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1. Introduction 

X-ray crystallography, NMR (Nuclear Magnetic Resonance) spectroscopy, and dual 

polarization interferometry, etc are indeed very powerful tools to determine the 3D 

structure of a protein (including the membrane protein), though they are time-consuming 

and costly. However, for some proteins, due to their unstable, noncrystalline and insoluble 

nature, these tools cannot work. Under this condition, mathematical and physical theoretical 

methods and computational approaches allow us to obtain a description of the protein 3D 

structure at a submicroscopic level. This Chapter presents some practical and useful 

mathematical optimization computational approaches to produce 3D structures of the Prion 

AGAAAAGA Amyloid Fibrils, from an energy minimization point of view.  

X-ray crystallography finds the X-ray final structure of a protein, which usually need 

refinements in order to produce a better structure. The computational methods presented in 

this Chapter can be also acted as a tool for the refinements. 

All neurodegenerative diseases including Parkinson’s, Alzheimer’s, Huntington’s,  

and Prion’s have a similarity, which is they all featured amyloid fibrils 

(en.wikipedia.org/wiki/Amyloid and references (Nelson et al., 2005; Sawaya et al., 2007; 

Sunde et al., 1997; Wormell, 1954; Gilead and Gazit, 2004; Morley et al. 2006; Gazit, 2002; 

Pawar et al., 2005; and references therein). A prion is a misshapen protein that acts like an 

infectious agent (hence the name, which comes from the words protein and infection). 

Prions cause a number of fatal diseases such as ‘mad cow’ disease in cattle, scrapie in sheep 

and kuru and Creutzfeldt-Jakob disease (CJD) in humans. Prion diseases (being rich in β-

sheets (about 43% β-sheet) (Griffith, 1967; Cappaia and Collins, 2004; Daude, 2004; Ogayar 
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and Snchez-Prez, 1998; Pan et al., 1993; Reilly, 2000) belong to neurodegenerative diseases. 

Many experimental studies such as (Brown, 2000; Brown, 2001; Brown, 1994; Cappai and 

Collins, 2004; Harrison et al., 2010; Holscher, 1998; Jobling et al., 2001; Jobling et al., 1999; 

Kuwata et al., 2003; Norstrom and Mastrianni, 2005; Wegner et al., 2002; Laganowsky et al., 

2012; Jones et al., 2012; Sasaki et al., 2008; Haigh et al., 2005; Kourie et al., 2003; Zanuy et al., 

2003; Kourie, 2001; Chabry et al., 1998; Gasset et al., 1992) have shown that the normal 

hydrophobic region (113-120) AGAAAAGA of prion proteins is an inhibitor/blocker of 

prion diseases. PrP lacking this palindrome could not convert to prion diseases. The 

presence of residues 119 and 120 (the two last residues within the motif AGAAAAGA) 

seems to be crucial for this inhibitory effect. The replacement of Glycine at residues 114 and 

119 by Alanine led to the inability of the peptide to build fibrils but it nevertheless increased. 

The A117V variant is linked to the GSS disease. The physiological conditions such as pH 

(Cappai and Collins, 2004) and temperature (Wagoner et al., 2011) will affect the propensity 

to form fibrils in this region. The 3D atomic resolution structure of PrP (106-126), i.e. 

TNVKHVAGAAAAGAVVGGLGG, can be looked as the structure of a control peptide 

(Cheng et al., 2011; Lee et al., 2008). Ma and Nussinov (2002) established homology structure 

of AGAAAAGA and did its molecular dynamics simulation studies. Recently, Wagoner et 

al. computer simulation studied the structure of GAVAAAAVAG of mouse prion protein 

(Wagoner, 2010; Wagoner et al., 2011). Furthermore, the author computationally clarified 

that prion AGAAAAGA segment indeed has an amyloid fibril forming property (Fig. 1). 

