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1. Introduction 

Plasma proteases, e.g. thrombin, factor X, complement factor D and C1s are responsible for 

the physiological activities, such as coagulation and complement system. These proteases 

circulate as their zymogen in blood and are activated by various stimulations. In this 

chapter, we focus on a family of plasma serine proteases, called MASP (MBL/ficolin-

associated serine protease) that can activate the complement. Three distinct MASP, MASP-1, 

MASP-2 and MASP-3 have been identified in many species of vertebrates. Although the 

contribution of MASP-2 in activation of complement was well defined, the substrates for 

MASP-1 and MASP-3 were still obscure. We have generated MASP-1- and MASP-3-deficient 

mice (Masp1/3-/-) to verify roles of MASP-1 and MASP-3 proteases in vivo. One major finding 

is that MASP-1, considered being a lectin pathway component—also acts as a pro-factor D 

(Df) convertase, the initiator of the alternative pathway. Our results emphasize a unique 

feature of MASP-1, participating two complement pathways. We also generated MASP-2 

deficient mice. In here, we would like to summarize the results obtained from these 

knockout mice.  

2. Complement system 

The complement system is an important part of the innate immune system, mediating 

several major effector functions, such as directly killing pathogens, promoting phagocytosis, 

and clearance of immune complexes and apoptotic cells and modulating adaptive immune 

responses, as describing in some excellent reviews (Ricklin, et al., 2010) (Fujita, et al., 2004) 

(Carroll, 2004). On the other hand, inappropriate activation of complement affects the 

pathogenesis of inflammatory diseases (Holers, 2003). Therefore, well-understanding of the 

mechanisms of its activation is very important. More than 30 proteins in plasma consist of 

the complement system. The most abundant protein among them is the third component 

(C3). Once the complement system is activated, a chain of reactions involving restricted 

proteolysis and assembly occurs, resulting in cleavage of C3 into C3b and C3a. The cascade 
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up to C3 cleavage is called the activation pathway. There are three distinct activation 

pathways of the complement cascade; the classical, alternative, and lectin pathways, that all 

converge on factor C3 and lead to activation of complement effector functions as above 

(Walport, 2001a)(Fig. 1). 

 

Figure 1. Activation pathways for complement system. 

In the mammalian complement system, the pivotal molecule circulating C3 is cleaved into 

C3a and C3b by two different C3 convertases, C4b2a and C3bBb. C4b2a is generated by the 

classical and lectin pathway and C3bBb is generated by the alternative pathway. 

2.1. The classical pathway 

The classic pathway is initiated by recognition of the first C1 binding to a variety of 

targets, most prominently immune complexes (Walport, 2001a) (Walport, 2001b). C1 

consists of a single C1q molecule associated with dimers of C1r and C1s(Lepow, et al., 

1963). C1r and C1s are plasma serine proteases, normally existing in an inactive pro-

enzyme form. The conformational exchange of C1q by binding to immune complexes 

results in the activation of C1r. C1r is thought to be cleaved in some autocatalytic manner 

and once C1r molecule is activated, it activate C1s, which in turn cleaves C4 and then 

C2(Arlaud, et al., 2002). The C4 cleavage products are C4a and C4b. The latter molecule 

may be bound to non-self surfaces on pathogens and is bound to C2 to form the classical 

pathway C3 convertase.  
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2.2. The alternative pathway 

In the alternative pathway, spontaneous hydrolysis of C3, designated C3(H2O) results in 

triggering complement activation with complement factor B, making another C3 convertase, 

C3(H2O)Bb on foreign cells (Muller-Eberhard and Gotze, 1972, Pangburn, et al., 1981). This 

leads to the cleavage of factor B by factor D, giving rise to an active enzyme complex with 

the fragment Bb as the enzyme. The alternative pathway does not involve specific 

recognition molecules and also functions to amplify C3 activation (amplification loop) 

(Brouwer, et al., 2006).  

2.3. The lectin pathway 

Activation of the lectin pathway is similar with that of the classical pathway (Degn, et al., 

2010). The lectin pathway is initiated by some serum lectins binding to pathogen-associated 

molecular patterns, mainly carbohydrate structures present on bacterial, fungal, or viral 

pathogens. In 1978, a serum lectin, designated mannose-binding lectin (MBL), which 

recognizes carbohydrates such as mannose and N-acetylglucosamine was first isolated from 

rabbit liver (Kawasaki, et al., 1978). MBL acts as the pattern recognition molecule, which 

recognizes sugar chains on some foreign pathogens. MBL is also found to have an avidity of 

complement activation (Ikeda, et al., 1987) (Holmskov, et al., 2003) (Turner, 1996). It has 

been thought that MBL activates complement by C1r2C1s2 protease complex that consists of 

classical pathway (Ohta, et al., 1990). However, in 1992, Matsushita and Fujita found a new 

plasma serum protease designated MBL-associated serine protease (MASP) that binds MBL 

