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1. Introduction 

Crystallization is one of the most important unit operations employed by the 
pharmaceutical, microelectronics, food and fine chemicals industries for the production of 
solid products with high added value. This operation can be used as a method to perform 
separation and purification of crystalline compounds such as proteins, polymers, 
pharmaceuticals, inorganic salts, etc. (Févotte & Klein, 1995; Feng & Berglund, 2002; 
Mersmann, 2001; Lewiner et al., 2001; Mullin, 2001; Liotta & Sabesan, 2004; Joung et al., 
2005; Pelberg et al., 2005; Derdour et al., 2011). 

The experimental conditions used during a crystallization process may alter the physical 
properties of the final product such as its chemical purity, crystal size distribution and 
morphology. These properties can have impacts on the subsequent purification operations 
such as filtration, washing and drying, and can also alter the bioavailability of 
pharmaceuticals (Sabesan & Liotta, 2004). Polymorphism is another issue related to the 
crystallization process that has profound importance in the pharmaceutical industry because 
it can alter the kinetics of a crystal’s solubilization and in some cases polymorphs present 
problems of toxicity (Fujiwara et al., 2005). 

The challenges involved in controlling crystallization are significant, since the kinetic 
parameters of the process are strongly affected by several factors such as the presence of 
impurities (Gunawan et al., 2002; Ma et al., 1999; Rauls et al., 2000; Poddar, 2002), breaking 
of crystals (Kougoulos et al., 2005; Gahn & Mersmann, 1995) and clustering (Yu et al., 2005; 
Paulaime et al., 2003) among other effects that are difficult to characterize. 

The identification and control of factors that affect the final quality of crystals are essential to 
ensure uniformity among different batches and to improve product quality. The 
development of more accurate and sensitive sensors for real-time analysis of crystallization 
must allow significant advances in monitoring, control and optimization of crystallization 
processes (Liotta & Sabesan, 2004). 

The accuracy of off line methods for evaluating crystallization processes is strongly 
dependent on sampling. When the collected samples do not represent the whole, the errors 
introduced may cause a misinterpretation of the crystallization process. By using real-time 
analysis these types of errors can be greatly reduced. The possibility of performing in situ 
analysis of crystal size distribution, crystal shape, crystal habit, agglomeration and breakage 



 
Crystallization – Science and Technology 304 

can indicate what changes should be made to the crystallization process parameters such as 
cooling and stirring rates and time for seeding. The optimization of these parameters allows 
crystals of the desired characteristics to be obtained (Yu et al., 2004). 

This section is intended to give a brief overview of crystallization processes and the methods 
dedicated to monitor them in real-time. Additionally, a comparison between four in line 
methods to determine the onset of adipic acid crystallization was performed. 

1.1 Solubility and supersaturation 

The determination of the solubility of a solid in a specific solvent is a key step in the study of 
crystallization processes. The solubility curve is used as a benchmark to assess the degree of 
supersaturation and the metastable zone limits. The solubility or condition of saturation is 
determined experimentally by heating a suspension and observing the temperature at which 
the solid phase is completely dissolved. The cooling of a saturated solution results in a 
system that is not in thermodynamic equilibrium, a supersaturated solution (Mullin, 2001; 
Giulietti et al., 2001). 

The supersaturation is the driving force for crystallization processes and can be defined as 
the difference between the chemical potential of a solute in a supersaturated solution and 
the chemical potential of the saturated solution. Supersaturation can be created by cooling, 
by adding an anti-solvent, by performing a chemical reaction that generates a product of 
lower solubility, by solvent evaporation, etc. Among the methods used to create 
supersaturation, cooling is the most used. The usage of this method is restricted to 
substances whose solubility changes significantly during a temperature variation. The 
expected properties of the solid material, as well as economic aspects, form the basis for 
making a decision about which method should be used to create supersaturation (Mullin, 
2001; Giulietti et al., 2001). 

