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1. Introduction 

Any method for the solution of crystal structures or for Rietveld refinement of such 

structures needs at least the set of symmetry matrices of the given space group (SG). In data 

bases and concise standard descriptions of crystal structures, the complete list of atoms is 

reduced to atoms representatives and a space group symbol. Since symmetry operations are 

tensor objects and their matrix form depend on the origin and the orientation of the 

coordinate system, the symbol must identify not only the space group type but also the space 

group description. For this reason standard space group descriptions called conventional were 

tabulated since the year 1935. Contemporary descriptions are based on the 3rd series of the 

International Tables for Crystallography [1], frequently referred to as ITA83. In a common 

practice one takes a space-group symbol, usually an international Hermann-Mauguin (H-M) 

symbol, as the index and obtains the symmetry operators from the printed tables. This 

approach guarantees the conventional descriptions of space groups, ‘standard’ ordering of 

symmetry matrices, its geometric interpretation, etc. but has a disadvantage of being limited 

to the tabulated representations of space groups. Moreover, huge amount of data and a 

possibility of human errors in transferring the symmetry information to applications 

involving crystal symmetry [2,3] leads to the generally accepted conclusion, that the 

automated derivation of space-group information becomes essential when this information 

is routinely required, especially in the case of higher symmetry. In the years 1960-1980 well-

documented algorithms [4,5] translating H-M symbols into a set of generators, which are 

then used to build a full set of symmetry matrices, were developed. Differences in the 

generated space group descriptions, caused by ambiguities in H-M symbols prompted in [6-

8], brought to procedures based on explicit-origin generators, that is on symmetry 

operations with specified complete translation vectors not only on its characteristic 

components – glide or screw vectors. The explicit-origin generators were organized into 

lengthy [7,8] or concise space-group symbols and used for the SG generation. The latter 
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symbol, known as the Hall symbol, was applied in [6,9]. It should be also noted, that 

according to the transformational concept [10], the one from equivalent sets of generators 

published in ITA83 can serve as the ‘starting point’ for any space group description in the 

ITA83-style. 

The efficiency of space groups construction from the generators is also considered in the 

literature. Trivial approaches based on any symmetry operations, treated as the group 

generators, are redundant and completely ineffective. For example, the number of matrix 

multiplications and matrix comparisons needed for the generation of space group Fm3m has 

been estimated in [9] at 18528 and 1.7 million, respectively. Such huge number of 

mathematical operations can be drastically reduced at the expense of an algorithm 

complexity. In the approach described in reference [9], the improved algorithm was 

approximately 100 times faster than the simplistic method. The natural limit of such 

improvements corresponds to the non-redundant methods, that is procedures in which each 

matrix multiplication gives a new symmetry operation and thus matrix comparisons are not 

needed at all. Such method was based on representation of 32 crystallographic point groups 

in terms of cyclic groups and their products [7,8]. The ‘composition series’ method [11], 

successfully adapted to conventional space group descriptions in ITA83 [12], can also be 

modified to a non-redundant form [13]. This method is especially interesting, since it repeats 

the ITA83-type order of symmetry operations, assuming the published sets of generators are 

used. Basing on the composition series, all space group descriptions, that is conventional or 

not conventional, may be standardized [13-15].  

For specific purposes justified in [8,9], the set of symmetry matrices should be 

complemented by the ‘secondary symmetry information’ which originates from the 

geometric characterizations of the symmetry operations given in ITA83 in the form of the 

operation symbols and the diagrams of symmetry elements. The symmetry operations are 

the foundation for the Hermann-Maugin symbols and to derive information important in 

understanding the Wyckoff positions, to find equivalent descriptions of crystal structures or 

to find transformations between different algebraic descriptions of the same space group. 

The matrix-column pair of a space-group operator contains all the information that is 

needed for a geometrical characterization of the space-group operator and the 

corresponding symmetry element. Procedures for doing this are well documented in the 

literature [8,9,16-18]. Algorithms for the determination of (i) the type of rotation, (ii) the 

rotation angle φ given as n = 360/ φ, (iii) the sense of rotation, (iv) the orthogonal 

decomposition of the translation vector of the space group operator into its intrinsic and 

location-dependent components, (v) the orientation and the location of a geometric element, 

(vi) the inversion point on a geometric element in case of a rotoinversion symmetry 

operation, are given in the above references. 

Even though the recipes are clear, the geometric meaning of symmetry matrices needs some 

additional conventions [18] to obtain a unique form, not necessarily presented in algorithms. 

Difficulties are connected with the positive direction of an axis line or plane traces 

specifications, or the selection of a point which fixes a geometric element in the space. 
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Moreover, coding some glide vectors by the letters a, b, c, g causes that operation symbols 

are difficult to generate and are not generally understood, also in the community of 

crystallographers. Even though there are critical opinions like ‘The symbols written under the 

heading Symmetry operations are actually descriptive symbols which repeat part of the information 

given by the diagram – actually they correspond to cosets representatives in the decomposition of the 

space group with respect to its translation subgroup….Solid state physicists would appreciate much 

more if these symbols are replaced by Seitz operators’ [19], the deriving of geometric descriptions, 

especially without any relations to the Crystallographic Tables, is crucial. It must be also 

remembered that symbols were used to give a scientific definition to a term ‘symmetry 

element’ – the collective designation for a number of geometric concepts widely used by 

crystallographers, mineralogists and spectroscopists [20-22]. They were recommended by 

the Ad-hoc committee on the nomenclature of symmetry [21] for general use. 

The analysis of symbol derivations as well as the contents of geometric features in the 

symbols, given in [15, 18, 23], suggests the possibility of defining new symbols, easier to 

calculate, universal and richer in geometric meaning.  

Taking into account all above remarks, the most important features for the computer 

generation of space groups and their geometric characterization are: (i) a possibility of 

unique naming of any SG descriptions, (ii) an easy interpretation of SG symbols, that is a 

derivation of generators, (iii) effectiveness (non-redundancy) of group generation, (iv) 

reduced amount of predefined data, (v) full consistency with ITA83, (vi) an effective 

geometric characterization of obtained set of symmetry matrices. The generators selected by 

H. Wondratschek and used for the conventional space group descriptions in ITA83 meet 

some demands from the above list, but the geometric symbols need some modifications. 

In this chapter a complete, effective and unique approach to the automated derivation of 

space-group information for a conventional as well as for a non-conventional space group 

description is proposed. 

2. Transformational versus other space-group symbols 

There are several systems of space groups naming. They can be divided into three categories 

in the context of group generations: (i) the symbolic one, containing symbols of ‘space-group 

types’, like the sequential or the Schőnflies symbols, (ii) the geometric one, with the 

Hermann-Mauguin and the Shubnikov symbols which contain the glide or screw 

components of symmetry operations given in such a way that the nature of the symmetry 

elements, their orientation and relative location can be deduced from the symbol, (iii) the 

algebraic category with the Zacharasen, Schmuelli and Hall symbols of complete generators, 

most convenient for the derivation of ‘specific groups’. The Hermann-Mauguin symbols are 

mainly used in connection with the International Tables for Crystallography for the 

designation of the conventional space group descriptions. The computer programs 

transforming these most informative symbols into specific space groups have limited 

possibilities, are rather complicated, sensitive to changes in space-group symbols and must 

contain additional conventions, since H-M symbols do not depend on the origin selection. On 
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the other side, the algebraic SG symbols lose a clear geometric interpretation and should be 

selected from the ‘economic’ point of view – minimal stored data, a simple and non-redundant 

algorithm generation. The presented transformational approach to naming and deriving 

specific space groups, based on earlier works [10,15], meets the mentioned demands. 