(Matsushita and Fujita, 1992) (Matsushita, et al., 1998). Recent studies identified ficolins that 

are also plasma proteins with binding activity for carbohydrates to associate with MASP 

and to activate complement (Matsushita, et al., 2000, Matsushita, et al., 2001) (Cseh, et al., 

2002). Ficolins has a collagen-like domain and a fibrinogen-like domain. Furthermore, CL-

K1 (Keshi, et al., 2006) was also identified as a collectin that associates with MASP(Hansen, 

et al., 2010). 

3. MBL-associated serine proteases 

3.1. Three MASP proteins were associated with MBL and ficolins 

MASP is homologue of C1r and C1s of the classical pathway, sharing the well-described 

domains structure in the order from N-terminus, CUB-I, EGF, CUB-II, CCP-I, CCP-II and SP 

(Sato, et al., 1994). The CUB (C1r/C1s, embryonic sea Urchin protein [Uefg], and Bone-

morphogenetic protein 1 [Bmp1]) domain is approximately 110 aa, predicting a molecular 

structure of an antiparallel beta-barrel similar to those in immunoglobulins (Bork and 

Beckmann, 1993). The EGF (epidermal growth factor-like) domain of approximately 50 aa is 

also found in many proteins and is known to mediate protein-protein interactions via 

calcium ion. The N-terminal three domains consisting of CUB-I, EGF and CUB-II of the 

MASP are responsible for dimerization and for the calcium-dependent binding to MBL and 

ficolins(Feinberg, et al., 2003). The two contiguous CCPs (complement control protein) of 
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MASP, especially the second CCP domain, have been implicated in the binding of 

macromolecular substrates. The CCP  domains of around 60 aa are found in a number of 

complement factors and other proteins(Chou and Heinrikson, 1997). The SP (serine 

protease) domain is the catalytically active unit of the proteases and defines them as part of 

the S1A family of chymotrypsin-like proteases (Yousef, et al., 2004). MASP is able to cleave 

C4 and C2 to generate a C3 convertase, C4b2a. Recent studies isolated two additional 

MASPs in human MBL complex (Thiel, et al., 1997) (Dahl, et al., 2001).  These newly 

identified MASPs are called as MASP-2 and MASP-3 and the former one is MASP-

1(Schwaeble, et al., 2002). 

3.2. Substrates for MASP   

It is apparently defined that MASP-2 cleaves C4 that is similar with C1s in the classical 

pathway (Vorup-Jensen, et al., 1998) (Ambrus, et al., 2003). However, substrates for MASP-1 

and MASP-3 are still obscure. Several candidates were demonstrated by recent studies as 

shown in Table 1. 

 

MASP Substrates (reference) 

MASP-1 
C3 (Matsushita and Fujita, 1995), C2, fibrinogen, Factor XIII(Hajela, et al., 2002), PAR4 

(Megyeri, et al., 2009), Df(Takahashi, et al., 2010) 

MASP-2 C4, C2(Ambrus, et al., 2003), prothrombin 

MASP-3 IGFBP-5 (Cortesio and Jiang, 2006), Df(Iwaki, et al., 2011) 

C1r C1s 

C1s C4, C2 

Table 1. Substrates for MASPs 

3.3. MASP genes 

3.3.1. MASP1 

MASP1 is located on chromosome 3q27-q28 in human and chromosome 16 (B2-B3) in mouse 

(Takada, et al., 1995). Three gene products, MASP-1, MASP-3 and MAP44 are encoded from 

this gene by alternative splicing. MAP44 is a truncated protein of MASP-1/3 and lacks serine 

protease domain (Degn, et al., 2009) (Skjoedt, et al., 2010). MAP44 is thought to be a 

regulatory factor, attenuating activation of the lectin pathway. MASP1 gene has a unique 

structure. A single exon, encoding whole MASP-3 light-chain and the six sprit exons, 

encoding MASP-1 are tandem located (Dahl, et al., 2001). Therefore, MASP-1 and MASP-3 

consist of a common heavy-chain and the distinct light-chain.  
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Figure 2. Schematic representation of MASP1 gene 

MASP1 gene consists of 18 exons, encoding three gene products, MASP-1, MASP-3 and 

MAP44 by alternative splicing.  