The difference between the concentration of a compound in a supersaturated solution, c, 
and its concentration in a saturated solution, c*, is known as absolute supersaturation and is 
expressed by equation 1. 

 c= c-c* (1) 

When c is greater than 0, the system is supersaturated. Another important parameter is the 
supersaturation ratio, S, which is defined by equation 2. In this case the system is said to be 
supersaturated when S is greater than 1. 


*

c
S

c
  (2) 

1.2 Metastable zone width 

Supersaturated solutions exhibit a metastable region, where despite the instability of the 
system, there is no separation of a solid phase. The determination of this region is, in 
general, the first phase in the design of a batch cooling crystallization process. The 
metastable zone width (MZW) is a property that depends on several characteristics of the 
system (cooling rate, solute concentration, stirring rate, thermal history of the solution, 
presence of impurities, etc.) (Liotta & Sabesan, 2004). 
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The metastable zone width is defined as the difference between saturation temperature and 
the temperature which is detected in the formation of the first crystals. This temperature 
difference is known as the maximum undercooling, Tmax. Figure 1 illustrates schematically 
the solubility curve and metastable zone boundary for a hypothetical case of a system 
cooled from an under saturated condition until the condition of supersaturation. 

 
Fig. 1. Solubility curve and metastable zone. 

In batch cooling crystallizations for example, maintaining the solution concentration profile 
within the metastable zone and close to the solubility curve promotes crystal growth and 
helps to avoid secondary nucleation (Beckmann, 2000). In the case of industrial crystallizers 
as a general rule, the level of supersaturation is maintained at about half the metastable zone 
(Marciniak, 2002). 

1.3 Nucleation and crystal growth 

The supersaturation is the main requirement for crystallization to occur and its creation does 
not imply the immediate separation of the phases. In a supersaturated solution, part of the 
dissolved solute tends to reorganize again to form the solid phase. However, the formation of 
the solid phase (positive energy) implies the generation of an interface (energetically 
unfavourable). Therefore, for the formation of nuclei to occur within the solution, it is 
necessary that this barrier is overcome (Mullin, 2001; Ulrich & Strega, 2002; Giulietti, 2001). 

The nucleation rate depends on the supersaturation. When the supersaturation is extremely 
high, the nucleus formation is a random process and difficult to reproduce. For this reason, 
whenever possible, this condition is avoided in industrial applications (Mullin, 2001).  
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The crystal growth also depends on the supersaturation level. High growth rates lead to 
products with a degree of purity lower than those generated in conditions of lower 
supersaturation owing to the inclusion of liquids and other impurities. From the industrial 
point of view there is a compromise between the desired characteristics of the products and 
the economic efficiency of the process. This means that is not always possible to carry out 
crystallizations with a low rate of crystal growth because such a condition significantly 
increases the residence time of the product inside the crystallizer (Mullin, 2001; Ulrich & 
Strege, 2002). 

1.4 Sensor technologies for monitoring crystallization processes 

Continuous monitoring and control of crystallization processes in real-time require the use 
of sensors able to provide information regarding product quality and critical process 
variables.  

The methods used to assess information of the products obtained from crystallization 
processes can be divided into four main groups (Yu et al., 2004): 

 off line methods: the analysis is performed after sampling; 
 on line methods: the sample stream is diverted from the crystallizer for analysis and 

subsequently returned to the system; 
 in line methods: sensors are integrated into the crystallizer and provide real-time 

information about the process. The sensors are in direct contact with the material and 
can cause disturbances in the system; 

 non-invasive methods: sensors are integrated into the crystallizer and provide real-time 
information of the process. In this case, the sensors do not come into direct contact with 
the material. 

The real-time analyses described in this chapter can be included in the in line and the non-
invasive methods. 

