of our study to describe the motion of the 

electrons, having a small gyroradius, by a guiding center equation (Shoucri et al., 1997). This 

allows a more accurate description of the contribution of the electrons, with respect to the 

approximation previously used in Shoucri et al., 2003, 2004, 2009a, where the profile of the 

electrons was assumed constant in time. The electrons motion across the magnetic field in 

the gradient region is limited by the guiding center equation, and the magnetized electrons 

cannot move sufficiently across the magnetic field to compensate the charge separation 

which results from the ions motion due to the finite ion orbits. To determine this charge 

separation at the plasma edge along the gradient, it is important to calculate the ion orbits 

accurately by using an Eulerian Vlasov code. The larger the ions’ gyroradius, the bigger the 

charge separation and the self-consistent electric field at the edge. (Hence the important role 

played by even small fractions of impurity ions, because of their large gyroradii, in 

enhancing the electric field at the plasma edge).  

In full toroidal geometry, there are “neoclassical” effects which can play a role in this 

problem, such as the neoclassical enhancement of the classical ion polarization drift, or the 

neoclassical damping of poloidal flows (Stix, 1973, Hirshman 1978, Waltz et. al., 1999). We 

focus for simplicity in the present work on a cylindrical geometry for the problem of the 

generation of an electric field and poloidal flow at a plasma edge due to the finite ions’ 

gyroradius, when the external magnetic field is applied along the axis of the cylinder. The 

solution we present is a two-dimensional (2D) solution in a cylindrical geometry, with the 

external magnetic field assumed uniform along its axis. We compare the radial electric field 

calculated along the gradient with the macroscopic values calculated from the kinetic code 

for the gradient of the ion pressure in the radial direction, and we find that this quantity 

balances the radial electric field fairly well, a result similar to what has been presented in 

one-dimensional geometry (Shoucri, 2002, Shoucri et al. 2003, 2004). The contribution of the 

Lorentz force term along the gradient is negligible. For the parameters we use in the present 

work, the solution allows for a small value of E  to exist, especially on the high field side of 

the cylinder as it will be discussed below, which causes a small oscillation in the radial 

direction.  
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As mentioned above, the ions are described by a kinetic Vlasov equation and the electrons are 

described by a guiding center equation. These equations are solved numerically using a 

method of characteristics. There have been important advances in the last few decades in the 

domain of the numerical solution of hyperbolic type partial differential equations using the 

method of characteristics. The application of the method of characteristics for the numerical 

solution of the kinetic equations of plasmas and for the guiding center equations has been 

recently discussed in several publication (see for instance Shoucri, 2008a,c, 2009a). These 

methods are Eulerian methods which use a computational mesh to discretize the equations 

on a fixed grid, and have been successfully applied to different important problems in plasma 

physics involving kinetic equations, such as laser-plasma interaction (Ghizzo et al., 1990, 1992, 

Strozzi et al., 2006, Shoucri, 2008d), the calculation of an electric field at a plasma edge 

(Shoucri, 2002, 2008b, 2009b, Shoucri et al., 2000, 2003, 2004), the applications of gyro-kinetic 

codes to study edge physics problems in plasmas (Manfredi et al., 1996, Shoucri, 2001, Shoucri 

et al., 2005, Pohn & Shoucri, 2008) and to collisional plasmas (Batishchev et al., 1999). These 

methods present the great advantage of having a low noise level, and allow accurate results 

in the low density regions of the phase-space (Shoucri, 2008c). In the applications presented 

(Shoucri, 2008a,c, 2009a), the computation was usually done on a fixed grid, so no dynamical 

grid adjustment was necessary, and interpolation was restricted to the use of a cubic spline, 

which compared favourably with other methods (see, for instance, Pohn et al., 2005), so 

altogether the method was accurate and remained relatively simple. Interpolation in several 

dimensions using a tensor product of cubic B-splines has been also successfully applied 

(Sonnendrücker et al., 1999, Shoucri, 2008a, 2009a, 2011). The method of characteristics has 

been also successfully applied in fluids to problems having shock wave solution (Shoucri & 

Shoucri, 2007). Large Courant-Frederichs-Levy (CFL) computation parameter is possible, and 

therefore the time-step numerical limitation by large velocities can be removed, if the physics 

makes it possible. A more complete study on splines can be found in the book of Ahlberg et 

al., 1967, and an important theoretical study on the method of characteristics can be found, for 

instance, in the book of Abbott, 1966. More applications to plasma physics problems can be 

found in the several references we have cited. 