3.3.2. MASP2 

MASP2 gene is located on human chromosome 1p36.3-p36.2(Stover, et al., 1999a). And 

mouse Masp2 gene is located on chromosome 4(Lawson and Reid, 2000). It was shown that 

the MASP2 gene encodes two gene products, the 76 kDa MASP-2 serine protease and a 

plasma protein of 19 kDa, termed sMAP/MAp19 by alternative splicing (Takahashi, et al., 

1999) (Stover, et al., 1999b). sMAP/MAp19 consist of only CUB-I and EGF-like domain of 

MASP-2, lacking catalytic domain.  
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Figure 3. Schematic representation of MASP2 gene 

MASP2 gene consists of 12 exons, encoding two gene products, MASP-2 and sMAP/Map19 

by alternative splicing.  

4. Studies for the Masp-knockout mice 
 

Knockout mice Mutant allele chromosome Targeted exon 

Masp1/3-/- Masp1tm1Tefu 16 2 

sMAP/Masp2-/- Masp2tm1Tefu 4 5 

Masp2-/- Masp2tm1Wjsc 4 11 &12 

Table 2. Masps knockout mice 

4.1. MASP-1 and MASP-3-deficient mice (Masp1/3-/-) 

To investigate the role of MASP-1 in complement activation, we planned to disrupt the 

second exon of Masp1 gene by a conventional gene targeting (Takahashi, et al., 2008). When 

this project was proceeding, MASP-3 was identified (Dahl, et al., 2001). Surprisingly, both 

gene products were produced from MASP1 gene. Since the targeted second exon is at 

upstream of both transcripts, it was predicted that MASP-3 is also absent in this knockout 

mice. It was confirmed that not only MASP-1, but also MASP-3, is absent in MASP1/3–/– mice 

(Takahashi, et al., 2008).  
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4.1.1. Masp1/3-/- shows the abnormality of the lectin pathway activation 

Serum from Masp1/3-/- shows the abnormality of both C4 and C3 activation on mannan and 

it is restored by adding recombinant MASP-1. This result supported that MASP-1 

contributes the lectin pathway through C4 activation. Furthermore, MASP-2 activation is 

delayed in Masp1/3-/- to be compared with that of wild type. This result reveals that MASP-1 

and/or MASP-3 may involve in the lectin pathway activation through the acceleration of 

MASP-2 activation (Takahashi, et al., 2008).  

4.1.2. Masp1/3-/- shows the abnormality of the alternative pathway activation 

Further study noticed us that not only lectin pathway but also alternative pathway is 

abnormal in Masp1/3-/-. We found that complement factor D (Df) circulates as a zymogen in 

Masp1/3-/- (Takahashi, et al., 2010). Df was known to be active-form, but not a zymogen in 

circulation (Lesavre and Muller-Eberhard, 1978). However, it has become evident that most 

proteases in blood are secreted as zymogen. Df was thought to be an exception. We also 

found that Df is synthesized as zymogen from adipocytes (Takahashi, et al., 2010) (Fig. 4). 

This result supports the general consensus for Df. Interestingly, increasing evidence 

suggests that the alternative pathway is involved in human disease, such as inflammatory 

arthritis and ischemia/reperfusion injury (Thurman and Holers, 2006). 

 

 

Figure 4. MASP-1 and/or MASP-3 involve in activating a zymogen of complement factor D 

Complement factor D (Df) is synthesized as a zymogen (Pro-Df) from adipocytes. In serum 

of Masp1/3-/-, Pro-Df that has an activation peptide (QPRGR) at N-terminal of Df was 

observed.  
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4.1.3. MASP-1 and/or MASP-3 involve the fat metabolism through Df activation 

It was also reported that the alternative pathway is involved in fat metabolism in adipose 

tissue (Paglialunga, et al., 2008). Recent studies have indicated that acylation-stimulating 

protein (ASP), which is identical to C3adesArg, stimulates fat storage in adipocytes (Yasruel, 

et al., 1991) (Maslowska, et al., 1997). ASP is a derivative of complement C3; thus, C3-/- mice 

are lean owing to ASP deficiency. Furthermore, plasma ASP levels are decreased in Bf-

deficient and Df-deficient mice, indicating that the alternative pathway stimulates 

production of ASP. We found that Masp1/3-/- mice are also apparently lean (Takahashi, et al., 

2008), strongly indicating a contribution of MASP-1 to fat metabolism via alternative 

pathway. We measured the plasma concentration of leptin and TNF-alpha (Fig. 5). Leptin 

plays a critical role in the regulation of body weight by inhibiting food intake and 

stimulating energy expenditure. Leptin appears to be a hormone secreted by adipocyte 

(Zhang, et al., 1994). It was shown that level of leptin in Masp1/3-/- significantly decrease. 

Furthermore, we determined that one of inflammatory factor, TNF-alpha increases in 

Masp1/3-/-. As shown in Fig. 4, adipose tissues in Masp1/3-/- apparently show atrophy. 