1.4.1 Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

ATR-FTIR is a consolidated technique in the monitoring of crystallization processes (Chen et 
al., 2009; Kadam et al., 2011; Pöllänen et al., 2006; Qu et al., 2009; Sheikhzadeh et al., 2008; 
Liotta & Sabesan, 2004). The method allows estimating the degree of supersaturation of the 
system by measuring the concentration of solute in the solution. The only prerequisite for 
application of the technique is the absorption of infrared radiation in the medium by the 
solute. The sensor used in this method has an element of internal reflection of high refractive 
index. The radiation passes through the element of reflection, being reflected when it 
encounters a material with lower refractive index. The amount of reflected radiation 
depends on the angle of incidence on the interface and when this angle is greater than a 
critical angle (depending on the ratio between the two refraction index) the refraction is 
attainable. However, radiation penetrates only a short distance into material of lower 
refractive index; this radiation is called the evanescent radiation (evanescent wave). Thus, if 
a sample is able to absorb infrared radiation, the beam is attenuated at frequencies absorbed 
by the sample (Man et al., 2010; Dunuwilaa et al., 1994). 



 
Real-Time Analysis to Evaluate Crystallization Processes 307 

1.4.2 Focused beam reflectance measurement (FBRM) 

The FBRM measurement principle is based on backward light scattering. A laser beam is 
coupled to a probe via an optical fibre. This laser beam is deviated from the probe’s central 
axis and focused into a disperse medium with an optical conduit. When this laser beam 
intersects with a particle, light scattering occurs. A certain fraction of the light is scattered 
back into the system. This back scattered light is coupled via a beam splitter to a second 
fibre and conduced to a detector. The rotational velocity of the laser is constant. The time 
span in which back scattering is detected is therefore directly proportional to the path length 
of the laser on the particle. It is assumed that the particle velocity is small compared to the 
laser rotational velocity. The length of the laser path on the particle is therefore proportional 
to the time span in which scattering is detected. This path length is called a chord length. 
Depending on the laser position, different chord lengths are measured even for a single 
particle. Those chord lengths are generally different from any characteristic particle length. 
In order to calculate the particle size distribution from the chord length distribution, a 
model is needed. This model has to cover all relevant aspects of the measurement 
technology (Kail et al., 2008; Barrett & Glennon, 2002). Figure 2 presents a schematic view of 
the Mettler Toledo FBRM probe. 

 
Fig. 2. Measurement principles of the Lasentec FBRM probe. 

Just as with the ATR-FTIR technique, the FBRM is a well-established method of monitoring 
crystallization processes (Sun et al., 2010; Barrett & Glennon, 2002; Czapla et al., 2010; 
Sheikhzadeh et al., 2008; Nguyen & Kim, 2008). 

1.4.3 Calorimetry 

The principle of reaction calorimetry is based on the heat flow in processes involving 
changes in chemical or physical properties. The rate of release or absorption of heat is a 
parameter dependent on the kinetics and thermodynamics of the process under study 
(Gesthuisen et al., 2005; Mantel & Meyer, 2008). The combination of heat flow with the mass 
balance allows us to estimate the conversion of the instantaneous and cumulative process 
under study. Reaction calorimetry is non-invasive, fast, robust, relatively simple and its 
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principle is based on the measurement of temperature differences (Gesthuisen et al., 2005; 
Mantel & Meyer, 2008). From the industrial point of view, calorimetry is a technique of great 
importance because it allows safely scaling up a process from pilot to industrial scale 
(Gesthuisen et al., 2005). The method finds application in the study of polymerization 
reactions (Benamor et al., 2002; Elizalde et al., 2005), biotechnological processes (Marison et 
al., 1985), study of supercritical fluids (Lavanchy et al., 2004; Mantel & Meyer, 2008), 
optimization of chemical reactions (Barton et al., 2003) and determination of kinetic 
parameters of chemical reactions (Silva et al., 2003; Seiceira et al., 2005) among other 
applications. There are few articles where heat flow calorimetry is applied to the study of 
crystallization processes (Févotte & Klein, 1995) 