 

Figure 1. Prion AGAAAAGA (113-120) is surely and clearly identified as the amyloid fibril formation 

region, because its energy is less than the amyloid fibril formation threshold energy of -26 kcal/mol 

(Zhang et al., 2007). 

However, to the best of the author’s knowledge, there is little X-ray or NMR structural data 

available to date on AGAAAAGA (which falls just within the N-terminal unstructured 

region (1.–123) of prion proteins) due to its unstable, noncrystalline and insoluble nature. 

This Chapter will computationally study the molecular modeling (MM) structures of this 

region of prions. 
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2. Molecular structures of prion AGAAAAGA amyloid fibrils 

“Amyloid is characterized by a cross-β sheet quaternary structure” and “recent X-ray 

diffraction studies of microcrystals revealed atomistic details of core region of amyloid” 

(en.wikipedia.org/wiki/Amyloid and references (Nelson et al., 2005; Sawaya et al., 2007; 

Sunde et al., 1997; Wormell, 1954; Gilead and Gazit, 2004; Morley et al., 2006; Gazit, 2002; 

Pawar et al., 2005; and references therein). All the quaternary structures of amyloid cross-β 

spines can be reduced to the one of 8 classes of steric zippers of (Sawaya et al., 2007), with 

strong van der Waals (vdw) interactions between β-sheets and hydrogen bonds (HBs) to 

maintain the β-strands. 

A new era in the structural analysis of amyloids started from the ‘steric zipper’- β-sheets 

(Nelson et al., 2005). As the two sheets zip up, HPs (Hydrophobic Packings) (& vdws) have 

been formed. The extension of the ‘steric zipper’ above and below (i.e. the β-strands) is 

maintained by HBs (but there is no HB between the two β-sheets). This is the common structure 

associated with some 20 neurodegenerative amyloid diseases, ranging from Alzheimer’s and 

type-II diabetes to prion diseases. For prion AGAAAAGA amyloid fibril structure, basing on 

the common property of potential energy minimization of HPs, vdws, and HBs, we will 

present computational molecular structures of prion AGAAAAGA amyloid fibrils. 

2.1. Review on materials and methods, and results of MM models 

2.1.1. Hybrid method of steepest descent – conjugate gradient with simulated annealing 

X-ray crystallography finds the X-ray final structure of a protein, which usually need 

refinements using a simulated annealing protocol in order to produce a better structure. Thus, 

it is very amenable to use simulated annealing (SA) to format the models constructed. Zhang 

(2011a, 2011d) presents a hybrid method of global search SA with local steepest descent (SD), 

conjugate gradient (CG) searches. The hybrid method is executed with the following three 

procedures. (1) Firstly the SD method and then the CG method are executed. These two local 

search methods are traditional optimization methods. The former has nice convergence but is 

slow when close to minimums. The latter is efficient but its gradient RMS and GMAX gradient 

(Case et al., 2010) do not have a good convergence. (2) When models cannot be optimized 

further, we employ standard SA global search procedure. (3) Lastly, the SD and CG methods 

are used to refine the models. The PDB (Berman et al., 2000) templates used in (Zhang, 2011a, 

2011d) are 2OKZ.pdb, 2ONW.pdb, 2OLX.pdb, 2OMQ.pdb, 2ON9.pdb, 2ONV.pdb, 2ONA.pdb, 

1XYO.pdb, 2OL9.pdb, 2OMN.pdb, 2ONX.pdb, 2OMP.pdb, 1YJP.pdb of (Sawaya et al., 2007), 

but only the 2OMP and 1YJP template-based three MM-Models (Fig. 6a~6c in (Zhang, 2011a)) 

are successfully passed through the SDCG-SA-SDCG computational procedures. 

2.1.2. Hybrid method of discrete gradient with simulated annealing 

Zhang et al. (2011a, 2011d) used 3FVA.pdb as the pdb template to build two MM-Models 

(Figs. 11~12 in (Zhang et al., 2011a)). The Models were built using a hybrid SA Discrete 
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Gradient (DG (Bagirov et al., 2008)) method. Then the Models were optimized using SDCG-

SA-SDCG methods as in (Zhang, 2011a). 