 

SG No +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

0 P1 P1 P2 P2  C2 Pm Pc Cm Cc P2/m 

10 P2 /m C2/m P2/c P2 /c C2/c P222 P222  P2 2 2 P2 2 2  C222  

20 C222 F222 I222 I2 2 2  Pmm2 Pmc2  Pcc2 Pma2 Pca2  Pnc2 

30 Pmn2  Pba2 Pna2  Pnn2 Cmm2 Cmc2  Ccc2 Amm2 Aem2 Ama2 

40 Aea2 Fmm2 Fdd2 Imm2 Iba2 Ima2 Pmmm Pnnn Pccm Pban 

50 Pmma Pnna Pmna Pcca Pbam Pccn Pbcm Pnnm Pmmn Pbcn 

60 Pbca Pnma Cmcm Cmca Cmmm Cccm Cmma Ccca Fmmm Fddd 

70 Immm Ibam Ibca Imma P4 P4  P4  P4  I4 I4  

80 P4 I4 P4/m P4 /m P4/n P4 /n I4/m I4 /a P422 P42 2 

90 P4 22 P4 2 2 P4 22 P4 2 2 P4 22 P4 2 2 I422 I4 22 P4mm P4bm 

100 P4 cm P4 nm P4cc P4nc P4 mc P4 bc I4mm I4cm I4 md I4 cd 

110 P42m P42c P42 m P42 c P4m2 P4c2 P4b2 P4n2 I4m2 I4c2 

120 I42m I42d P4/mmm P4/mcc P4/nbm P4/nnc P4/mbm P4/mnc P4/nmm P4/ncc 

130 P4 /mmc P4 /mcm P4 /nbc P4 /nnm P4 /mbc P4 /mnm P4 /nmc P4 /ncm I4/mmm I4/mcm 

140 I4 /amd I4 /acd P3 P3  P3  R3 P3 R3 P312 P321 

150 P3 12 P3 21 P3 12 P3 21 R32 P3m1 P31m P3c1 P31c R3m 

160 R3c P31m P31c P3m1 P3c1 R3m R3c P6 P6  P6  

170 P6  P6  P6  P6 P6/m P6 mc P622 P6 22 P6 22 P6 22 

180 P6 22 P6 22 P6mm P6cc P6 cm P6 cm P6m2 P6c2 P62m P62c 

190 P6/mmm P6/mcc P6 /mcm P6 /mmc P23 F23 I23 P2 3 I2 3 Pm3 

200 Pn3 Fm3 Fd3 Im3 Pa3 Ia3 P432 P4 32 F432 F4 32 

210 I432 P4 32 P4 32 I4 32 P43m F43m I43m P43n F43c I43d 

220 Pm3m Pm3m Pn3n Pm3n Fm3m Fm3c Fd3m Fd3c Im3m Ia3d 

Table 1. The Hermann-Mauguin symbols which can appear in the transformational space-group 

descriptions 

The transformational approach was inspired by the fact, that in ITA83 all different 

descriptions of the same space group (settings, origin choices, cell choices) were generated 

from the same operations transformed to the new coordinate system. Thus, all multiple 

descriptions as well as any non-conventional description of a given space-group type may 

be constructed from one set of generators. In contrary to the generally accepted convention 

that all multiple descriptions are equivalent, one and only one description (and 

corresponding information: the conventional cell, origin, H-M symbol, etc.) serves as the 

reference for other SG descriptions. As a result, the number of H-M symbols is reduced to 

230 and each such symbol likewise the sequential number or the Schőnflies symbol denotes 

the space-group type and points at the ‘starting’ set of generators. 

The selection of the reference descriptions is based on the following conventions. In 

monoclinic system the settings with unique axis b, cell choice 1 are chosen. Five groups with R 
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– centred cells are described in the hexagonal axes. For the space groups with two origin 

choices, the description with a centre as the origin is chosen. 

Having settled the relation between a space-group type and its well established description, 

other descriptions of the same space-group type are easily identified by a transformational 

space-group symbol (TSG) obtained from the type symbol and explicitly given coordinate 

system transformation 

    11 21 31 12 22 32 13 23 33 1 2 3TSG  type symbol P ,P ,P ,  P ,P ,P ,  P ,P ,P  p ,p ,p ,  (1)  

where parameters in the first parenthesis describe the unit cell transformation 

 ’, ’, ’ 	 , , P 	P 	PP 	P 	PP 	P 	P , , 	 ,	 (2) 

and the remaining parameters define the origin shift 

 t 1 2 3 p  p  p .  a b c  (3) 

In most cases some of the parameters are zero and an abbreviated ‘short-hand’ notation 

    a b c tTSG  type symbol ’, ’, ’    (4) 

is preferred. The shortening concept is similar to that used in storing the symmetry matrices 

as the coordinate triplets in ITA83. Moreover, the identity transformation (a, b, c) and the 

zero origin shift (0) are omitted in the symbol. 

To be familiar with, some examples of the TSG symbols are given underneath: 

Fdd2 (b/2+c/2, a/2+c/2, a/2+b/2) – a primitive description of the space group, 

Pn3 (-1/4,-1/4,-1/4) – origin choice 1, 

5 (c,a,b) – unique axis c, cell choice 1, for the group with sequence number 5 or H-M symbol C2. 

It must be remembered that the Bravais centring letter in an H-M symbol is valid only for 

the conventional space-group type and generally does not describe the centring vectors 

resulting from the axis transformation given in the transformational symbols. On the other 

hand, the use of a sequence number or a Schőnflies symbol to point the space-group type is 

not very informative. The relation between H-M symbols in the ITA83 and the generators 

based on the composition series method is lost, but it can be restored by the following trick. 

Each space group type has one and only one set of generators identified by unique H-M 

symbol, Schőnflies symbol or even by a sequential number. Thus, the group symbol 

identifies not only the group type, but also its selected matrix representation (including the 

axis labelling, the origin). Other group descriptions, conventional or not, need explicit 

information on the axis transformation and/or the origin shift enabled. In any case an 

original or transformed generators gives a complete set of symmetry matrices in an 

unambiguous and effective way.  
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3. Description of symmetry operations 

Crystallographic groups are groups in the mathematical sense of the word group, i.e. they 

are the sets of elements which fulfil the group conditions. The elements of a space group are 

the symmetry operations of a crystal, which can be described in several ways. In ITA83 they 

are presented in four different forms: 

i. by a list of symmetry matrices of general position in the form of coordinate triplets, 

ii. by a general-position diagram, 

iii. by the diagram(s) of symmetry elements, 

iv. by a list of geometric interpretations of symmetry matrices from (i). 

The great importance of geometrical intuition and the geometric point of view on space 

groups, their symmetry elements, H-M symbols, Wyckoff positions, origin specifications is 

clear from the above list. The diagrams are rather complicated constructions and cannot be 

derived on line for any space group description, contrary to the geometric symbols for each 

symmetry matrix. In the computer applications an operation symbol may be considered as 

the ‘gravity centre’ of geometric characterization of a symmetry matrix. 

For easer understanding of the further material, in the first part of this section the common 

facts about ‘standard’ algebraic and geometric descriptions of symmetry operations will be 

recalled. Next the new geometric symbolism will be proposed. A dual symbol of space-group 

operation is based on a dual symbol of point operation [23] and a point on geometric elements 

closest to the origin [18]. These modifications improve the informative properties and also 

reduce some conventions necessary for the standard symbols to be unique. 

In the three-dimensional space the general linear mappings, called also the affine mappings, 

transform a point coordinates x, y, z into the coordinates , , ̃ of the image point by the 

system of equations 

 
	 W W W wW W W w̃ W W W w   (5) 

represented in the matrix form as 

 , .  (6) 

For computer applications a more convenient description uses so called augmented matrix 

W which combines the (3x3) matrix W with a (3x1) column matrix w and a row matrix (0 0 0 

1). The augmenting of the coordinate column x, y, z by a fourth dummy coordinate, fixed at 

1, leads to a more homogenous form 

 .x x W   (7) 

Contrary to the affine mappings, which preserve the straight lines, planes and parallelism of 

such objects, a special case called isometries preserves also distances and in consequence the 

volumes and orthogonalities. In this situation the determinant det(W) = ±1. Moreover, for 
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crystallographic symmetry operations related to the crystallographic coordinate system all 

elements of the matrix are integers reduced to the values {-1,0,1}, if such coordinate system 

is based on the shortest lattice vectors or on the Bravais cells. In the latter case, especially 

simple forms of W consisting of three or four non-zero elements are obtained. Therefore, in 

printed descriptions of space groups, like in ITA83, the space - consuming forms (W,w) or W 

are equivalently given as shorthand notation of the equation systems (5) and called the 

coordinate triplets , , z or the Jones faithful notation. 

There are also some advantages in notation (R|t) introduced by Seitz in [25] and adopted by 

solid-states physicists [26]. In this notation ‘R’ means a point operation W given symbolically 

and ‘t’ is an explicitly given translation, equivalent to w. Thus, the diversity of R-symbols, 

corresponding to a set of different symmetry matrices occurring in the conventional space 

group descriptions, is reduced to 64 items (48 orthogonal matrices with three non-zero 

elements occuring in the cubic system and 16 additional matrices with four non-zero elements 

coming from the oriented hexagonal system). The Seitz symbols are very concise and with the 

help of multiplication tables they identify the product of symmetry operations 

       1 2R | R | R R |R R| ,  1 1 2 2 1 2 1t t   t t   t  (8) 

but for explicit values of components t, the W matrices symbolized by R must be known. 