1.4.4 Image analysis 

The use of Complementary Metal Oxide Semiconductor (CMOS) and Charge Coupled 
Device (CCD) cameras has been widely introduced in analytical chemistry for different 
reasons such as fast image capturing, stable background and good linearity (Jolling et al., 
2007). These sensors are capable of converting the intensity of light that focuses on it in 
digital storable values as bits. The analytical response that generates an image representing 
the patterns of the colours Red (R), Green (G) and Blue (B). These patterns are known as 
RGB 8 bits for each channel, totalling 256 levels. The combination of the three matrices (R, G 
and B) allows the acquisition of 16 million colours (Gaiao et al., 2006; Safavi et al., 2007). 
Different methodologies employing this image analysis has been described in literature. A 
digital camera was used as a sensor for simultaneous determination of Al(III) and Fe(III) in 
alloys using the chrome azurol S(CAS) as chromogenic reagent (Maleki et al., 2004). An 
instrumental detection technique for titration based on digital images was proposed (Gaiao 
et al., 2006). A similar method for the measurement of lithium, calcium and sodium through 
the radiation emitted by the sample into an air-butane flame was developed (Lyra et al. 
(2009). Image analysis was also used for a real-time assessment of the coffee roasting process 
(Hernández et al., 2008). An approach employing a CCD camera as a sensor for recognizing 
volatile alcohols was described (Shirshov et al., 2007). A method based on external bulk 
video imaging was proposed for metastable zone identification in food and pharmaceutical 
crystallization processes, and showed good performance when compared to FBRM and 
ultra-violet visible spectroscopy (Simon et al., 2009). Additionally, CCD cameras have been 
used as detectors in clinical analysis and showed high detection sensitivity (Liang et al., 
2004; Alexandre et al., 2001). The rapid improvements in digital camera technology provide 
the opportunity for the development of new methodologies employing digital cameras as an 
analytical sensor with high sensitivity, robustness, speed and low cost for implementation 
that reduces the analysis time. 

2. Experimental part 

In this section batch cooling crystallization of adipic acid will be used as a model to 
demonstrate the use of in line and non-invasive techniques for monitoring crystallization. 
For this purpose, four analytical tools with different physical principles were used. The 
procedures and techniques used in the experiments are described in the following 
subsections. 
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2.1 Materials and methods 

2.2.1 Solubility 

The solubility of adipic acid (99.8%) in ethanol (analytical grade) was determined for twelve 
different temperatures ranging from 16.0 to 64.0˚C. The experiments were performed in a 
1.8-L Hastelloy jacketed reactor vessel connected to an RC1e reaction calorimeter. The 
solutions were prepared by successive additions of adipic acid to a solution containing 
ethanol at a stirring rate of 300 rpm. For measurements at 44.0˚C, the mass of ethanol used 
was 524.0g. The used mass for other temperatures are presented in Table 1. The 
solubilization temperature was maintained constant during the whole process. 
 

Temperature (K) Temperature (ºC) Ethanol mass (g) 
289.15 16.0 590.3 
293.95 20.8 582.7 
298.15 25.0 574.7 
303.95 30.8 564.3 
306.15 33.0 556.3 
308.25 35.1 550.8 
312.15 39.0 537.0 
317.15 44.0 524.0 
323.15 50.0 492.4 
330,15 57.0 459.5 
334.15 61.0 428.1 
337.15 64.0 405.3 

Table 1. Experimental conditions for testing the solubility of the adipic acid in ethanol. 

The ATR-FTIR measurements were performed by using a Mettler-Toledo ReactIR IC10 
spectrometer. The base unit contains the Fourier transform mid-infrared source and the 
mercuric cadmium telluride (MCT) detector that should be cooled with liquid nitrogen. 
The sample interface module (SIM) is the interface on the instrument base unit where the 
K6 (16 mm diameter) conduit connects. It contains the optics that transfer the infrared 
source light from the base unit to the probe in contact with the chemical materials 
contained in the vessel and then back to the detector. Measurements are taken optically 
using a diamond sensing element that uses a multiple reflection ATR crystal and a gold 
seal between the metal housing and the sensor. Figure 3 illustrates schematically the K6 
Mettler Toledo probe tip. 

The focused beam reflectance measurements were obtained by using a Mettler-Toledo 
Lasentec D600L probe consisting of a Hastelloy C-22 tube with the sensor at one end with an 
optical diameter of 19 mm and a length of ∼406 mm. The FBRM laser provides a continuous 
beam of monochromatic light with a wavelength of 780 nm. The beam is located 
approximately 3 mm to the focal point. 