2.1.3. Computational method of canonical dual global optimization theory 

Zhang et al. (2011, 2011d) used 3NHC.pdb, 3NVF/G/H/E.pdb templates to build several 

MM-Models (Figs. 9~11 in (Zhang et al., 2011b), and Figs. 5~8 in (Zhang, 2011b)). These 

Models were built in the use of canonical dual global optimization theory (Gao et al., 2012; 

Gao and Wu, 2012; Gao, 2000) and then refined by SDCG-SA-SDCG methods as in (Zhang, 

2011a). 

2.2. New material and method, and new MM-models 

2.2.1 New material 

This Chapter uses a suitable pdb file template 3NHD.pdb (the GYVLGS segment 127-132 

from human prion with V129 (Apostol et al., 2010) from the Protein Data Bank to build MM-

models of AGAAAAGA amyloid fibrils for prions.  

2.2.2. New computational method - computational method of simulated annealing 

evolutionary computations  

The computational methods used to build the new MM-Models will be simulated annealing 

evolutionary computations (SAECs), where SAECs were got from the hybrid algorithms of 

(Abbass et al., 2003) by simply replacing the DG method by the SA algorithm of (Bagirov 

and Zhang, 2003) and numerical computational results show that SAECs can successfully 

pass the test of more than 40 well-known benchmark global optimization problems (Zhang, 

2011c). 

2.2.3. New MM-models 

The atomic-resolution X-ray structure of 3NHD.pdb is a steric zipper, with strong vdw 

interactions between β-sheets and HBs to maintain the β-strands (Fig. 2). 

By observations of the 3rd column of coordinates of 3NHD.pdb and Fig. 2, G(H) chains (i.e. 

β-sheet 2) of 3NHD.pdb can be calculated from A(B) chains (i.e. β-sheet 1) by Eq. 1 (where T 

is Transpose of column vector) and other chains can be calculated by Eqs. 2~3: 

 G(H) = ((-1, 0, 0)T, (0, 1, 0)T, (0, 0, -1)T) A(B) + (-20.5865, 9.48, 0.0)T,     (1) 

 K(L) = G(H) + (0.0, 0.0, 9.59)T, I(J) = G(H) + (0.0, 0.0, -9.59)T,    (2) 

 C(D) = A(B) + (0.0, 0., 9.59)T, E(F) = A(B) + (0.0, 0.0, -9.59)T.  (3)         

Basing on the template 3NHD.pdb from the Protein Data Bank, three prion AGAAAAGA 

palindrome amyloid fibril models - an AGAAAA model (Model 1), a GAAAAG model  
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Figure 2. Protein fibril structure of human V129 prion GYVLGS (127–132) (PDB ID: 3NHD). The dashed 

lines denote the hydrogen bonds. A, B ... K, L denote the chains of the fibril. 

(Model 2), and an AAAAGA model (Model 3) - will be successfully constructed in this 

Chapter. Because the template is a segment of 6 residues, the three shorter prion fragments 

are selected. This Chapter does not perform calculations on the full AGAAAAGA. Chains AB 

of Models 1~3 were respectively got from AB chains of 3NHD.pdb using the mutate module 

of the free package Swiss-PdbViewer (SPDBV Version 4.01) (http://spdbv.vital-it.ch). It is 

pleasant to see that almost all the hydrogen bonds are still kept after the mutations; thus we 

just need to consider the vdw contacts only. Making mutations for GH chains of 3NHD.pdb, 

we can get the GH chains of Models 1~3. However, the vdw contacts between Chain A and 

Chain G, between B chain and H chain are too far at this moment (Figs. 3~5). 

 

Figure 3. At initial state, the vdw contacts between AB chains (β-sheet 1) and GH chains (β-sheet 2) of 

Model 1 are very far. 