2. The relevant equations and the numerical method 

We consider the cylindrical coordinate system ( , , )r z . The plasma is uniform in the z 

direction. The radial direction in the cylindrical plasma is normal to a vessel surface which is 

located at r = rmax=R . The constant magnetic field is in the z direction which represents the 

toroidal direction, and  is the poloidal direction. The constant magnetic field in the z 

direction is given by: 

  
0

1 cos
zB e

B
 





  (1) 

where B0 is the magnetic field along the axis of the cylinder at  = /2, and / majr R   where 

majR  is the major radius of the tokamak. We assume that at r = rmax=R we have / majR R =0.2. 

In this case we can also write / 0.2 /majr R r R   . We consider a deuterium plasma, 
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/ 2x1836i em m  . The ions are described by the normalized 2D Vlasov equation for the ions 

distribution function ( , , , , ) :i rf r v v t  
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  (2)  

where from Eq.(1) the ion cyclotron frequency 0 / (1 cos )ci ci     . The electrons are 

described by the normalized 2D guiding-center equation: 

  . 0e
d e

n
V n

t


  




  (3) 

where the drift velocity 2x /dV E B B
  

. Equation (3) can be developed in our 2D system to 

give the following equation: 

  
0 0

1 cos 1 1 cose e e
dr d e e r

ci ci

n n n
V V n E n E

t r r r 
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   
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  (4) 

where 
0

1 cos
dr

ci

V E
 



  ; 

0

1 cosr
d

ci

E
V

r
 



    

This system is coupled to Poisson’s equation: 
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1 1
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  (5) 

Time is normalized to the inverse plasma frequency 1
pi , velocity is normalized to the 

acoustic velocity /s e iC T m , and length is normalized to the Debye length /De s piC  . 

Te is the electron temperature and mi is the ion mass. The potential is normalized to /eT e , 

and the electric field is normalized to / ( )e DeT e , and the density is normalized to the peak 

initial central density. The ion cyclotron frequency ci as previously defined is normalized 

to pi . The system is solved over a length Lr = 175 Debye lengths in front of the vessel 

surface, with an initial ion distribution function for the deuterons over the domain 

 ,Lr R r R   given in our normalized units, by: 

  
 2 2 /2

, , , ( ) ;
2

r iv v T

i r i
i

e
f r v v n r

T






 

   (6) 

( )in r and ( )en r  are the initial ion and electron density profiles respectively, with 

( ) ( )e in r n r  in the initially neutral system. R is the radius of the cylinder as we previously 

mentioned. We also use the following parameters: 
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0

2 1
1 ; 20

/
i i i

e De e ci pi

T T

T T


  

     (7) 

In the present calculations the parameter 0 / 0.1 / 2ci pi   . With the initial distribution 

function for the ions in Eq. (6), we have i ir iT T T    spatially constant, the factor 2Ti in 

Eq. (7) in the calculation of the gyroradius takes into account the fact that the perpendicular 

temperature is 2 2 2 2 i
r

i

T
v v v

m    . 

Equations (2) and (3) are solved by a method of fractional step (Yanenko, 1971), first applied 

for a Vlasov equation by Cheng & Knorr, 1976, and Gagné & Shoucri, 1977, coupled to a 

method of characteristics. For the general case where several dimensions are involved, the 

fractional step technique allows the reduction of the multi-dimensional equation to an 

equivalent set of reduced equations. To advance Eq. (2) and Eq.(3) for one time-step t, the 

splitting of the equations is applied as follows.  