The ATR-FTIR and FBRM probes were kept immersed in the adipic acid solution 5 cm above 
the propeller stirrer. Infrared spectra obtained from 4000 to 650 cm-1 at 4 wave numbers 
resolution were collected at 15 s intervals with each spectrum averaged over 30 scans. 
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Fig. 3. Schematic draw of the Mettler Toledo K6 probe tip. 

2.2.2 Batch cooling crystallization  

The batch cooling crystallization experiments were carried out in a double walled glass 
reactor with a capacity of 2.0L. The solutions were stirred by a propeller stirrer at 300 rpm. 
The experimental setup is schematically presented in Figure 4. 

 
Fig. 4. Experimental setup. 

The mass of ethanol used in each run was 600 g and the amount of adipic acid was varied 
from 91.2 to 279.9 g. The temperature was controlled by the precise RC1e thermostat. The 
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temperature of solution was kept 5°C higher than that saturation condition in order to 
assure that no crystal was presented in the solution prior to starting the cooling process. 
After 0.5 h, the solution was cooled at constant rate of 0.2 and 1°C/min, until the onset 
of crystallization. The experimental conditions of experiments are presented in Table 2.  
 

Concentration
(mass %) 

Temperature at the 
start of cooling (ºC)

Final temperature 
(ºC)

Mass of adipic 
acid (g) 

13.2 30.0 -2.00 91.20 

15.1 35.0 5.00 106.8 

17.3 40.0 10.0 125.2 

19.7 45.0 15.0 146.8 

22.3 50.0 15.0 172.2 

25.2 55.0 20.0 202.1 

28.4 60.0 25.0 237.6 

31.8 65.0 25.0 279.7 

Table 2. Experimental conditions for crystallization experiments of adipic acid in ethanol. 

In situ methods, FBRM and ATR-FTIR, were used to monitor adipic acid crystallization. 
Non-invasive measurements were carried out by monitoring the heat released and the 
image patterns of colours red, green and blue during the crystallization. Images of 
experiments were acquired by using a low cost PC webcam (Microsoft Life Cam VX- 
2000). The webcam was placed externally and, in order to avoid interferences by external 
light and to maintain the CCD noise under controlled conditions, the reactor was enclosed 
with a black box. The images were captured during whole experiments. A light-emitting 
diode (LED) was used as a source of illumination. The images acquired were analysed 
according to their patterns of colour red, green and blue, and for this purpose software 
was developed which allows the evaluation of alteration in these patterns of colours. The 
software enables the analysis of the whole image or the user can define a specific region 
previously selected from an image. The software automatically saves the coordinates of 
the delimited region for all digital images and calculates the R, G and B values averaging 
all pixels. 

The heat released during the crystallization was monitored using the RC1e. To be able to 
calculate the heat flow during the crystallization, the total heat transfer coefficient (U) and 
the heat capacity (Cp) of the solution of adipic acid were measured. 

3. Results and discussion  

This section presents the results obtained in the study of solubilization of adipic acid in 
ethanol as well as its crystallization, evaluating the possibility of using calorimetry, infrared 
(ATR-FTIR) and FBRM as techniques for determining the width of the metastable zone. 
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3.1 Determination of the solubility of adipic acid 

The solubility curve of adipic acid in ethanol, presented in Figure 5, was prepared according 
to procedure in literature that used ATR-FTIR and heat flow to calculate the solubility curve 
of adipic acid in acetone (Silva & Silva, 2011).  

 
Fig. 5. Solubility curves of adipic acid in ethanol by using ATR-FTIR and heat flow calorimetry. 

3.2 Determination of the onset temperature for the crystallization of adipic acid in 
ethanol by heat flow calorimetry 

Since during crystallization there is a decrease in entropy, the second term of the Gibbs free 
energy (equation 3) becomes positive and therefore, for ∆G to be negative, it is necessary 
that the change in enthalpy is negative, which shows that the crystallization processes are 
exothermic. 

 ∆G = ∆H - T∆S (3) 

The heat flow for cooling at 10C/min is presented in Figure 6. 