Two special actions R on t should be distinguished. Assuming the k order of R, that is the 

equality Wk = I is held, these actions can be distinguished by equations 

        0para para orthoR| I|  and R| I| ,
k k

k t  t t   (9) 

where vectors tpara and tortho are mutually perpendicular. 

Recently, the set of geometric symbols for R used in ITA83 was compared with other sets of 

symbols of point-group operations [24]. Some symbols are purely symbolic, other contain 

geometric information and are more or less self-defined. 

Relations between different spaces, their geometric invariants and group properties of such 

invariants were ‘discovered’ before the development of the crystallographic groups. Starting 

from the Erlangen program announced by Felix Klein in 1872, it is understood that different 

symmetries represented by the abstract structure-groups are consequences of different 

geometries and their invariants. Thus, there are two points of view on symmetry: one is 

algebraic and the second one is geometric. In the case of groups described in ITA83, the 

three items from the four-element list of equivalent symmetry descriptions possess the 

geometric nature. The geometric information has played important roles in many aspects of 

crystallography. The algorithms for the characterization of symmetry operations are the 

foundation for the Hermann-Maugin symbols. The ‘secondary symmetry information’ is 

important in understanding the Wyckoff positions, distinguishing partners in an 

enantiomorfic pair, finding equivalent descriptions of crystal structures or finding 

transformations between different algebraic descriptions of the same space group. 
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The description of a general procedure for deriving symbols for the symmetry operations 

was included in Chapter 11 of ITA83 [17]. A similar approach was used in [16], different 

modifications can be found in [7,8]. In all this approaches the basic concepts consist in 

extracting from w (t in Seitz notation) its characteristic part wg interpreted as screw/glide 

vectors, finding a set of fixed points of pure rotations or reflections and thus orient and 

locate so called geometric element and find the sense of rotation angle symbolized by a 

number n = 2,3,4 or 6 (rotation angle = 360º/n). The scheme of calculation and some critical 

remarks is given below. 

3.1. Type of symmetry operation 

The type of symmetry operation is obtained by a modification of point operation symbols 

according to the characteristic part of translation vector w. It is obvious that the type of 

point operations is completely determined by a matrix part W of (W,w). Table 2 contains the 

classification of matrices W based on the analysis of their traces and determinants. 

 

 det(W)=1 det(W)=-1 

tr(W) 3 2 1 0 -1 -3 -2 -1 0 1 

type 1 6 4 3 2 1 6 4 3 m 

order k 1 6 4 3 2 2 6 4 6 2 

Table 2. Classification of the point symmetry matrices 

A vector w, if different from 0, should be decomposed into orthogonal components: a 

glide/screw part wg and a location part wl. While the first component changes operation types, 

namely: rotations into screw rotations and reflections into glide reflections, the second one is 

responsible for shifting the corresponding symmetry element from the origin. The part wg 

may be derived by projecting w onto the space invariant under W, but this needs the 

metrical information about the coordinate system. The metric-free derivation uses the 

property (9)  

      , , ,
kk

k  g l gW w  W w w I w  (10) 

and the location part is the difference wl = w - wg. 

3.2. Sense of direction and sense of rotation 

To complete the characterization of W, excluding the cases where W represents a two-fold 

rotation or a reflection, the sense of rotation must be determined. For this purpose and also 

for obtaining the compatibility between analytical descriptions of axes, a convention which 

fixes the positive direction must be adopted. Such convention was not explicitly described in 

[17] and in consequence other conventions are sometimes applied. For example, from the 

two equivalent descriptions of the same crystallographic direction [111] and [111] the latter 

is positively directed according to the rule applied in [13] and the opposite selection is 
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compatible with geometric descriptions in ITA83. A systematic analysis of ‘standard’ 

symbols allowed to specify in [18] six conventions C1 – C6, which together with the 

algebraic procedures lead to unique symbols. Convention C2, in the detailed form is given 

in Table 3. 

 

Stand up element Two zeroes values One zero All non-zero values 

u [+ 0 0] [0 + +] or [0 + -] [+ - -] 

v [0 + 0] [+ 0 +] or [- 0 +] [- + -] 

w [0 0 +] [+ + 0] or [+ - 0] [- - +] 

-   [+ + +] 

Table 3. Selection of the positive direction from a pair [uvw] and [ ̅ . The symbols ‘-‘, ‘0’, ‘+’ are used 

for the positive, zero, negative values, respectively. 

According to the convention in Table 3, positive directions characterize the positive product 

of the non-zero components. Such situation cannot occur if there are only two non-zero 

elements, which differ in the sign. In this case the rule can be stated as ‘a negative 

component may precede a zero component, but never may follow it’. 

Assuming a positive direction of the axis corresponding to a rotation or rotoinversion 

operation has been determined, one of two commonly used procedures [17, 27] should be 

applied to obtain the sense of rotation. The Boisen & Gibbs procedure given in [27] is more 

practical. Having the positive axis direction [uvw] derived from W, the positive sense of 

rotation is obtained if one of the following conditions is fulfilled: 

 0 0 032 21 31if   and  W     or   W W  .v w u w v      (11) 

3.3. Orientation – location part 

In the classical approaches to the considered topic, the orientation of a geometric element is 

determined together with its location in one step. Solving of three simultaneous equations of 

reduced operation (W,wl), given in a matrix form 

   0,  F lW I x w  (12) 

leads to the linear or planar sets of solutions (fixed points) for rotations or reflections, 

respectively. For a rotoinversion other than a pure inversion, the axis results from the equation 

  2
0.   FW I x Ww w  (13) 



 
Recent Advances in Crystallography 254 

In both cases the set of equations is indeterminate, since det(W - I) in (12) or det(W2 - I) in 

(13) are equal zero. This leads to parametric solutions, which forms depend on the mode of 

calculation. 

Although the procedure may also be applied to cases where space groups are given in non-

conventional descriptions, there are situations where it is difficult to obtain a unique result 

even for coordinate triplets taken from ITA83 [18]. 

For example the matrix equation 0 0 11 0 00 1 0 1/61/31/6  

gives three solutions presented here as the orientation-location parts: 

1.  x, -x + 1/3, -x + 1/6 if x is treated as the parameter, 

2. –y + 1/3, y, y – 1/6 if y is selected as the parameter, 

3. –z + 1/6, z + 1/6, z if z represents the variable parameter. 

Of course, these solutions describe the same symmetry axis, but differ in a selected 

parameter, in a positive direction and in a location point. Unique solutions require special 

conventions in programmable algorithms, based for example on the row echelon forms [9, 27], 

or in post-calculation standardization. 

3.4. Pseudo-inverse and the point closest to origin 

Another possibility originates from the linear algebra and from the concept of pseudo-inverse 

matrices. This mathematical formulation allows obtaining single points xF from equations 

(12) and (13). Such unique points have simple interpretation; they represent points from the 

linear or planar sets closest to origin. The derivation of the pseudo-inverse matrix (W-I)+ is 

rather cumbersome, but this idea inspires the new point of view on the location derivation 

and specification in the geometric descriptions.  

4. Dual symbols for space-group operations 

As mentioned in the previous section, the geometric interpretation of symmetry operations 

is vital for many crystallographic topics. But there are some disadvantages in the derivation 

and application of the pioneers symmetry operation symbols (Fischer, Koch in ITA83). In 

the published procedure, intended mainly for manual calculations and for a link between 

symmetry matrices and the diagrams of symmetry elements, there is a lack of conventions 

needed to cast this approach into a programmable algorithm and to obtain unique relations: 

given symmetry operation  the operation symbol. In the literature concerning this topic 

individual conventions are frequently added into specified algorithms [8,9], which causes 

that the derived symbols are unique, but not necessary agree with ITA83 symbols. Special 

difficulties arise in deriving the orientation-location part of a symmetry operation. A 
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systematic analysis of ITA83 symbols resulted in extracting 6 conventions necessary for 

automatic generation of the orientation-location parts in an unambiguous way [14]. The 

novel approach presented in that publication contains the derivation of a point closest to 

origin xc as an alternative to solving an indeterminate set of equations by the pseudo-

inversion matrices. But a methodological advance connected with the unambiguity of xc was 

next lost in the standardization step, in which the obtained result was transformed into a 

conventional point on a geometric element. The inconveniences of classical symbols can be 

summarized as follows:  

i. the procedure outlined in ITA83 for the classical names of the symmetry operations is 

not unique and must be supplemented by explicitly given conventions like in [18], 

ii. the symbols lost some information in comparing with the source symmetry matrices, 

for example the point operation symbol 2 0,y,0 and space operations based on it may be 

obtained from two different matrices,  

iii. symbols, especially involving the reflections, are limited to the conventional space 

groups descriptions, 

iv. symbols are laborious for computer derivation and manipulation, e.g. they contain the 

symbols a, b, c, g for glide planes, the symbols x, y, z for free parameters. 