Step 1. We solve for t/2 the equations: 

  0i i i
r

f f v f
v

t r r



  

  
  

  (8) 

  0e e e
dr d

n n n
V V

t r  
  

  
  

  (9) 

Equations (8) and (9) are solved by interpolation along their characteristics, to be described 

below. We then solve Poisson’s equation in Eq.(5) to calculate the new electric field. 

Step 2. We solve for t the equations: 

  
2

0i i r i
r ci ci r

r

f v f v v f
E v E v

t r v r v
 

 


 
     
             

  (10) 

  
0 0

1 cos 1 1 cose
e e r

ci ci

n
n E n E

t r r
   
  
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  
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  (11) 

Again Eq.(10) is solved by a method of characteristics, to be described below. 

Step 3. We repeat Step1 for t/2, and then solve Eq.(5) to calculate the new electric field 
1n

rE  , 1nE
 . 

This completes a one time-step cycle t.  

2.1. The solution for Step 1 

For the solution of Eq. (8), we first solve the characteristic equations: 
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 ;r

vdr d
v

dt dt r


    (12) 

at a given ( , )rv v  in velocity space. The solution of Eqs (12) originating at ( ,o or  ) at time t, 

and reaching the grid point ( ,r  ) at / 2t t t    can be written as follows, for a half time-

step t/2: 

  / 2;o rr r t   ln
/ 2o

r r

r

r t
 
 

 
 

  (13) 

For vr t/2 « 1, the second equation reduces to / 2o

v
t

r
    . Therefore the solution of 

Eq. (8) can be written, for half a time-step t/2, as follows: 

   * , , , , / 2 / 2, ln , , ,
/ 2i r i r r

r r

v r
f r v v t t f r v t v v t

v r v t


  
 

         
  (14) 

The right hand side of Eq. (14) is calculated by interpolation using a tensor product of cubic 

B-splines, in which  is periodic (Shoucri et al., 2004, Shoucri, 2008a, 2009a). For each rv  and 

v , we write for the interpolation function ( , )s r  : 

 
0 0

( , ) ( ) ( )
rN N

jk j k
j k

s r B r B


  
 

   (15) 

taking into account that  is periodic. ( )jB r  and ( )kB  are cubic splines.The cubic B-spline is 

defined as: 
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  (16)  

and ( ) 0jB x   otherwise. The grid size h (either r or  in our notation), is assumed uniform. 

For the calculation of the coefficients jk  of the cubic B-spline interpolation function ( , )s r   for 

periodic   in Eq.(15) see details in Shoucri et al., 2004 and Shoucri, 2008a, 2009a. 

We then solve Eq.(9) for a half time-step t/2 along the characteristics: 

  
0 0

1 cos 1 cos
( , ) ; ( , ) r

dr d
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Edr d
V r E V r

dt dt r 
     
 

 
       (17) 
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Equations (17) are solved using an iterative process. We assume that at the time-step 

1/2 / 2n nt t t    , r is at the grid point rj  and  is at the grid point j . The following 

leapfrog scheme can be written for the solution of Eq.(17): 

  
1/4 1/4

( ) ( ) ( )
( , ) ( , )

/ 2 2 2
r rj n j n j nn n

dr dr

r r t r r t t
V r V

t


 
 

  
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
  (18) 
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 
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 
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  (19) 

where ( ( ), ( ))n nr t t  is the point where the characteristic is originating at nt (not necessarily a 

grid point). Put: 

  
( )

;
2

rj n

r

r r t
 

( )

2

j nt


 
    (20) 

we can rewrite Eqs.(18,19) as follows: 

  ( , )
4 rr dr j r j

t
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which are implicit equations for ( , )r   , and which are solved by iteration. Usually, two 

iterations are sufficient for convergence. We start with 0 0( 0, 0)r     . We get at the first 

iteration: 
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Second iteration: 
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The quantities 1 1( , )
rr j r jE r

      and 1 1( , )
rj r jE r

     are calculated by a cubic B-spline 

interpolation, similar to what is described in Eq.(15). Finally to advance Eq.(9) by / 2t , we 

calculate: 

  * 2 2( , , / 2) ( 2 , 2 , )
r re j j e j r jn r t t n r t

            (27) 

where the right hand side of Eq.(27) is calculated again using a cubic B-spline interpolation 

as indicated in Eq.(15).  