The analysis of Figure 6 shows that when the solution temperature was approximately 
37.2°C, the jacket temperature was reduced by about 10°C, so that the cooling rate of 
1°C/min could be maintained, meaning that an exothermic process had started. The heat 
flow measurement had a fast increase at the same moment indicating that the 
crystallization of the adipic acid (the exothermic process) had begun. In the initial 
moments of the crystallization there was an intense release of heat and soon after that the 
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release decreased and became nearly constant. The region where heat release is constant 
may be associated with the growth of crystals (Riesen, 2005). The heat release continued 
until the moment when the reactor temperature was maintained at 15.0 °C. With the 
constant temperature the heat flow remained stable, indicating that the process that was 
responsible for the release of heat had ceased. As the only process that was taking place 
inside the reactor was the crystallization of adipic acid, this release is solely related to this 
process. 

 
Fig. 6. Heat release curve (Qr), the temperature inside the reactor (Tr) and temperature of 
the jacket (Tj), obtained from crystallization experiments using an ethanol solution with 
initial concentration of 22%, cooled at a rate of 1°C/min and with a stirring rate of  
300 rpm. 

The maximum supersaturation achieved in the solution is a function of the maximum 
cooling achieved by the system. Thus, it is expected that the higher the maximum cooling 
achieved by a system, the greater the value of supersaturation in the medium. In general the 
smaller nucleation rates are obtained at lower cooling rates (Mullin, 2001). In order to check 
this information, the crystallization of adipic acid was performed at a lower cooling rate as 
presented in Figure 7. 

The rate at which heat is released when employing a cooling rate of 1°C/min is higher than 
when using a cooling rate of 0.2°C/min.  

The comparison between the results presented in Figures 6 and 7 confirms that the 
maximum heat released is a function of cooling rate. 
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Fig. 7. Heat release curve (Qr), the temperature inside the reactor (Tr) and temperature of 
the jacket (Tj), obtained from crystallization experiments using an ethanol solution with 
initial concentration of 22%, cooled at a rate of 0.2°C/min and with a stirring rate of 
300 rpm. 

3.3 Determination of the onset temperature for the crystallization of adipic acid in 
ethanol by RGB image analysis 

The image video analysis was performed by using software named MasterView RGB that 
captures images in real-time from a PC webcam by evaluating changes in the component’s 
RGB colour pixel by pixel. The software automatically saves the coordinates of the delimited 
region for all digital images and calculates the RGB values averaging all pixels (de Sena et 
al., 2011).  

Figure 8 shows the graphic interface of MasterView RGB for an adipic acid solution and 
Figure 9 presents the crystallization onset by measuring the RGB variation. 

The method of image analysis is based on comparison of images. This procedure is 
comparable to human visual inspection and the method of image analysis has greater 
sensitivity and is not subject to misinterpretation. 

The variation of the red channel during the crystallization of adipic acid is presented in 
Figure 10. 

50 100 150 200 250

-20

0

20

40

60

80

100

120

 Heat Flow (Qr)
 Jacket Temperature (Tj)
 Temperature inside of reactor (Tr)

Time (min)

H
ea

t 
fl

ow
 (

W
)

0

6

12

18

24

30

36

42

48

54

Onset crystallization
temperature

T
em

p
eratu

re (ºC
)

heat flow increasing = onset of crystallization Steady heat flow



 
Real-Time Analysis to Evaluate Crystallization Processes 315 

 
Fig. 8. Monitoring of the onset of the crystallization of adipic acid using the image analysis 
method (saturated solution). 

 

 
Fig. 9. Monitoring of the onset of the crystallization of adipic acid using the image analysis 
method (increasing the mass of adipic acid crystals due to cooling). 

crystallization 
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Fig. 10. Image analysis red channel, the temperature inside the reactor (Tr) and temperature 
of the jacket (Tj), obtained from crystallization experiments using ethanol solution with 
initial concentration of 22%, cooled at a rate of 1°C/min and with a stirring rate of 300 rpm.  