Some of the listed problems are immanently involved with the specific form of the 

orientation-location part and they should be overcome or at least simplified by developing a 

new symbol of symmetry operation. The problems (ii) and partially (iii) and (iv) disappear, 

if the orientation of a geometric element is presented in the form of the orthogonal lattice 

splitting (uvw)[hkl]. Advantages of using splitting indices for the characterization of point 

operations were described in [23]. The benefits for space operations should be even greater. 

The conventions for a unique description of a geometric element location in (i) have no 

meaning for xc. Moreover, by removing the a, b, c, g designations of glide planes, a new 

symbol will be more consistent. 

The splitting indices describe the orientation of the symmetry axes or the symmetry planes 

in the same way as [uvw](hkl). They, together with a locating point on the geometric 

element, fully correspond to the orientation-location parts. More precisely, the informative 

content of this construction exceeds the analogous information stored classically. Lattice 

rows [uvw] and lattice planes (hkl) are orthogonal to each other and exchangeable in the 

reciprocal space. Specifications of the same lattice direction in direct and reciprocal spaces 

better characterize the axis system and simplify the crystallographic calculations, that is 

calculations in non-Cartesian systems. While two point operations given by coordinate 

triplets , , ̅ and , ̅ , ̅ lead to a common geometric symbol 2 0,y,0, the splitting indices 

are [010](010) in the former case and [010](120) in the latter. 

The lattice perpendicularities revealed by splitting indices are also important in the 

orthogonal splitting of the translational part w of a space-group operation. The w 

components are parallel/orthogonal to [uvw] and also to (hkl), what was symbolically drawn 

in Figure 1. 
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Figure 1. Origin - central lattice point of a dual symbol. Each crystallographic point operation 

(excluding identity and inversion) orthogonally splits the lattice into the lattice rows [uvw] and the 

lattice planes (hkl). The decomposition of a translation w in the space-group operations is also based on 

the lattice perpendicular property.  

Let xc denotes a special point, the point from set xF closest to the coordinate system origin. 

Such points may be found on any geometric element (Fig.2). Thus, every 4x4 symmetry 

matrix W, excluding only identity operation and pure translations, can be characterized by 

xc. Vector xc is always perpendicular to the geometric element and to the intrinsic part wg, if 

not zero. Two vectors separated by the asterisk, that is wg* xc give complete geometric 

information about a space-group operation, assuming that the point –group operation was 

characterized by the dual symbol. For this reason, the new geometric symbol of a space-

symmetry operation is also called the dual symbol, like in the case of point operations [18]. 

This should not lead to confusion, since the information concerning the point operation is 

separated from the characteristics involved with the space-symmetry operation. Such 

approach reflects the analogy to the algebraic difference between the point operation W and 

the space operation (W,w). Moreover, the perpendicularity between the lattice row and the 

lattice planes expressed by splitting indices is reflected also in the pair wg, xc. In 

consequence, the six components of two vectors wg* xc may be presented only by four simple 

ratios, since in every case wg or xc is parallel to the integer vector [uvw]. Thus, the dual 

symbol takes the form 

 
 
 

1 2 3 4

1 2 3 4 

 * , ,  for rotations and rotoinversions 

and , , * for reflections,

n uvw hkl r r r r

m uvw hkl r r r r

    
  

 (14) 
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where: the minus sign before n or a bar over n is the ‘inversion sign’ = det(W) 

n – axis symbol, order of Wp, 

m – mirror plane (n =2, det(W) = -1), 

[uvw] – symmetry axis direction or a normal to the reflection plane, 

[hkl] – reflection plane or plane perpendicular to the direction of symmetry axis, 

r1 * r2, r3, r4 – specification of vectors wg = (r1u, r1v, r1w) and xc = (r2, r3, r4), 

r1, r2, r3 * r4 – specification of vectors wg = (r1, r2, r3) and xc = (r4u, r4v, r4w). 

 

Figure 2. Characteristic points of geometric elements in general orientation. For a symmetry axis they 

defined the intersection of an axis with the basal planes. A symmetry plane is located by its intersection 

with the coordinate axes. Alternative fixing of geometric element may be based on the unique point xc 

closest to the origin, schematically presented by open circles. 

In most cases such complete form can be further reduced. Zero vectors are omitted. If the 

lattice row indices are equal to the lattice plane indices, a typical situation for a conventional 

description of space groups, the latter does not need to be specified. Generally, the indices 

(hkl) in dual symbols are related with the indices [uvw] by the lattice metric. Since non-

orthogonal symmetry matrices occur only in the oriented hexagonal system, the h symbol 

may designate a unique transformation matrix from [uwv] to (hkl) according to the scheme: 

 → 2 1 01 2 00 0 1 , (15) 

where the matrix elements are scaled to integers and the 3,3 element is arbitrarily set. The 

common divisor must be removed from the symbol (hkl), if present.  

It may be surprising that the dual symbols do not contain the specification of an inversion 

point in the case of rotoinversion. This can be explained by extending the interpretation of 
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wg also on such operations. Vector wg ‘measures’ the intrinsic transformation of the point xc 

into another point, both on a geometric element 

  , – .g c cw  W w x x  (16) 

Thus, wg describes a classical screw/glide vector and a pure inversion of the point xc. This 

means that 

 / inv c gx x w 2  (17) 

so the calculation and specification of wg is reasonable for all operation types. The relations 

and remarks may be better explained by a few examples. 

Example 1 

The symmetry matrix 
0 1 01 0 00 0 1 , 0.500.5  is described as 4+ [001] ½ * ¼,-¼,0. 

The obtained dual symbols contain the following data. The matrix describes a fourfold 

rotoinversion operation. Its geometric element is oriented along direction [001], which is 

orthogonal to the (001) plane. The point on the axis closest to origin xc has coordinates: ¼,-

¼,0. Mapping xc is reduced to a pure inversion and generates the shift ½[0,0,1]. Thus, the 

inversion point is at ¼,-¼,¼, the middle between xc and its image.  

Example 2 

The matrix 
0 1 01 0 00 0 1 , 0.50.50  is described as m[1-10] ½,½,0*. 

In this case the matrix describes a glide symmetry operation. The symmetry plane has Miller 

indices (1-10) and goes through the origin. The glide vector is (½,½,0).  

Example 3 

The matrix 
1 1 01 1 00 0 1 , 000.5  is described as m[100](2-10) 0,0½* or shorter as m[100]h 0,0,½*. 

In this case the matrix also describes a glide symmetry operation, but in a hexagonal system. 

The symmetry plane has Miller indices (210) and goes through the origin. The glide vector is 

(0,0,½).  

Example 4 

The matrix 
1 1 11 0 00 0 1 , 0,500  occurring in a primitive description of group No 227 is 

described as 3+ [113 (001) *1/6,1/6,0. 

The matrix generates a three-fold rotation. The axis is oriented along [113 direction, which 

is perpendicular to (001) planes and is located by the point 1/6,1/6,0.  
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It may be noted from the above examples that – introducing the dual symbols – the 

inconveniences mentioned at the beginning of this section are avoided. The new notation 

displays the geometric features of a rotation, a rotoinversion, a screw rotation, a reflection, a 

glide reflection and even an inversion, in a homogeneous way. All such operations 

correspond to a geometric element (in the form of a single point, line or plane), for which a 

point closer to the origin always exists, a unique point xc. The difference (W,w)xc - xc, defines 

an ‘intrinsic transformation’. These two vectors extend the geometric description of a point 

operation to the description of a space group operation. The symbols are applicable to space 

groups presented conventionally as well as non-conventionally. The symbols are rather 

concise, especially in the context of geometric information, which they contain. The use of 

the splitting indices [uvw](hkl) seems to be more applicable for space group then for point 

groups. Crystallographers interpret [uvw] as a family of lattice rows and (hkl) as a family of 

planes. For practical purposes there is only one question: is the determination of xc 

computationally simple? 