Therefore, fat metabolisms in Masp1/3-/- adipose tissue might be reduced.  

 

 

 
 

 

 
 

 

 

Figure 5. Serum leptin and TNF-alpha level in Masp1/3-/-  
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Figure 6. H&E staining of mouse adipose tissue 

4.1.4. Masp1/3-/- is resistant to AP-mediated joint damage  

Banda et al. demonstrated that Masp1/3−/− mice are highly resistant to CAIA as evidenced by 

a significant decrease in the histological scores as compared with WT mice (Banda, et al., 

2010). Recent studies supported that the alternative pathway is both necessary and sufficient 

to induce disease in murine collagen Ab-induced arthritis (CAIA) (Banda, et al., 2006) 

(Banda, et al., 2007). This model mouse confirmed that Masp1/3-/- shows the abnormality of 

the alternative pathway. 

4.1.5. MASP3 mutation causes 3MC syndrome 

3MC syndrome (Malpuech-Michels-Mingarelli-Carnevale syndrome) are four rare 

autosomal recessive disorders (Carnevale, et al., 1989) (Mingarelli, et al., 1996) (Malpuech, et 

al., 1983) (Michels, et al., 1978). This syndrome shows facial dysmorphic traits. Recent 
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observations for families, including patients who suffer from 3MC syndrome found the 

genetic mutations in CL-K1 and MASP1 genes (Rooryck, et al., 2011). This result was very 

interesting, since a possibility was raised that MASP-3 may be responsible to not only 

complement system, but also development system with a recognition molecule, CL-K1. In 

2010, Sirmaci, et al. also found the mutations of MASP1 gene in two Turkish familes 

(Sirmaci, et al., 2010). Preliminary results was obtained that Masp1/3 knockout mice have 

some developmental disorders (publication preparing). 

4.2. sMAP and MASP-2-deficient mice (sMAP/Masp2-/-) 

To clarify the role of sMAP/Map19, we also generated another mutant mice, disrupting the 

fifth exon of MASP2 gene by replacement with neor-gene (Iwaki, et al., 2006). Since this 

targeted region is the sMAP/Map19-specific exon, it was predicted that MASP-2 might be 

intact in this knockout mice. However, MASP-2 was not detected in their serum. Therefore, 

these mutant mice were named as sMAP/Masp2-/-. 

When recombinant sMAP and recombinant MASP-2 (rMASP-2) reconstituted the MBL-

MASP-sMAP complex in deficient serum, the binding of these recombinant proteins to MBL 

was competitive, and the C4 cleavage activity of the MBL-MASP-sMAP complex was 

restored by the addition of rMASP-2. On the other hand, the addition of recombinant sMAP 

attenuated the activity. Therefore, MASP-2 is essential for the activation of C4 and sMAP 

plays a regulatory role in the activation of the lectin pathway(Iwaki, et al., 2006). 

4.3. MASP-2-deficient mice (Masp2-/-) 

An England group generated MASP-2-deficient mice(Schwaeble, et al., 2011). This strain 

lacks exon 11 and 12 of Masp2 gene, encoding the C-terminal part of the CCPII and the SP 

domains. In their knockout mice, sMAP/Map19 is predicted to be intact. In vitro analysis of 

MASP2−/− plasma showed a total absence of lectin pathway-dependent C4 cleavage on 

mannan- and zymosan-coated surfaces. They investigated whether MASP-2 affect the 

inflammatory process using a model of myocardial ischemia reperfusion injury (MIRI). It 

was observed that MASP2-/- was protected from MIRI.   

5. Conclusion 

Here, we focus on analyses of three strains for Masps knockout mice, Masp1/3-/-, sMAP/Masp2-/- 

and Masp2-/-. All strains show that activation of lectin pathway is deficient.  We also detected 

the abnormality of the alternative pathway in Masp1/3-/-. But Masp2-deficient phenotype does 

not affect the activity. MASPs are associated with MBL, ficolins and CL-K1. MBL-deficient 

mice were generated and analysed (Takahashi, et al., 2002, Shi, et al., 2004). Surprisingly, MBL-

null mice show the comparable level of the alternative pathway with that of wild type. If 

MASP-1 and/or MASP-3 involve the activation of alternative pathway with MBL, MBL-null 

mice must be affected. Other recognition molecules, ficolin or CL-K1 might be involved in this 

phenomenon. This problem should be resolved in future study. 
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Recently MASP1 mutants were identified in human patients, suffering from 3MC syndrome. 

However, the mechanisms how MASP-1 and/or MASP-3 contribute the facial development 

are still unclear. Further study using Masp1/3-/- would provide a powerful tool to resolve 

this problem.    
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