As can be seen in Figure 8, before the crystallization of adipic acid (red signal channel close 
to zero), the red value increases immediately when the adipic acid crystallization starts. This 
result is in total accordance with the results obtained by heat flow calorimetry. It was 
established that the onset temperature of crystallization, determined by the variation in RGB 
signal, would be that corresponding to the time when the RGB signal began to increase. 

3.4 Determination of the onset temperature of crystallization using infrared (ATR-
FTIR) 

The infrared absorption spectrum of adipic acid is presented in Figure 11. 

The carbonyl stretching absorption region of carboxylic acids used in the ATR-FTIR analysis 
is indicated in Figure 11. 

The analysis of crystallization of a solution of adipic acid in ethanol was accompanied by 
infrared (ATR-FTIR), through the decrease of the signal of the peak area for the absorption 
of carbonyl (C=O) in the medium. Figure 12 presents the carbonyl absorption variation 
during a crystallization process that started at 50 °C. 
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Fig. 11. ATR/FTIR spectra of adipic acid in the infrared region. 

 
Fig. 12. Adipic acid carbonyl absorption variation measured in the interval of 1750-1600 cm-1. 

The carbonyl absorption trend related to the data presented in Figure 12 is presented in 
Figure 13. 

saturated solution

crystallization onset
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Fig. 13. Absorption curve of the carbonyl C=O (1765-1660 cm 1) in ethanol, the temperature 
inside the reactor (Tr) and jacket temperature (Tj), obtained from crystallization experiments 
using an ethanol solution with initial concentration of 22% , cooled at a rate of 1°C/min and 
stirring rate of 300 rpm. 

The carbonyl absorption area presented a decrease at the precise moment the crystallization 
started. This observation is in total agreement with the fact that the ATR probe detects the 
concentration of adipic acid soluble in ethanol. A comparison between the infrared 
absorption for the cooling rates of 1 and 0.20C/min is presented in Figure 14. 

The FTIR analysis may be considered as an indirect measurement of the kinetics of 
crystallization, since the ATR probe cannot detect the crystallized adipic acid. As expected, 
the diminution of the carbonyl absorption was more pronounced when the higher cooling 
rate was used. 

3.5 Determination of onset temperature of the crystallization using Focused Beam 

Reflectance Measurement 

The variation in the total chord counts obtained from the FBRM analysis can detect the 
crystallization onset. This signal remained in the form of a stable baseline, with a few counts 
per second before the formation of crystals. By the time the crystallization of adipic acid had 
started the chord counts increased dramatically. This behaviour can be seen in Figure 15.  
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Fig. 14. Infrared absorption curve of the carbonyl C=O (1765-1660 cm-1) of adipic acid during 
crystallizations performed at cooling rates of 1.0 and 0.20C/min.  

 
Fig. 15. Total chord counts (FBRM), the temperature inside the reactor (Tr) and temperature 
of the jacket (Tj), obtained from the crystallization experiments using a solution of ethanol 
with initial concentration of 22%, cooled at a rate of 1°C/min and stirring rate of 300 rpm. 
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The comparison between the chord length distribution in the crystallization onset with the 
values obtained in the end cooling, presented in Figure 16, can furnish information about 
crystal growth and this variation can also be detected by analysing the particle video 
microscopy images correspondent to these different moments that are shown in Figure 17. 

 
Fig. 16. Chord length distribution obtained in the crystallization onset, green curve and at 
the end of the experiment. 

  
Fig. 17. Real-time particle video microscopy obtained in the crystallization onset (a) and in 
the end of the experiment (b). 

The distributions shown in Figure 16 were displayed on a logarithmic scale on the 
horizontal axis (length of chords) for easy viewing. The shift to the right side in the chord 
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length distribution indicates crystal growth. The crystal sizes presented in Figure 17 confirm 
the crystal growth. 