5. Derivation of xc points for space-group operations 

Point xc was geometrically defined as the point on the geometric element closest to the origin 

or equivalently, as the shortest position vector which tail is fixed at the origin and the head 

ends on the geometric element. Such definition is rather descriptive and not much useful for 

practical purposes. Generally, the derivation must be carried out in a non-Cartesian system 

for which the metric is not known. The splitting indices of the matrix part W make a 

geometric concept based on which the quantitative components of xc may be calculated from 

the translation part w of a space-group operation. For any W (excluding identity or 

inversion operations) the indices of the orthogonal lattice splitting orient the reflection plane 

by (hkl) indices and also orient line [uvw] in space perpendicular to this plane or orient the 

symmetry axis [uvw] and specify some plane orthogonal to it. If w = 0, the direction [uvw] 

and the plane (hkl) intersect in the coordinate system origin O, like in Fig. 1. In this situation 

the head and the tail of xc coincide with O, as for point operations. But if w ≠ 0, the head of xc 

may move along line [uvw] for reflections or may move on (hkl) plane for any type of 

rotations. Thus, the construction based on the lattice orthogonality given by the splitting 

indices enables finding xc without complete metric information. The meaning of xc for the 

inversion operation is obvious, since a geometric element in this situation is reduced to one 

point and for a pure translation xc =0.  

The key to finding xc on the (hkl) plane or on the [uvw] line is the orbit, a set of points 

interrelated by the analysed operation. Contrary to general operation (W,w), its reduced 

version (W,wl) leads to the cyclic groups and to a limited number of equivalent points in 

space. If an arbitrary point is located on direction [uvw] for a symmetry plane, or on the (hkl) 

plane for a symmetry axis, then the centre of gravity of the orbit generated by this point and 

(W,wl) defines xc. Thus, xc describes the shift of the orbit generated by (W,wl) and points 

closest to the origin for all (W,wl)n operations. Certainly, for wl = 0 the gravity centre 

coincides with the origin. Systematic derivation of xc for all types of space-group operations 

is clearer with the help of sketches presented in Figure 3. The intrinsic translation parts wl 



 
Recent Advances in Crystallography 260 

and the projection planes (hkl) are treated as already known. The considered orbits are one- 

or two-dimensional, assuming the origin is located in the fixed point of an rotoinversion 

operation. Not all points on the orbit are necessary to derive xc. For an orbit in the form of 

square its centre is determined by points in two opposite vertices. The centre of the hexagon 

may be reached by rotating one side by 60°. In final formulae the rotation sense is 

guaranteed by the presence of W, but in geometric constructions the rotation sense must be 

taken into account. A systematic derivation of the formulae for xc is followed below. 

Figure 3a 

Identity operation (I,0) can be interpreted as the reduced operation of a pure translation 

(I,w). Its geometric element contains all points. Point (0,0,0) is the closest to the origin. Thus, 

xc is defined as the zero vector, not dependent on w. Another, somewhat artificial but more 

consistent with the rest of figures approach, is based on the selection of specific point -w/2 

for the representation of translation 

1. Vector to the special point, O1 = x= - w/2 

2. Vector to its image, O2 = Wx+w = - w/2 

Point xc = (O1 + O2)/2 = 0 

Figure 3b 

The origin is located at the inversion point. The combination of the inversion with the 

translation is equivalent to shifting the inversion point by a half of the translation vector, 

hence 

1. Vector to any point, O1 = x 

2. Vector to its image, O2 = Wx+w = -x+w  

The new position of inversion point xc = (O1 + O2)/2 = w/2 

Figures 3c and 3d 

The orbit generated by a reduced two-fold operation or reduced reflection contains two 

points. 

1. Vector to any point, O1 = x 

2. Vector to its image, O2 = Wx+wl = -x+wl  

The shortest vector xc = (O1 + O2)/2 = wl/2 lies on (hkl) for a two-fold rotation or on [uvw] for 

a reflection 

Figures 3e and 3f 

In the case of four–fold rotation or four-fold rotoinversion the calculations are as follows: 

1. Vector to any point, O1 = x 

2. Vector to its image, O2 = Wx+wl  

3. Vector to the image of image, O3 = W(Wx+wl )+ wl = -x +Wwl+wl, since in this case W2x = -x 
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Figure 3. Sketches for derivation points xc based on any point x and its image(s). On all drawings the 

projection plane is specified, the origin and xc are marked as large filled and empty circles, respectively. 

Other explanations are given in the text. 
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The centre of gravity for all symmetry equivalent points is the same as for two points of 

opposite vertices. Thus, the new position of the rotation point is xc = (O1 + O3)/2 = (Wwl+wl)/2 

Figures 3g and 3j  

In the case of three–fold rotation or six-fold rotoinversion, the location vectors from the 

origin to the vertices of equilateral triangle are given by any point x and its two images: 

1. Vector to any point, O1 = x 

2. Vector to its image, O2 = Wx+wl  

3. Vector to the image of image, O3 = W(Wx+wl )+ wl = W2x +Wwl+wl 

The centre of gravity determines the new position of the rotation point 

xc = (O1 + O2+ O3)/3 = (Wwl+2wl)/3, since W2x + Wx + x = 0. 

Figures 3h and 3i  

In the case of six–fold rotation or three-fold rotoinversion, the location vectors from the 

origin to the vertices of regular hexagon are given by any point x and its consecutive images. 

But a simpler way may be based on a rotation of a hexagon side by 60° 

1. Vector to any point, O1 = x 

2. Displacement vector between x and its image, 12 = Wx+wl – x, a hexagon side  

3. Rotation of 12 by 60° = W(Wx+wl -x) = W2x +Wwl - Wx 

The centre of gravity determines the new position of the rotation point 

xc = (O1 +W12) = Wwl, since W2x - Wx + x = 0, if W describe rotation by 60°. 

The obtained results are summarized in Table 4. 

 

Axis symbol xc Axis symbol xc 

1 0 1 w/2 2, 2  wl/2 4, 4 (Wwl+wl)/2 3, 6 (Wwl+2wl)/3 3, 6* Wwl 

* erroneously stated in [18]. 

Table 4. Formulae for calculation points xc. 

It may be seen from Table 4 that having classified the matrix part W and having 

decomposed translation part w, the derivation of xc for any space-group operation is unique 

and extremely simple. Calculations are based on the standard matrix arithmetic: 

multiplication of a matrix by a vector, adding two vectors or multiplying a vector by a 

constant. The geometric interpretation of specified rules as well as their explanation is also 

simple. A comparison of derived formulae with those described in article [18] reveals an 

incorrect equation for the axis symbol 6 in the published data. The error was overlooked, 

since in all conventional descriptions of the space groups, the origin is located on the 

hexagonal axis. 
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6. Predefined data for space groups generation 

For practical and technical convenience the amount of predefined data needed for all 230 

space group generation in computer applications should be minimal and the generation 

process should be most effective. In the case of space group generation in ITA83 style the 

latter demand is obtained by the composition series method, which on the other hand leads 

to some redundancy in the sets of non-translational ‘generators selected’. This extension 

may be avoided by reselecting the generators in such a way, that their number is minimal 

but they can easily restore the original composition series. The concept leads to extending 

slightly the set of predefined point symmetry operations and to significant reduction of the 

generators specification for each group, remembering that SG belonging to the same crystal 

class are based on the same point generators. Since the arithmetic class may be extracted 

from a space-group symbol or a space-group number, the space generators may be 

composed of the point generators and individually given translations. Next, the obtained list 

should be slightly modified to produce a full list of generators needed in a very effective 

composition method. 

This paragraph specifies complete data needed for effective and unique generation of all 

space groups: 

a. 18 matrices (point operations) 

b. 37 ranges of space group numbers which correspond to conventional point group 

descriptions specified by its generators – numbers of matrices from list (a) 

c. 230 specification of Bravais letter and one or two translation parts which together with 

point operations from (b) define space group generators 

Matrices needed for restoring the composition series are compiled in Table 5. According to 

[18] and possible future extensions of the algorithms, they are coded by single numbers. 

Only proper rotations should be explicitly defined. 