Seeing Figs. 3~5, we may know that for Model 1 at least 3 vdw interactions B6.ALA.CB-

H3.ALA.CB-B4.ALA.CB-H5.ALA.CB should be maintained (their distances in Fig. 3 are 7.82, 

8.36, 9.04 angstroms respectively), for Model 2 at least 3 vdw interactions G4.ALA.CB- 
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Figure 4. At initial state, the vdw contacts between AB chains (β-sheet 1) and GH chains (β-sheet 2) of 

Model 2 are very far.  

 

Figure 5. At initial state, the vdw contacts between AB chains (β-sheet 1) and GH chains (β-sheet 2) of 

Model 3 are very far. 

A3.ALA.CB-G2.ALA.CB-A5.ALA.CB should be maintained (their distances in Fig. 4 are 

7.16, 7.43, 9.31 angstroms respectively), and for Model 3 at least 3 vdw interactions 

A1.ALA.CB-G4.ALA.CB-A3.ALA.CB-G2.ALA.CB should be maintained (their distances in 

Fig. 5 are 3.45, 7.16, 7.43 angstroms respectively). For Model 1, fixing the coordinates of 

B6.ALA.CB and B4.ALA.CB, letting the coordinates of H3.ALA.CB and H5.ALA.CB be 

variables, we may get a simple Lennard-Jones (LJ) potential energy minimization problem 

just with 6 variables (see Eq. 9). Similarly, for Model 2 fixing the coordinates of A3.ALA.CB 

and A5.ALA.CB, letting the coordinates of G4.ALA.CB and G2.ALA.CB be variables, we 

may get a simple LJ potential energy minimization problem just with 6 variables (see Eq. 

10); for Model 3, fixing the coordinates of A1.ALA.CB and A3.ALA.CB, letting the 

coordinates of G4.ALA.CB and G2.ALA.CB be variables, we may get a simple LJ potential 

energy minimization problem with 6 variables (see Eq. 11). 

The vdw contacts of atoms are described by the LJ potential energy: 

 VLJ(r) = 4ε [(σ/r)12 - (σ/r)6], (4) 

where ε is the depth of the potential well and σ is the atom diameter; these parameters can 

be fitted to reproduce experimental data or deduced from results of accurate quantum 

chemistry calculations. The (σ/r)12 term describes repulsion and the -(σ/r)6 term describes 

attraction. If we introduce the coordinates of the atoms whose number is denoted by N and 

let ε=σ= 1 be the reduced units, the Eq. 4 becomes into 
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 f(x) = 4 ∑i=1N ∑j=1,j<iN (1/tij
6 - 1/tij3),   (5) 

where tij = (x3i−2 – x3j−2)2 + (x3i−1 – x3j−1)2 + (x3i – x3j)2, (x3i−2, x3i−1, x3i) is the coordinates of atom i, N≥2. 

The minimization of LJ potential f(x) on Rn (where n = 3N) is an optimization problem: 

 min f(x) subject to x € R3N.  (6) 

Similarly as Eq. 4, i.e. the potential energy for the vdw interactions between β-sheets: 

 VLJ(r) = A/r12 - B/r6,    (7) 

the potential energy for the HBs between the β-strands has the formula 

 VHB(r) = C/r12 - D/r10,  (8) 

where A, B, C, D are given constants. Thus, the amyloid fibril molecular modeling problem 

can be deduced into the problem to solve the mathematical optimization problem Eq. 6. 

Seeing Fig. 6, we may know that the optimization problem Eq. 6 reaches its optimal value at 

the bottom of the LJ potential well, where the distance between two atoms equals to the sum 

of vdw radii of the atoms. In this Chapter, the sum of the 

 

Figure 6. The Lennard-Jone Potential (Eqs.4 and 7) (This Fig. can be found in website 

homepage.mac.com/swain/CMC/DDResources/mol_interactions/molecular_interactions.html). 

vdw radii is the twice of the vdw radius of Carbon atom, i.e. 3.4 angstroms. The 

optimization problem Eq. 6 is a nonconvex complex optimization problem. By the 

observation from Fig. 6, we may solve its simple but equal convex-and-smooth least square 

optimization problem (or the so-called distance geometry problem or sensor network 

problem) with a slight perturbation if data for three atoms violate the triangle inequality. 