2.2. The solution for Step 2 

We go to Step2 and solve for t  Eqs.(10,11). We first solve the equation: 
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The electric field E remained small, since
1

E
r





 


, and r ~ R =5000 towards the edge in 

our calculation. 
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Following the same iterative steps as described for Eq.(27), to an order  2
O t the solution 

of Eq. (29) yields the following solution to Eq.(28): 

    , , , , , , 2 , 2 ,i r i rf r v v t t f r v a v b t          (30) 

Again the 2D interpolation in Eq. (30) is done using a tensor product of cubic B-spline, as 

explained in Eq.(15), and a and b are calculated with similar iterative steps as in Eqs.(23-26) 

and are given, to an order  2
O t , by the expressions: 

  
1 2

1 ( )

2 r ci

bt
a E v b

r






       
  

  (31) 

   
1 1

1 ( )( )

2
r

ci r

b at
b E v a

r



 


        
  

  (32) 
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where 
2

1

2 r ci

t
a E

r





 
      
  

; 1

2
r

ci r

t
b E

r



 

 
 

   
 

 

The density **( , , )en r t t    is calculated by integrating Eq.(11) as follows: 

  ** *

0 0

1 cos 1 cos
1

( , , ) exp( )e e r
ci ci

r r

R Rn r t t n E t E t
r r

 


  

  
      

 
  (33) 

where *
en  is calculated in Eq.(27). To calculate 1n

if
 and 1n

en  , we then repeat Step 1 for the 

solution of Eqs. (8,9) for / 2t  using **
if  and **

en  calculated from Eq.(30) and Eq.(33). The 

electric field is then updated to calculate 1( , )n
rE r   and 1( , )nE r   by solving Poisson 

equation. 

2.3. The solution of Poisson’s equation 

Equation (5) is solved by first Fourier transforming the equation in the periodic direction  : 

  ( , ) ( ) im
m

m

r r e      (34) 

and the resulting equation is then discretized in the radial direction over a uniform grid 

following the method of Knorr et al., 1980 (also rediscussed more recently in Crouseilles et al. 

2009): 

  
2

, 1 , , 1 , 1 , , 1

( )
( 10 )

12m m j m m j m m j m j m j m j

r
A B C        


        (35) 

where 

  
2 2 2 2 2 2

, , ,2 2 2

( ) 10 ( ) ( )
1 ; 2 ; 1

2 212 12 12
m j m j m j

j jj j j

r m r m r r m r
A B C

r rr r r

    
          (36) 

and , ( )m j m jr   ; i en n    ; ( , , , )i i r rn f r d d         

Equation (35) is solved using a tridiagonal algorithm. To get the boundary conditions, we 

assume in the present calculation that the deuterons and electrons currents hitting the 

cylindrical wall surface at r R are collected by a floating potential cylindrical vessel. 

Therefore we have the relations for the charge collected: 

  
0

( , )
( )      or     ( , ) ( )

t
r

ri re r ri rer R r R r R r R r R
r R

E r
J J E r J J dt

t




    



     

    (37) 

where 
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   ( , ) , , , ,      ;          ri r i r r re e drJ r v f r v v t d d J n V        (38) 

and drV  is defined in Eq.(17). r rr R R
E E


 from Eq.(37) is used to obtain for the potential the 

following boundary condition at r R : 

  r R
R

E
r


 


  (39) 

By integrating the relation .E  


, we get a relation between the charge collected on the 

cylindrical wall and the charge appearing in the initially neutral plasma: 

  ( ) ;  where
L

L L

R R

r L rR R r
R r R r

E
RE R r E dr rdr   


 


    

   (40) 

where Lr  is the width of the plasma slab, which extends from LR r to R at the edge of the 

cylindrical plasma of radius R .   is the charge appearing in the system. From Eq.(40), we 

get the following relation: 

  ( ( )) / ( )
L

L L

R

r r LR r R
R r R r

E
E RE dr R r

r
 


 


     

    (41) 