 

No Code Symbol No Code Symbol No Code Symbol No Code Symbol 

0 16484 1 5 7410 2 [1-10] 10 16482 m x,y,0 15 5223
-6+ 0,0,z; 

0,0,0 

1 3200 2 [001] 6 14459 6+ 0,0,z 11 16322 m x,0,z 16 11865 -3+ 0,0,z;0,0,0 

2 3360 2 [010] 7 7817 3+ 0,0,z 12 11784
-4+ 0,0,z; 

0,0,0 
17 8866 -3+ x,x,x;0,0,0 

3 7898 4+ [001] 8 10816 3+ x,x,x 13 7412 m x,-x,z

4 12270 2 [110] 9 3198 -1 14 12272 m x,x,z

Table 5. Symmetry matrices used as point groups generators 

Matrices of improper rotation haves numbers increased by 9 and codes complemented to 

19682: No = No(proper)+9, code=19682-code (proper). The obvious relation PntGen = -

1*PntGen (proper) may be also applied. A code is converted into the 3x3 matrix PntGen by 

the following procedure: 
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For k = 3 To 1 Step -1 

For j = 3 To 1 Step -1 

PntGen(k, j) = (code Mod 3) - 1 

code = code \ 3 ‘integral division 

Next j 

Next k 

The relations between the space groups from Table 1 and corresponding point groups are 

compiled in Table 6. The sequence of point-group generators taken from Table 5 is 

associated with a space group by its number, according to the order of space-group types 

unchanged since the first edition of Tables in 1935. A range of space-group numbers 

compatible with a given list (point group) is defined by its maximal value (SG column). 

Some subranges or individual SG numbers are needed for the alternative description of 

point groups, what is seen in the last 5 rows. 

 

SG 

max 

PG 

symbol 

Genera-

tors 

SG

max 

PG 

symbol 

Genera

-tors 

SG

max

PG 

symbol 

Genera-

tors 

SG

max 

PG 

symbol 

Genera-

tors 

1 1 - 82 4 12 161 3m1 7,10 199 23 1,8 

2 1 9 88 4/m 3,9 167 3m1 16,4 206 m3 1,17 

5 2 2 98 422 3,2 173 6 6 214 432 1,8,4 

9 m 11 110 4mm 3,11 174 6 15 220 43m 1,8,13 

15 2/m 2,9 122 42m 12,2 176 6/m 6,9 230 m3m 1,17,4 

24 222 1,2 142 4/mmm 3,2,9 182 622 6,4 115-120 4m2 12,11 

46 mm2 1,11 146 3 7 186 6mm 6,10 
149,151,

153 
312 7,5 

74 mmm 1,2,9 148 3 16 190 6m2 15,10 157,159 31m 7,13 

80 4 3 155 321 7,4 194 6/mmm 6,4,9 162-163 31m 16,5 

189-190 62m 15,4 

Table 6. 32 point groups (+ 5 additional orientations), its generators and the maximal numbers of space 

groups to which the group corresponds 

There are 73 symmorphic space groups, which in the conventional description need only 

additional information on the centring type. In other groups the space generators must 

contain partial translations. A proper selection of the origin makes that only one or two non-

zero vectors must be specified. Based on the ‘conventional origins’ from ITA83, the 

information necessary to convert point generators into the space generators was compiled in 

Table 7.  

The lack of Bravais letter in the items of Table 7 means the primitive lattice or the symbol P. 

Only translation parts different from the zero vector are specified; their ordering positions 

are fixed by the asterisks. In order to overcome ratios, translation vectors are multiplied by 

4, or by 6 in the trigonal and hexagonal crystal systems. Moreover, in the latter systems only 

the z-component differs from zero and thus is specified. The items can be treated as a 
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concise information on the system of primitive as well as non-primitive translations 

including: lattice centring, origin specification, relative position of symmetry elements 

differing space groups in the arithmetic class. 

Based on the unique identifier of a space-group type, which can be related to the space-

group sequence number, the list of space-group generators organized in the composition 

series can be obtained from condensed data included in Tables 5-7. 

SG 

No 
+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 

0 020 C 002 C C002 

10 020 C 002 022 C002 002002 *220 202022 C002002 

20 C F I I202022 002002 *002 *200 002200 *022 

30 202202 *220 002220 *222 C C002002 C*002 A A*020 A*200 

40 A*220 F F*111 I I*220 I*200 220202 *002 220200 

50 200 200222 202202 200002 *220 220022 002022 *222 220020 222002 

60 202022 202020 C002002 C022022 C C*002 C020020 C200002 F F330303 

70 I I*220 I202022 I020020 001 002 003 I I021 

80 I 002 200 022 I I311 220220 

90 001 221221 002 222222 003 223223 I I021203 *220 

100 002002 222222 *002 *222 002 002220 I I*002 I021 I021002 

110 *002 *220 *222 *002 *220 *222 I I*002 

120 I I*203 *002 200200 200202 *220 *222 200020 200022 

130 002 002002 202200 202202 002220 222222 202020 202022 I I*002 

140 
I13120

2 
I131200 

 
2 4 R 

 
R 

  

150 24 2 42 4 R *3 *3 R 

160 R*3 *3 *3 R R*3 1 5 

170 2 4 3 3 12 54 24 

180 42 3 *3 33 3 33 3 

190 *3 33 3 F I 202 I202 

200 220 F F330 I 202 I202 **222 F F022*313 

210 I 202*133 202*311 I202*311 F I **222 F*222 I202*111 

220 220*002 **222 220*220 F F**222 F312*312 F132*310 I I202*311 

Table 7. Bravais symbols and the translation parts of generators 

7. Composition series and space groups generation 

It is well known and seen in Table 6 that maximally three generators are necessary for 

obtaining all symmetry operations in the point groups, even in group m3m. But for effective 

generation of groups based on a series of normal subgroups, the listed set of generators 

should be extended to the complete composition series. The following action leads to the 

non-translational sets of generators used in ITA83: 

i. generators 4 and 4 (matrices 3 and 12) are preceded by their squares. 

ii. generator 3 is replaced by the 3 and the generator 1 is added as the last generator. 
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iii. generators 6 and 6 (matrices 6 and 15) are replaced by their third and second powers. 

iv. in the case of a cubic system the two-fold rotation in z direction (matrix 1) is followed 

by the two-fold rotation in y direction (matrix 2). The situation is a little more 

cumbersome for the space groups: the translation part of generator 2[010] occurring in 

the composition series is not explicitly specified and must be obtained by a cyclic 

permutation of the translation components (tx, ty, tz) (tz, tx, ty) given for 2[001] 

generator. 

The construction of composition series of generators is shown on the example of the 

tetragonal group P42/nnm in its initial description. According to Table 1 the input, from 

which the non-modified generators shown in Table 8 have been obtained, is reduced to 

number ‘134’. Comparing this space-group number with the data contained in Table 3, 

132<= 134 < 136, gives the point group 4/mmm and point generators 3,2,9, which matrix 

forms are derived from the integers 7898, 3360 and 3198. The ‘space’ information is 

presented in Table 7. The given group number corresponds to string ‘202202’, and defines 

translation parts for the first and the second generator. According to rule (i) in the above list, 

the first generator of composition series is obtained by squaring the generator with their 

matrix part no 3. As a result, four generators described in Table 8 are obtained. 

 1 0 00 1 00 0 1 ,
1/21/20  

0 1 01 0 00 0 1 ,
1/201/2  

1 0 00 1 00 0 1 ,
1/201/2  

1 0 00 1 00 0 1 ,
000  

Table 8. Composition series of generators for the space group type No 134, consistent with ITA83. 

Having completed a composition series set of generators, the derivation of all symmetry 

matrices or more precisely obtaining the coset representatives is a trivial task. Each non-

translational generator doubles, or triples in the case of 3+ operation, the current set of 

symmetry operations and thus the process is non-redundant and needs only one matrix 

multiplication per one new symmetry operation item. 