The following three optimization problems for Models 1~3 respectively are: 

min f(x)= ½{ (x11+16.359)2 + (x12-9.934)2 + (x13+3.526)2 -3.42}2 + ½{ (x21+9.726)2 + (x22-
8.530)2 + (x23+3.613)2 -3.42}2 + ½{ (x11+9.726)2 + (x12-8.530)2 + (x13+3.613)2 -3.42}2 with 

initial solution (-12.928, 12.454, 3.034; -6.635, 14.301, 2.628), 

(9) 
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min f(x)= ½{ (x11+8.655)2 + (x12-8.153)2 + (x13-1.770)2 -3.42}2 + ½{ (x21+8.655)2 + (x22-
8.153)2 + (x23-1.770)2 -3.42}2 + ½{ (x21+2.257)2 + (x22-6.095)2 + (x23-3.078)2 -3.42}2 with 

initial solution (-13.909, 12.227, -0.889; -7.439, 14.419, -2.033),

(10) 

min f(x)= ½{ (x11+15.632)2 + (x12-9.694)2 + (x13-0.687)2 -3.42}2 + ½{ (x11+8.655)2 + (x12-
8.153)2 + (x13-1.770)2 -3.42}2 + ½{ (x21+8.655)2 + (x22-8.153)2 + (x23-1.770)2 -3.42}2 with 

initial solution (-13.909, 12.227, -0.889; -7.439, 14.419, -2.033). 

(11) 

We may use any optimization algorithms or packages to easily solve problems Eqs. 9~11 

and get their respective global optimal solutions (-13.062, 9.126, -3.336; -12.344, 6.695, -2.457), 

(-11.275, 6.606, 3.288; -5.461, 7.124, 2.424), (-12.149, 8.924, 1.229; -9.256, 11.007, 3.517), which 

were got by the SAEC algorithms in this Chapter. Input these global optimal solutions into 

Eq. 1, take average and tests then we get Eq. 12: 

 G(H) = ((-1, 0, 0)T, (0, 1, 0)T, (0, 0, -1)T) A(B) +(-20.2788, -0.0821, 0.5609)T.  (12) 

By Eq. 12, we can get close vdw contacts in Figs. 7~9. 

 

Figure 7. After LJ potential energy minimization, the vdw contacts of Model 1 become very closer (the 

distances are illuminated by the overlap of border of CB atoms’ surface). 

 

Figure 8. Fig. 8: After LJ potential energy minimization, the vdw contacts of Model 2 become very 

closer (the distances are illuminated by the overlap of border of CB atoms’ surface). 

From Figs. 3~5 to Figs. 7~9, we may see that the Optimization algorithm works and the 

computational experiences show us we had better at least define two sensors and two 
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anchors in order to form a zipper between the two β-sheets. Next, in order to remove very 

close bad contacts, we relax Figs. 7~9 by a slight SDCG-Optimization in the use of Amber 11 

(Case et al., 2010) and we get the optimized MM-Models 1~3. The other CDEF and LKJI 

chains can be got by parallelizing ABGH chains in the use of mathematical Eqs. 2~3. The 

new amyloid fibril models are useful for the drive to find treatments for prion diseases in 

the field of medicinal chemistry. The computational algorithms presented in this Chapter 

and their references therein are useful in materials science, drug design, etc. 

 

Figure 9. After LJ potential energy minimization, the vdw contacts of Model 3 become very closer (the 

distances are illuminated by the overlap of border of CB atoms’ surface). 