We assume that the plasma particles are allowed to enter or leave at the boundary at .Lr R r   

So the difference between the electric fields at the boundary Lr R r   and at r = R must be 

such that Eq. (40) must be satisfied at every time-step in every direction . In the present 

simulation, r r R
E


 is calculated from Eq. (37), which defines the derivative of the potential at 

the right boundary to be used in the solution of Eq. (35). We fix the potential to be zero at the 

boundary at Lr R r   and solve Poisson equation in Eq.(35) for the potential. Then the 

resulting electric field at 
L

r r R r
E

 
, calculated at Lr R r   from Eq. (5), must satisfy Eq. (41). 

The initial density profiles at the neutral plasma edge are given by: 

 ( ) ( ) 0.5(1 tanh (( 2 / 5) / 4))i e Ln r n r R r r       (42) 

The profiles in Eq. (42) situate the steep gradient to be centered at a distance of 2 / 5Lr from 

the wall of the vessel, which put the plasma relatively close to the floating wall of the vessel. 

The wall of the vessel will collect the charge coming from the plasma, especially due to the 

large ions gyroradius. The system is solved for an edge thickness 175Lr  , and R=5000 for 

the radius of the cylinder (we expect this radius to be large in a tokamak, so in the domain 

( , )Lr R r R  , the variation of the quantity /r R remains very close to 1. 

We use N=250 grid points in space in the radial direction, and 128 grid points in the 

azimuthal direction. 80 grid points are used in each velocity direction. The velocity extrema 

for the ions velocities are 4 /e iT T  in our normalized units, with Te/Ti =1 in the present 

simulations. 
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3. Results 

The code was executed for a sufficiently long time to reach a steady state. We noted around 

t=500 that the code has indeed reach a steady state. Since 0 0.1 / 2ci   (normalized to pi ), 

then the gyroperiod 02 / 88ci    . This means that the code has executed more than 5 

gyroperiods. Figure(1) shows the electric field at  = 0 (full curve),  = /2 (broken curve) and 

 =  (dashed-dotted curve), at time t = 495 (left figure) and t=500 (right figure). At the edge 

and along the gradient the electric field rE is directed towards the center to the interior of 

the plasma. The electric field at the floating vessel wall at r = R was calculated using Eq. (37) 

at 128 points over the 2 circle. We see from Fig. (1) that the electric field at  = 0 is higher (in 

absolute value) than the one at  =, and we note that the curves for 0<R-r<75 have reached a 

steady state stable equilibrium, with the charge collected at r=R remaining constant, while 

towards the center for 75<R-r<175, the curve at  =  shows a small steady state oscillation 

around zero. The charge collected on the floating wall of the cylindrical vessel at  = 0, /2 

and  are respectively -0.1455, -0.1389 and -0.063 at t=500. For the solution of Poisson 

equation, we set the value of the electric field r r R
E


 at the cylindrical vessel wall exactly 

equal to the charge collected on the wall according to Eq.(37). If the charge collected on the 

wall is equal to the charge appearing in the system, then according to Eq.(41) : 

  ( )) /       ;            0
L

L

R

r rR R r
R r

E
E dr R E

 



  

   (43) 

which is what we see for the curves at  =0 and /2 in Fig.(1). Indeed the code calculate for 

the charge appearing in the system ( )) /

L

R

R r

E
dr R






  the values of -0.1475 and -0.1399, 

very close to the values of -0.1455 and -0.1389 calculated for r R
E  at  =0 and /2 as we 

previously mentioned. And the quantity
L

r R r
E


was negligible by an order of magnitude  

( 32.x10  and 31.x10 at  =0 and /2 respectively). 

In our code, we allow at Lr R r  for the possibility of plasma to flow across the boundary. 

Note that for our present set of the parameters the electric field E calculated remained 

negligible from  =0 to /2 (see Fig.(6) below), and small around  = .  