The average size of the chord length of adipic acid particles produced in the set of 
experiments is presented in Table 3. 
 

concentration (% mass) cooling rate (ºC/min) average size (μm) 

13.2 0.2 75.20 

13.2 1.0 65.24 

15.1 0.2 76.91 

15.1 1.0 73.11 

17.3 0.2 84.36 

17.3 1.0 73.59 

19.7 0.2 73.48 

19.7 1.0 70.76 

22.3 0.2 119.4 

22.3 1.0 77.47 

25.2 0.2 106.7 

25.2 1.0 88.88 

28.4 0.2 127.9 

28.4 1.0 80.31 

31.8 0.2 132.2 

31.8 1.0 88.78 

Table 3. Average size of the chord length of adipic acid crystals in the different experimental 
conditions. 

The results presented in Table 3 show that the average size of adipic acid crystals increases 
as the cooling rate decreases. This fact is directly correlated with the metastable zone width, 
which is directly proportional to the rate of nucleation (Nyvlt et al., 2001). Thus, the largest 
crystals were observed when the cooling rate was 0.2°C/min, the rate at which the 
narrowest metastable zone was maintained. 

3.6 Determination of metastable zone width of adipic acid in ethanol 

The metastable zone width of a system is dependent on the methodology employed for its 
determination. Depending on the sensitivity of the technique used to detect the onset of 
crystallization, significant deviations can occur between two different methodologies 
(Marciniak, 2002). For a satisfactory evaluation of the metastable zone limit, it is necessary 
that the reactor be cooled at a constant rate. This constant cooling can be seen through the 
linear behaviour of both the crystallizer temperature and the jacket of the reactor.  

The onset crystallization temperatures determined by the different real-time methods are 
presented in Table 4 and the agreement between these data can be seen in Figure 18. 
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Adipic acid concentration 
(%) 

T calorimetry 
(ºC) 

T infrared (ºC) T FBRM (ºC) 

13.2 16.45 16.13 16.23 

15.1 18.02 17.78 17.90 

17.3 24.44 24.34 24.20 

19.7 30.91 30.70 30.79 

22.3 37.34 37.16 37.28 

25.2 42.77 42.70 42.72 

28.4 50.30 50.24 50.27 

31.8 57.22 57.11 57.19 

Table 4. Comparison of the calorimetric method, infrared and total chord counts for the 
determination of the onset temperature of crystallization of adipic acid in ethanol using a 
cooling rate of 1°C/min. 

 
Fig. 18. Curves of the peak area of absorption of carbonyl (C=O), total count (FBRM), image 
analysis by RGB (RGB), calorimetry (heat flow) obtained from the cooling of a solution of 
22% adipic acid in ethanol, cooled to 1.0 ° C / min with a stirring rate of 300 rpm. 

The results presented in Figure 18, obtained by the different real-time analyses, were 
similar. In this case, the heat flow measurement presented higher sensibility than the other 
real-time analyses, but all techniques can be considered equivalent. 
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3.7 Study of the effect of the cooling rate on the metastable zone width of adipic acid 
in ethanol 

Considering that the calorimetric method presented the highest sensibility, this was the 
chosen method to present the metastable zone limits for the crystallization of adipic acid by 
using cooling rates of 1.0 and 0.20C/min as presented in Figure 19. 

 
Fig. 19. Solubility curve of adipic acid in ethanol and the metastable zone limits determined 
at 1.0 and 0.20C/min. 

The metastable zone width, expressed in terms of maximum cooling achieved, Δt, which is 
the difference between the saturation temperature, T saturation, and the onset temperature 
of crystallization, is reduced when the cooling rate is diminished. This statement can be 
confirmed by the data presented in Figure 19. 

4. Conclusion 

Considering that the experimental conditions employed during crystallization may affect 
physical properties of the product, such as its chemical purity, crystal size distribution and 
polymorphism and that these properties are completely related to the metastable zone 
width, accurate measurement techniques capable of providing data to construct solubility 
curves, as well as the onset of crystallization, are of vital importance. Off line analytical 
methods used to determine solubility curves and to detect the onset of crystallization 
present much higher errors than those that use real-time analysis for the same purpose. The 
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four real-time analyses used in this work, even though working in different ways, presented 
equivalent performance, indicating that all of them can be used as process analytical tools to 
evaluate crystallization processes.  
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