Because Eqs. 9~11 are optimization problems with 6 variables only and these optimization 

problems are to minimize fourth-order polynomials, the proposed SAEC method and other 

computational methods can easily get the same optimal solutions to optimize the above 

three models. 

2.2.4. The practical LBFGS quasi-Newtonian method 

Energy minimization (EM), with the images at the endpoints fixed in space, of the total 

system energy provides a minimum energy path. EM can be done using SD, CG, and LBFGS 

(Limited-memory Broyden-Fletcher-Goldfarb-Shanno). SD is robust and easy to implement 

but it is not most efficient especially when closer to minimum. CG is slower than SD in the 

early stages but more efficient when closer to minimum. The hybrid of SD-CG will make SD 

more efficient than SD or CG alone. However, CG cannot be used to find the minimization 

energy path, for example, when “forces are truncated according to the tangent direction, 

making it impossible to define a Lagrangian” (Chu et al., 2003). In this case, the powerful 

and faster quasi-Newtonian method (e.g. the LBFGS quasi-Newtonian minimizer) can be 

used (Chu et al., 2003; Liu and Nocedal, 1989; Nocedal and Morales, 2000; Byrd et al., 1995; 

Zhu et al., 1997). We briefly introduce the LBFGS quasi-Newtonian method as follows. 

Newton’s method in optimization explicitly calculates the Hessian matrix of the second-

order derivatives of the objective function and the reverse of the Hessian matrix (Dennis et 

al., 1996). The convergence of this method is quadratic, so it is faster than SD or CG. In high 

dimensions, finding the inverse of the Hessian is very expensive. In some cases, the Hessian 

is a non-invertible matrix, and furthermore in some cases, the Hessian is symmetric 

indefinite. Qusi-Newton methods thus appear to overcome all these shortcomings. 
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Quasi-Newton methods (a special case of variable metric methods) are to approximate the 

Hessian. Currently, the most common quasi-Newton algorithms are the SR1 formula, the 

BHHH method, the widespread BFGS method and its limited /low-memory extension 

LBFGS, and Broyden's methods (http://en.wikipedia.org/wiki/Quasi-Newton_method). In 

Amber (Case et al., 2010) and Gromacs (van der Spoel et al., 2010), LBFGS is used, and the 

hybrid of LBFGS with CG - a Truncated Newton linear CG method with optional LBFGS 

Preconditioning (Nocedal and Morales, 2000) - is used in Amber (Case et al., 2010). 

2.3. New thinking about the construction of 3D-structure of a protein 

If a NMR or X-ray structure of a protein has not been determined and stored in PDB bank 

yet, we still can easily get the 3D-structural frame of the protein. For example, before 2005 

when we did not know the NMR structure of rabbit prion protein, we could get its 

homology model structure using the NMR structure of the human prion protein (PDB id: 

1QLX) as the template (Zhang et al., 2006). We may use the homology structure to 

determine the 3D-structural frame of a protein when its NMR or X-ray structure has not 

been determined yet. The determination is an optimization problem described as follows.  

“Very often in a structural analysis, we want to approximate a secondary structural element 

with a single straight line” (Burkowski, 2009: page 212). For example, Fig. 10 uses two 

straight lines that act as the longitudinal axis of β-Strand A (i.e. A chain), β-Strand B (i.e. B 

chain) respectively. Each straight line should be positioned among the Cα atoms so that it is 

closest to all these Cα atoms in a least-squares sense, which is to minimize the sum of the 

squares of the perpendicular  

 

Figure 10. The 3D-structural frame of AB chains of Model 1 in Fig. 3 with two β-Strands. 

distances (di) from the Cα atoms to the strand/helix axis: 

 S* = min S = ∑i=1 N ||di||2.    (13) 

Define the vector w=(wx, wy, wz)T for the axis. Then di represents the perpendicular vector 

going from Cα atom a to the axis: 