Around  =  ,the charge appearing in the system is not exactly equal to the charge collected 

at the cylindrical vessel wall, but shows a small oscillation due the fact that there is a small 

plasma circulation at Lr R r  . In this case the electric field 
L

r r R r
E

 
 is calculated from 

Eq.(41). At t=500, the value calculated for the right hand side of Eq.(41) is 21.144x10 , while 

the value calculated by the code is 21.155x10 (which is the value we see in the right figure 

in Fig.(1) for the  =  curve ). The agreement is very good. 
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Figure 1. Electric field Er at 0   (full curve), / 2   (broken curve), and    (dashed-dotted 

curve), at t=495 (left figure) and t=500 (right figure). 

Figure(2) shows the potential at  = 0 (full curve),  = /2 (broken line) and  =  (dashed-

dotted line), at time t = 495 (left figue) and t=500 (right figure). The curves at  = 0 and  = /2 

show negligible oscillation, while the curve at  =  shows a small oscillation. Since as 

indicated in Fig.(1) the Er profiles are essentially constant, especially for 0<R-r<75 along the 

gradient, then the oscillation of the curves at  =  (dashed-dotted line) is taking place in 

such a way that the slope of the potential rE
r


 


 remains constant for 0<R-r<75. Only for 

75<R-r<175 does the small oscillation of the curve at  =  in Fig.(2) (dashed-dotted line) 

translates into a small oscillation of the electric field Er.. 

Figure(3) gives at time t = 500 and for  = 0 the electric field Er (full curve). Also at  = 0 the 

dashed-dotted curve in Fig.(2) gives the Lorentz force, which in our normalized units is 

given by 
0.1

/ /(1. 0.2 cos )
2

ci pi

r
v v

R           , and the broken curve gives the 

pressure force /i iP n ,  0.5i i ir iP n T T  , with the following definition: 

   2
, , ,

1
( , ) ( ) , , ,ir r r r i r

i

T r dv dv v v f r v v
n           (44) 

     , ,

1
, , , ;              ( , ) , , ,r r r i r i r i r

i

v dv dv v f r v v n r dv dv f r v v
n             (45) 
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Figure 2. Potential at 0   (full curve), / 2   (broken curve) and    (dashed-dotted curve) at 

t=495 (left gigure) and t=500 (right figure). 

   

Figure 3. Plot at 0   of the electric field Er (full curve), the Lorentz force 

(0.1 / 2) /(1. 0.2( / )cos )v r R      (dashed-dotted. curve), and the pressure force /i iP n  (broken 

curve). The curve -ni/2 is plotted for reference ( dashed- 3 dotted curve). At time t =500. 

The /i iP n  term (broken curve) shows a very good agreement along the gradient with the 

solid curve for rE , and the Lorentz force appears negligible along the gradient. In a region of 

about two gyroradii from the wall (around 40 Debye lengths from the wall), we have small 

irregular oscillations in space (and time), the accuracy of /i iP n  being degraded by the 

division with a very small value of the density in  appearing close to the vessel surface. To 

avoid this problem, we plot in Fig. (4) the quantities (0.1 / 2) /(1. 0.2( / )cos )in v r R     , 

, ,i r in E P at 0   ( note that i iJ n v    ). We see that there is a very nice agreement for 
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the relation i r in E P   along the gradient (the density / 10in  is also plotted in Fig.(4) to 

locate the different profiles with respect to the gradient). The Lorentz force term remains 

negligible in the gradient region, and remains very small in the bulk at 75<R-r<175. The 

/i iP n  term is zero in the bulk since ni and Ti are essentially flat in that region. We have 

seen in this case that the total charge ( )) /

L

R

R r

E
dr R






  appearing in the system and 

calculated by the code by integrating the charge as in Eq. (40) and by calculating E from 

Poisson equation, is essentially equal to the electric field r r R
E


. We note that curves similar 

to Fig.(4) can be calculated at different angles  , showing i rn E  essentially balanced by the

iP . 

   

Figure 4. Plot at 0   of i rn E  (solid curve), (0.1 / 2) /(1. 0.2( / )cos )in v r R      (dash-dot 

curve), and iP  (broken-curve). The curve –ni/10 is plotted for reference (dashed-3 dotted curve). At 

time t=500. 