The generating process needs only one list of 4x4 matrices for storing as well the original or 

transformed generators as new generated operations. It is assumed that the GensNo 

generators are located in the upper part of the SymMtx list starting from position 49, the 

current number of symmetry operators SymsNo is set to 1 and the unit matrix is introduced 

as the first element of SymMtx. Let the procedure NewSymMtx with three input indices 

gen, oldsym, newsym multiplies the matrix 48+gen by the matrix oldsym, reduces 

translation components modulo 1 and locates the new symmetry operation in the newsym 

position. The complete space group generation procedure can be as follows: 

For i = 1 To GensNo ‘main loop 

If SymMtx(48+i,1,1) + SymMtx(48+i,2,2) + SymMtx(48+i,3,3) = 0 Then ‘test for 3+ 

triple = True 

Else 

triple = False 
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Endif 

For j = 1 To SymsNo ‘generation of the successive normal subgroups 

Call NewSymMtx(i, j, SymsNo + j) 

If triple = True Then Call NewSymMtx(i, SymsNo + j, 2 * SymsNo + j) 

Next j 

If triple = True Then SymsNo = SymsNo * 3 Else SymsNo = SymsNo * 2 ‘current number of 

symmetry operation 

Next i ‘end of main loop 

The advantages of the composition series method are clear from the above scheme – every 

new symmetry matrix is obtained by a single multiplication without checking for 

redundancy. Since the complete list of generators corresponds to the explicitly given ones in 

ITA83, the obtained result repeats the corresponding conventional space group description 

in ITA83, including also the order of the symmetry matrices. This is also the base for the 

other unique space group descriptions, irrespective of whether they are conventional or not, 

since before the process starts, the generators can be recalculated according to any given 

coordinate transformation T by standard equation G’ = T-1GT. Such approach is especially 

simple in connection with the translational space group symbols, where transformations are 

described explicitly. 

8. Deriving dual symbols for symmetry operations 

The derivation of a dual symbol from a symmetry operation (W,w) involves the following: 

a. Characterizing the point operation W by: (i) rotation type, that is 1, 2, 3, 4, 6, 1, m, 3,	4,	6, (ii) sense of rotation, (iii) orthogonal lattice splitting indices [uvw](hkl) 

b. Characterizing the space operation (W,w) by: (i) orthogonal splitting of the translation 

part w = wg + wl, (ii) point xc on geometric element closest to the origin. 

The type of point operation is easily recognized from the determinant and trace of W using a 

look-up Table 2. Splitting indices are the same for both matrices W and –W. Let Wp denotes 

the proper rotation matrix det(W)W. A lattice vector [uvw] parallel to the rotation axis as 

well its reciprocal (hkl) are defined by any non-zero column and any non-zero row of the 

matrices constructed in dependence on the order k of Wp: 

: , :  ,  :  and :  k k k k        2 2 3
p p p p p2 I W 3 I W W 4 I W  6 I W  

where I denotes a unit matrix. 

Next, a positive scalar product is required, if necessary by multiplying (hkl) by -1. If vectors 

[uvw] and (hkl) have common divisors, indices should be divided. At last all indices can 

change the signs in order to obtain the positive axis direction according to Table 3. Having 

determined the direction [uvw] of an axis, the sense of rotation is simply determined from 

the inequalities (11). These are all steps needed for a complete geometric description of a 

point symmetry operation. Practically, the conventions are reduced to the one rule about the 

positive direction of [uvw]. 
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The orthogonal splitting of a translation part w depends on the axis direction [uvw]. The 

same results are obtained for (W,w) and (-W,w), thus calculations can be reduced to the pair 

(Wp,w). Since (Wp,w)k = (I,kwg), the k-th part of the resulting translation defines the intrinsic 

component of the translation, and in consequence also the location component wl = w-wg. In 

the presented procedure such decomposition is also valuable for a rotoinversion operation. 

As usual, for a reflection the numerical values of wg and wl must be interchanged. The 

central problem of deriving the point xc (an invariant relative to a reduced operation and 

closest to the origin) is to find such point on the [uvw] lattice vector or on the (hkl) plane for a 

rotation and rotoinversion in the first case and for a reflection in the latter. Geometrical 

considerations showed that xc are rather simply calculated from wl according to relations 

given in Table 4. 

The derivation of xc ends the calculation needed to describe the space symmetry operation. 

But vectors xc in the case of reflections and wg in the case of rotations or rotoinversions are 

parallel to [uvw] and may be represented by a single ratio r. Thus, an intrinsic component wg 

and a shift vector (orthogonal to the geometric element) are presented by four simple ratios. 

An asterisk mark serves as a separation mark between vectors and thus a dual symbol of 

space-group operation takes the form of ±n ± [uvw](hkl) wg*xc. 

9. Origin problem 

In the non-symmorphic space groups the symmetry elements are not constrained to pass 

through the origin. The selection of a reasonable origin for a coordinate system relative to 

non-intersecting symmetry elements is not unique. The symbol of space-group type, like 

Hermann-Mauguin symbol, fixes in space only relative positions of symmetry elements. 

Absolute positions need complete translational parts in the space-group generators. The 

presented technique of space group derivation based on predefined generators favours one 

and the only one origin for each space group, even if this group is tabulated in ITA83 

relative to two origins. 

Finding a transformation between two descriptions of the same space group differing only 

by the origin shift is arithmetically at least cumbersome. In this case, similarly like in other 

space-group considerations, the geometric information is very practical. A typical way of 

resolving the mentioned problem consists of a geometrical interpretation of the symmetry 

matrices in both descriptions and of deduction of the transformation from the diagram of 

symmetry elements in ITA83. Such analysis is impossible for a non-conventional space 

group description, but in every case may be carried out on dual symbols. 

Since the dual symbols described in the preceding section are easy to obtain, they should be 

routinely derived together with the space group generation. Their role in the origin control 

is rather evident, but we illustrate this feature by means of an example. Let column 2 of 

Table 9 lists the dual symbols of the P42/nnm operations obtained from the generators 

presented in Table 8. The items 1, 7, 9, 15 have reduced xc parts. It is visible that the origin is 

located at the inversion point, the intersection of 2[110] and m[110]. A full symmetry of the 

origin is 2/m (this is the second origin choice tabulated in ITA83). 
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A higher symmetry of the origin can be obtain by placing it on 4. The origin shifted from 

that in the first column by (1/4,-1/4,0) leads to a group description symbolized by TSG = 

P42/nnm (1/4,-1/4,0) (this is the first origin choice in ITA83). The result is listed in column 3 

of Table 9. It can be seen that rotoinversion operations 11,12 contain the intrinsic part ½ and 

the inversion point according to (17) in (0,0,1/4). 

Another possibility to select the origin in a high symmetry point is to put it on 4 , but exactly 

at the inversion point. In this situation the origin is shifted by (1/4,-1/4,1/4) in comparison 

with column 2. The symmetry matrices of the group description TSG = P42/nnm (1/4,-1/4,1/4) 

presented by dual symbols are given in the last column of Table 9. 

 

No TSG 

 P42/nnm P42/nnm (¼,-¼,0) P42/nnm (¼,-¼,¼) 

1 1 1 1

2  2 [001] * 1/4,1/4,0 2 [001] 2 [001]

3  4+[001] 1/2 * 1/4,1/4,0 4+[001] 1/2 * 0,1/2,0 4+[001] 1/2 * 0,1/2,0 

4  4-[001] 1/2 * 1/4,1/4,0 4-[001] 1/2 * 1/2,0,0 4-[001] 1/2 * 1/2,0,0 

5  2 [010] * 1/4,0,1/4 2 [010] * 0,0,1/4 2 [010]

6  2 [100] * 0,1/4,1/4 2 [100] * 0,0,1/4 2 [100]

7  2 [110] 2 [110] 1/2 * 2 [110] 1/2 * 0,0,1/4 

8  2 [1-10] * 1/4,1/4,0 2 [1-10] * 1/4,1/4,0 2 [1-10] * 1/4,1/4,1/4 

9 -1 -1 * 1/4,1/4,0 -1 * 1/4,1/4,1/4 

10 m [001] 1/2,1/2,0 * m [001] 1/2,1/2,0 * m [001] 1/2,1/2,0 * 1/4 

11 -4+[001] 1/2 * 1/4,-1/4,0 -4+[001] 1/2 * -4+[001]

12 -4-[001] 1/2 * -1/4,1/4,0 -4-[001] 1/2 * -4-[001]

13 m [010] 1/2,0,1/2 * m [010] 1/2,0,1/2 * 1/4 m [010] 1/2,0,1/2 * 1/4 

14 m [100] 0,1/2,1/2 * m [100] 0,1/2,1/2 * 1/4 m [100] 0,1/2,1/2 * 1/4 

15 m [110] m [110] m [110]

16 m [1-10] 1/2,1/2,0 * m [1-10] m [1-10]
 

Table 9. Different descriptions of the space group type P42/nnm 

In order to show different group-subgroup relations, other descriptions of space groups 

may be desirable. Contrary to rather difficult manipulation based on coordinate triplets [28], 

the determination of shift vectors with the help of geometric information is simple. For this 

purpose the classical symbols of symmetry operations as well dual symbols are similarly 

useful, but the latter may be also applicable in a non-conventional space-group description. 