Computational Potential Energy Minimization Studies  
on the Prion AGAAAAGA Amyloid Fibril Molecular Structures 307 

||di||2 = || a(i) ||2 sin2θi = || a(i) ||2 (1-cos2θi) = || a(i) ||2 { 1- (a(i)T w)2 / ( || a(i) ||2 
|| w ||2 ) } = { a(i)

x 2 + a(i)
y 2 + a(i)

z 2 } { 1- ( a(i)
x wx + a(i)

y wy + a(i)
z wz )2 / [ ( a(i)

x 2 + a(i)
y 2 + 

a(i)
z 2 )( wx 2 + wy 2 + wz 

2 ) ] }.

(14) 

According to Eqs. 13~14, for the β-Strand A – β-Strand B of AB chains, we get the following 

two optimization problems for Model 1 respectively: 

min SA = ( (-16.196)2 + 8.3152 + 1.0612 ) { 1- (-16.196wx + 8.315wy + 1.061wz )2 /[( (-

16.196)2 + 8.3152 + 1.0612 ) (wx 2 + wy 2 + wz 2)]} + 

       ( (-12.977)2 + 6.4602 + 1.9082 ) { 1- (-12.977wx + 6.460wy + 1.908wz )2 /[( (-12.977)2 + 

6.4602 + 1.9082 ) (wx 2 + wy 2 + wz 2)]} + 

       ( ( -9.178)2 + 6.7452 + 1.4482 ) { 1- ( -9.178wx + 6.745wy + 1.448wz )2 /[( (-  9.178)2 + 

6.7452 + 1.4482 ) (wx 2 + wy 2 + wz 2)]} + 

       ( ( -6.455)2 + 4.1122 + 1.5582 ) { 1- ( -6.455wx + 4.112wy + 1.558wz )2 /[( (-6.455)2 + 

4.1122 + 1.5582 ) (wx 2 + wy 2 + wz 2)]} + 

       ( ( -3.006)2 + 5.7502 + 1.7822 ) { 1- ( -3.006wx + 5.750wy + 1.782wz )2 /[( (-3.006)2 + 

5.7502 + 1.7822 ) (wx 2 + wy 2 + wz 2)]} + 

       ( ( -1.226)2 + 2.7502 + 0.2332 ) { 1- ( -1.226wx + 2.750wy + 0.233wz )2 /[( (-1.226)2 + 

2.7502 + 0.2332 ) (wx 2 + wy 2 + wz 2)]},    

(15)

min SB = ( (-0.959)2 + 2.9502 +(- 4.817)2 ) { 1- (-0.959wx + 2.950wy -4.817wz )2 /[( (-0.959)2

+ 2.9502 +(- 4.817)2 ) (wx 2 + wy 2 + wz 2)]} + 

        ( (-3.465)2 + 4.9992 +(-2.846)2 ) { 1- (-3.465wx + 4.999wy -2.846wz )2 /[( (-3.465)2 + 

4.9992 + (-2.846)2 ) (wx 2 + wy 2 + wz 2)]} + 

        ( (-7.213)2 + 4.4122 +(-3.340)2 ) { 1- (-7.213wx + 4.412wy -3.340wz )2 /[( (-7.213)2 + 

4.4122 + (-3.340)2 ) (wx 2 + wy 2 + wz 2)]} + 

        ( (-9.954)2 + 7.0782 +(-3.168)2 ) { 1- (-9.954wx + 7.078wy -3.168wz )2 /[( (-9.954)2 + 

7.0782 + (-3.168)2 ) (wx 2 + wy 2 + wz 2)]} + 

        ( (-13.660)2 + 6.2412 +(-3.137)2 ) { 1- (-13.660wx + 6.241wy -3.137wz )2 /[( (-13.660)2 + 

6.2412 + (-3.137)2 ) (wx 2 + wy 2 + wz 2)]} + 

        ( (-16.702)2 + 8.5072 +(-3.074)2 ) { 1- (-16.702wx + 8.507wy -3.074wz )2 /[( (-16.702)2 + 

8.5072 + (-3.074)2 ) (wx 2 + wy 2 + wz 2)]}. 