The initial density profiles are given in Eq.(42), so the initial charge is zero. Fig.(5) shows the 

charge density i en n  at the time t = 500 and 0   (full curve), / 2   (broken curve) and 

  (dashed-dotted curve). It is interesting to note that the code was able to maintain the 

steep density gradients (see Fig.(4) for a plot of in ). The stable in time steep density profile 

changes in space rapidly along the gradient over an ion orbit size ( / 20i De   ), and the 

relaxation of the steep gradients during the simulation determines the charge density i en n . 

The charge density is important along the gradient at the plasma edge. The electrons, 

described by the guiding center equation given in Eq.(3) cannot compensate along the 

gradient the charge separation caused by the finite ion gyroradius, which results in the 

charge density we see in Fig.(5). 
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Figure 5. Charge density at 0   (full curve), / 2   (broken curve) and    (dashed-dotted 

curve), at t=500. 

We have noted in Fig.(1) the constant value of the rE profiles, especially for 0<R-r<75 along 

the gradient, translates the constant slope of the potential. However, the potential profile at 

 =  , although keeping essentially the same slope for 0<R-r<75, shows an oscillation in time. 

This results in a  variation with an electric field 
1

E
r





 


 which, as we mentioned 

before, is small for the parameters we are using. Figures (6) presents this electric field E  at 

t=485 and t=495. It shows no oscillation E  in at  = 0 (full curve, essentially equal to zero), 

a negligible oscillation at  = /2 (broken curve), and a small oscillation for the  =  (dashed-

dotted curve), on the high field side of the cylinder. The curve at  =  is interesting, it shows 

the oscillating curve for E  having a constant flat value in the gradient region, and a linear 

variation in the inner region. 

 

Figure 6.  Electric field E  at 0   (full curve), / 2   (broken curve), and    (dash-dot curve), 

at t=485 (left figure) and t=495 (right figure). 
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Figure (7) gives at t = 500 the temperature Tir as defined in Eq. (43), for  = 0 (full curve), 

 = /2 (broken curve) and  =  (dashed-dotted curve). The dashed-3 dotted curve is for 

niTir, which is essentially the same for all angles . Figure (8) presents similar results for Ti 

as defined in Eq.(43). Note in Fig.(7) and Fig.(8) the division by the very small density at the 

edge gives irregular oscillations. However the dashed-3 dotted curve in Fig.(7) and Fig.(8) is 

very smooth, and is for niTir and niTi respectively, which removes the problem of the 

division by the very small density at the edge. We present in Fig.(9) the total pressure 

 0.5i i ir iP n T T   for  = 0 (full curve),  = /2 (broken curve) and  =  (dashed-dotted 

curve). We see that these curves are essentially identical, for the parameters we are using in 

the present simulation there is no variation in  for the total pressure term. 

   

Figure 7. Temperature Tir at 0   (full curve), / 2   (broken curve) and    (dashed-dotted 

curve). The dashed -3 dotted curve is for niTir, which is essentially the same for all  . Time t=500. 

   

Figure 8. Temperature 
i

T  at 0   (full curve), / 2   (broken curve) and    (dash-dot curve). 

The dashed-3 dotted curve is for 
i i

n T , which is essentially the same for all  . Time t=500. 
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Figure 9. Pressure  0.5
i i ir i

P n T T  at 0   (full curve), / 2   (broken curve) and    

(dashed-dotted curve), at t= 500. 

Figure(10) presents the plot of the  component of the 2/E B B
 

 drift, which in our normalized 

units is written  1 0.2( / ) cos 2 / 0.1rE r R   , at  = 0 (full curve),  = /2 (broken curve) 

and  =  (dashed-dotted curve). The curves for 0<R-r<75 have reached a stable equilibrium as 

discussed in Fig.(1) for Er , while towards the center for 75<R-r<175 the curves at  =  shows a 

small steady state oscillation around zero, as previously mentioned for Er in the right figure in 