Since the multiplication of symmetry matrices is based on modulo 1 arithmetic, the origin 

control should involve only the generators of space groups. 

10. Axes problem 

A rigorous classification of space groups, that is their specific descriptions, into space-group 

type can be given in an algebraic or a geometric way. Typically, the matrix algebra and the 
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group-theoretical approach is preferred. For this classification, each space group description 

is referred to a primitive base and an origin. Two space groups G and G’ belong to the same 

space-group type if a transformation pair P, p exists, for which the 3x3 matrix has integral 

elements with det(P) = 1 and the p vector consists of three real numbers, such that G is 

transformed into G’ (see, Wondratschek in ITA83). This definition is very simple, but 

finding the transformation between two sets of matrices may be a real challenge. 

Let’s modify the above equivalence definition for the practical purposes. Now G’ means a 

conventionally described space-group type, represented by a unique set of generators or 

symmetry matrices. G is still referred to a primitive base. G belongs to the space-group type 

G’ if a transformation pair P, p exists, for which the 3x3 matrix has integral elements with 

det(P) = 1,2,3 or 4 and the p vector consists of three real numbers, such that G is transformed 

into G’. The first step in determining the type of group G is to refer it to a centred Bravais 

base by a proper selection of coordinate axes. It is simple with the help of dual symbols 

what will be illustrated by the group description TSG = I4122 (1,0,0; 0,1,0; ½,1/2,1/2) 

(1/4,1/4,0) given in Table 10. 

 

1 

1 0 0 0 

0 1 0 0 

0 0 1 0 
 

2

-1 0 -1 0,5

0 -1 -1 0,5

0 0 1 0 

3

0 -1 -1 0,25

1 0 0 0,25

0 0 1 0,5 

4

0 1 0 0,75 

-1 0 -1 0,75 

0 0 1 0,5 
 

 1  
2 [-1-12]( 0 0 1) * 

1/4,1/4,0 
 

4+[-1-12]( 0 0 1) 1/4 

* 0,1/2,0 
 

4-[-1-12]( 0 0 1) 1/4 

* 1,0,0 

5 

-1 0 0 0,25

0 1 1 0,25

0 0 -1 0,5
 

6

1 0 1 0,75

0 -1 0 0,75

0 0 -1 0,5
 

7

0 1 1 0 

1 0 1 0 

0 0 -1 0 

8

0 -1 0 0,5 

-1 0 0 0,5 

0 0 -1 0 
 

 
2 [010]( 0 2 1) 1/2 * 

1/8,-1/8,1/4 
 

2 [100]( 2 0 1) 1 * -

1/8,3/8,1/4 
 2 [110]( 1 1 1)  2 [1-10] * 1/4,1/4,0 

Table 10. Symmetry matrices and dual symbols of the group description TSG = I4122 (1,0,0; 0,1,0; 

½,1/2,1/2) (1/4,1/4,0) 

Items 1,2,3 and 4 define symmetry axis 41 parallel to [112]. Matrices (5,6) and (7,8) describe 

two pairs of orthogonally oriented twofold axes, according to property u1h2 + v1k2 + w1l2 = u2h1 

+ v2k1 + w2l1 = 0 between the corresponding splitting indices. A similar test shows the 

orthogonality between 41 and all twofold axes. Thus, two orthogonal bases and two 

transformation matrices may be constructed from [uvw] indices. The first transformation 

matrix P with columns [100], [010], [112] has det(P) = 2 and leads to I-centred basis. The 

equivalent F-centred Bravais tetragonal cell is involved with P in the form [110], [110] and 

[112]. The application of the first transformation matrix is equivalent to the selection of the 

conventional axes for the tetragonal space group. 

Moreover, the arithmetic type 422I of the analysed group is determined. From the 

predefined data one can find that only two space-group types, namely the groups with 

sequence numbers 97 and 98, belong to this arithmetic type. Group 97 is symmorphic. Thus, 
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41 axis points directly onto type 98 space group. The origin shift p may be determined by 

comparing points xc in dual symbols of the space-group type generators and symmetry 

operations of the analysed group with identical matrix parts. The generators of group type 

I4122 are characterized by dual symbols as: 4+[001] 1/4 * -1/4,1/4,0 and 2 [010] * 1/4,0,3/8. 

Items 3 and 5 from Table 10 transformed according to P matrix give 4+[001] 1/4 * 0,1/2,0 and 

2 [010] 1/2 * 1/4,0,1/8. The origin shift p = -1/4,-1/4,0 predicted from the 4  operation equals 

both descriptions. 

The analysed example does not attempt to be a kind of algorithmic approach, but was 

included to show the advantages of representing symmetry operations in both forms, as a 

symmetry matrix and as a dual symbol. 

11. Conclusions 

It was assumed that, the choice of the known or modified algorithms should be motivated 

by obtaining functional relations f1 (SG symbol, ordering number) = symmetry matrix and f2 

(symmetry matrix) = geometric description on the assumption that the needed conventions are 

reduced to a minimum. This unique arithmetic and geometric description of space groups 

cannot be obtained at the cost of excessive amount of the predefined data, ineffective or 

sophisticated algorithms. Moreover, in the case of conventional axes and origins the results 

cannot differ from that contained in ITA83. It appears that such practical purposes have 

been achieved. 

The commonly accepted Hermann-Mauguin symbol is very informative and useful for 

controlling group orientation, but is not dependent on the origin choice and is not applicable 

for a non-conventional space group description. The absolute position of symmetry 

elements needs an explicit origin specification, by giving a complete information about the 

translation part of generators. The coding of such generators leads to the elaborated symbols 

(Zachariassen/Shmueli) or to the concise symbols (Hall), but involved with many 

conventions and rather sophisticated interpretation of symbols. Moreover, in universal 

approaches based on arbitrary generators most of the computing time is spent on tests for 

closure or for redundancy of generated operations. 

The ‘transformational concept’ presented in this chapter introduces an ‘absolute’ description of 

each space group type contrary to the multiple standards for some space group types in 

ITA83. Thus, all groups belonging to a given SG type may be derived from the same set of 

optimally selected generators, assuming that the transformation from the SG type to a 

needed description is known. The TSG symbol was aimed at pointing in a computer 

program at the set of generators, prepared as ‘composition series’, and at giving an explicit 

definition of necessary transformation of these generators. There is no need to interpret the 

TSG symbol or tests the generators. If generators published in ITA83 serve as predefined 

type generators, nearly 100% of computing time is spent on non-redundant SG derivation. 

Programs based on a transformational concept reproduce all conventional descriptions 

given in ITA83; in the non-conventional cases they lead to descriptions in the ITA83 style. 
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From this point of view, such algorithms standardize any SG descriptions and their 

geometric interpretations and may be treated as an electronic extension of the printed ITA83 

tables. In this context the classification of space groups into conventionally versus non-

conventionally described, and the evolutionary changes between different editions of Tables 

are unsubstantial. 

The generation schema based on composition series leads also to a considerable reduction of 

predefined data, what is an important feature in the implementing and testing of SG 

derivation programs. Since all the space groups which are based on a given point group are 

generated in the same way, only the translational parts of generators should be stored. 

Using small improvements discussed in the text, the non-redundant number of composition 

series generators is 3, and thus the non-redundant number of translations for each space-

group type is 0,1 or maximum 2. 

The introduced dual symbol of symmetry operation sheds some light on the lattice 

properties and thus changes a rather informative character of the geometric symbols into a 

valuable tool for finding the transformation between different descriptions of the same 

groups. Since the symbol is universal, convention free, easy to derive and to manipulate on 

a computer, it is advised to generate space group descriptions simultaneously in two forms, 

as coordinate triplets and as dual symbols. Any new information can be obtained from the 

additional Seitz symbol. 

The simplicity of the considered approach is evident and seems to be valuable also for 

teaching purposes. Algorithms were implemented in the Visual Basic, in the Excel 

environment. All procedures need less than 600 programming lines including 200-line 

subroutine for transforming a symmetry matrix into a dual symbol. This procedure may be 

also used as stand-alone item to characterize any symmetry matrix. The source code 

included in the Excel worksheet may be obtained from the author on request.  
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