(16)

We solve Eqs. 15~16 (taking the average of the coordinates of Cα atoms as initial solutions), 

getting their optimal solutions w1 = (-10.751, 6.428, 1.411)T, w2 = (-7.960, 4.579, -2.256)T 

respectively (Fig. 10). We may use the vectors w1, w2 and Eq. 12 to construct Chains GH 

and then build an optimal Model 1 (Aqvist, 1986; Abagyan and Maiorov, 1988; Orengo et al., 

1992; Young et al., 1999; Foote and Raman, 2000). In (Burkowski, 2009: pages 213-216), wx 2 + 

wy 2 + wz 2 =1 (i.e. w is a unit vector) is restrained and Eq. 13 becomes into a problem to seek 

the smallest eigenvalue (S*) and its corresponding eigenvector w of the following matrix: 

((∑i=1N(ay(i))2 + (az(i))2, -∑i=1Nax(i)ay(i) , -∑i=1Naz(i)ax(i))T, (-∑i=1Nax(i)ay(i) , ∑i=1N(az(i))2 + (ax(i))2, -

∑i=1Nay(i)az(i))T, (-∑i=1Naz(i)ax(i), -∑i=1Nay(i)az(i), ∑i=1N(ax(i))2 + (ay(i))2)T). 

This matrix is symmetric and positive definite, and its eigenvectors form an orthogonal basis 

for the set of atoms under consideration. In physics, it is called the inertial tensor involving 
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studies of rotational inertia and its eigenvectors are called the principle axes of inertia. 

Furthermore, we may also notice that Eq. 13 can be rewritten as 

 min (∑i=1 N ||di||2)2   subject to  wTw=1,   (17) 

where ||di||2 = (a(i)x 2 + a(i)y 2 + a(i)z 2) (wx 2 + wy 2 + wz 2) – ( a(i)x wx + a(i)y wy + a(i)z wz )2 . Thus, Eq. 

17 can be easily solved by the canonical dual global optimization theory (Gao et al., 2012; 

Gao and Wu, 2012; Gao, 2000), by the ways of solving the canonical dual of Eq. 17 or solving 

the quadratic differential equations of the prime-dual Gao-Strang complementary function 

(Gao et al., 2012; Gao and Wu, 2012; Gao, 2000) through some ordinary or partial differential 

equation computational strategies. 

3. Conclusions 

To date the hydrophobic region AGAAAAGA palindrome (113-120) of the unstructured N-

terminal region (1-123) of prions has little existing experimental structural data available. 

This Chapter successfully constructs three molecular structure models for AGAAAAGA 

palindrome (113-120) by using some suitable template 3NHD.pdb from Protein Data Bank 

and refinement of the Models with several optimization techniques within AMBER 11. 

These models should be very helpful for the experimental studies of the hydrophobic region 

AGAAAAGA palindrome of prion proteins (113-120) when the NMR or X-ray molecular 

structure of prion AGAAAAGA peptide has not been easily determined yet. These 

constructed Models for amyloid fibrils may be useful for the goals of medicinal chemistry. 

This Chapter also introduces numerous practical computational approaches to construct the 

molecular models when it is difficult to obtain atomic-resolution structures of proteins with 

traditional experimental methods of X-ray and NMR etc, due to the unstable, noncrystalline and 

insoluble nature of these proteins. Known structures can be perfectly reproduced by these 

computational methods, which can be compared with contemporary methods. As we all know, 

X-ray crystallography finds the X-ray final structure of a protein, which usually need refinements 

using a SA protocol in order to produce a better structure. SA is a global search procedure and 

usually it is better to hybrid with local search procedures. Thus, the computational methods 

introduced in this Chapter should be better than SA along to refine X-ray final structures.  
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