Fig.(1). Note in Fig. (10) that this azimuthal (i.e. poloidal) 2/E B B
 

 drift is flat close to the 

edge, and is below the acoustic speed at  =  at the edge, and above the acoustic speed at  = 0 

and  = /2 at the edge (velocities are normalized to the acoustic speed Cs). We plot in Fig. (11) 

the total poloidal current (in the  direction)  2/i Dn E B B v 
  

, where the diamagnetic drift 

is  2/D i i iv B n T n eB 


. We see that the total current is essentially zero, i.e. the profile is 

adjusting itself so that the 2/E B B
 

 drift and the diamagnetic drift are essentially equal and 

opposite (in our units, the total poloidal current is    1 0.2( / ) cos 2 / 0.1i r in E p r R    , 

essentially equal to zero , showing a small oscillation around zero in Fig.(11), at the left 

boundary). So the 2/E B B
 

 drift is balanced fairly well by the diamagnetic drift. This is the 

result we get if we calculate the poloidal current: 

   ( , ) , , , ,i i r rJ r v f r v v t dv dv        (46)  

We get indeed a negligible value for iJ . (note that i iJ n v    ). 

We note that due to the small E field (see Fig.6), the 2/E B B
 

drift has a small oscillating 

component (1 0.2( / )cos )E r R   in the radial direction, with a curve similar to what is 
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presented in Fig.(6). This radial oscillation is negligible around 0   and / 2  , and is 

small on the high field side around   , as previously discussed for E  in Fig.(6). 

   

Figure 10. Plot of  1 0.2( / ) cos 2 / 0.1
r

E r R    for 0   (full curve), / 2   (broken curve) and 

   (dashed-dotted curve). At time t=500. 

   

Figure 11. Plot of the total poloidal current    1 0.2 ( / )cos 2 / 0.1
i r i

n E P r R     for 0   (full 

curve), / 2   (broken curve) and    (dashed-dotted curve). At time t=500. 

4. Conclusion 

We have presented in this work the self-consistent kinetic solution for the problem of the 

generation of a charge separation and an electric field at a plasma edge, under the combined 

effect of a large ratio of the ions’ gyroradius to the Debye length /i De   (equal to 20 in the 

simulation we have presented) and a steep density gradient, when the electrons which are 
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bound to the magnetic field cannot compensate along the gradient the charge separation 

due to the finite ions’ gyroradius. In the cylindrical geometry considered, a fully kinetic 

equation has been used to describe the ions, and a guiding center equation has been used to 

describe the electrons bound to the magnetic field. These equations have been solved using 

the method of characteristics (Shoucri, 2008a,b,c,d, 2009a). The numerical method used for 

the solution in cylindrical geometry, based on an integration of the equations along the 

characteristics coupled to a two-dimensional interpolation (Shoucri et al., 2004) applied 

successively in configuration space and in velocity space, is producing accurate results. 

The problem of the formation of a charge separation is of great importance in the study of 

the H-mode physics in tokamaks. We have considered the case where the gradient in the 

density profiles is located in front of a floating cylindrical vessel. So the charge appearing in 

the system is essentially equal to the charge collected on the walls of the floating vessel. The 

solution shows in the radial direction that the electric field along the gradient is balanced by 

the radial gradient of the pressure, and the total poloidal current is essentially zero. The 

present results where electrons are described by a guiding center equation are close to what 

has been previously reported when assuming the electrons stationary and frozen by the 

magnetic field, and the code shows that a solution with a steep gradient, maintaining a 

charge separation, where the electron and ion densities vary rapidly over an ion gyroradius, 

is possible. Also the calculation with the present set of parameters which allow a small value 

of the poloidal field E to exist, shows the presence of a small oscillation of E on the 

high field side around   (see Fig.(6)), to which is associated a small radial oscillation due 

to the radial component of the 2/E B B
 

drift , equal to  1 0.2 ( / )cos 2 / 0.1E r R   in 

our normalized units. 

The present code is a step closer to a code which will include “neoclassical” effects due to 

toroidal geometry, which can play a role in this problem, such as the neoclassical 

enhancement of the classical ion polarization drift, or the neoclassical damping of poloidal 

flows (Stix, 1973, Hirshman 1978, Waltz et. al., 1999). 
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