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1. Introduction

In general, chemical problems are composed by complex systems. There are several chemi‐
cal processes that can be described by different mathematical functions (linear, quadratic,
exponential, hyperbolic, logarithmic functions, etc.). There are also thousands of calculated
and experimental descriptors/molecular properties that are able to describe the chemical be‐
havior of substances. In several experiments, many variables can influence the chemical de‐
sired response [1,2]. Usually, chemometrics (scientific area that employs statistical and
mathematical methods to understand chemical problems) is largely used as valuable tool to
treat chemical data and to solve complex problems [3-8].

Initially, the use of chemometrics was growing along with the computational capacity. In
the 80’s, when small computers with relatively high capacity of calculation became popular,
the chemometric algorithms and softwares started to be developed and applied [8,9]. Nowa‐
days, there are several softwares and complex algorithms available to commercial and aca‐
demic use as a result of the technological development. In fact, the interest for robust
statistical methodologies for chemical studies also increased. One of the most employed stat‐
istical methods is partial least squares (PLS) analysis [10,11]. This technique does not per‐
form a simple regression as multiple linear regression (MLR). PLS method can be employed
to a large number of variables because it treats the colinearity of descriptors. Due the com‐
plexity of this technique, when compared to other statistical methods, PLS analysis is largely
employed to solve chemical problems [10,11].
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We can cite  some examples  of  computational  packages  employed in  chemometrics  and
containing several statistical tools (PLS, MLR, etc.): MATLAB [12], R-Studio [13], Statistica
[14]  and  Pirouette  [15].  There  are  some  molecular  modeling  methodologies  as  HQSAR
[16], CoMFA [17-18], CoMSIA [19] and LTQA-QSAR [20] that also use the PLS analysis to
treat their generated descriptors. In general, the PLS method is used to analyse only line‐
ar problems. However, when a large number of phenomena and noise are present in the
calibration problem,  the relationship becomes non-linear  [21].  Therefore,  artificial  neural
networks  (ANNs)  may  provide  accurate  results  for  very  complex  and  non-linear  prob‐
lems that demand high computational costs [22,23].  One of the most employed learning
algorithm is the back-propagation and its main advantage is the use of output informa‐
tion and expected pattern to error corrections [24]. The main advantages of ANN techni‐
ques  include  learning  and  generalization  ability  of  data,  fault  tolerance  and  inherent
contextual information processing in addition to fast computation capacity [25].  It  is im‐
portant  to  mention  that  since  90’s  many  studies  have  related  advantages  of  applying
ANN techniques when compared to other statistical methods [23,26-31].

Due to the popularization, there is a large interest in ANN techniques, in special in their ap‐
plications in various chemical fields such as medicinal chemistry, pharmaceutical, theoreti‐
cal chemistry, analytical chemistry, biochemistry, food research, etc [32-33]. The theory of
some ANN methodologies and their applications will be presented as follows.

2. Artificial Neural Networks (ANNs)

The first studies describing ANNs (also called perceptron network) were performed by
McCulloch and Pitts [34,35] and Hebb [36]. The initial idea of neural networks was devel‐
oped as a model for neurons, their biological counterparts. The first applications of ANNs
did not present good results and showed several limitations (such as the treatment of linear
correlated data). However, these events stimulated the extension of initial perceptron archi‐
tecture (a single-layer neural network) to multilayer networks [37,38]. In 1982, Hopfield [39]
described a new approach with the introduction of nonlinearity between input and output
data and this new architecture of perceptrons yielded a good improvement in the ANN re‐
sults. In addition to Holpfield’s study, Werbos [40] proposed the back-propagation learning
algorithm, which helps the ANN popularization.

In few years (1988), one of the first applications of ANNs in chemistry was performed by
Hoskins et  al.  [41]  that  reported the employing of  a multilayer feed-forward neural  net‐
work (described in Session 2.1) to study chemical engineering processes. In the same year,
two  studies  employing  ANNs  were  published  with  the  aim  to  predict  the  secondary
structure of proteins [42,43].

In general, ANN techniques are a family of mathematical models that are based on the hu‐
man brain functioning. All ANN methodologies share the concept of “neurons” (also called
“hidden units”) in their architecture. Each neuron represents a synapse as its biological
counterpart. Therefore, each hidden unity is constituted of activation functions that control
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the propagation of neuron signal to the next layer (e.g. positive weights simulate the excita‐
tory stimulus and negative weights simulate the inhibitory ones). A hidden unit is com‐
posed by a regression equation that processes the input information into a non-linear output
data. Therefore, if more than one neuron is used to compose an ANN, non-linear correla‐
tions can be treated. Due to the non-linearity between input and output, some authors com‐
pare the hidden unities of ANNs like a “black box” [44-47]. Figure 1 shows a comparison
between a human neuron and an ANN neuron.

Figure 1. (A) Human neuron; (B) artificial neuron or hidden unity; (C) biological synapse; (D) ANN synapses.

The general purpose of ANN techniques is based on stimulus–response activation functions
that accept some input (parameters) and yield some output (response). The difference be‐
tween the neurons of distinct artificial neural networks consists in the nature of activation
function of each neuron. There are several typical activation function used to compose
ANNs, as threshold function, linear, sigmoid (e.g. hyperbolic tangent), radial basis function
(e.g. gaussian) [25,44-48]. Table 1 illustrates some examples of activation functions.

Different ANN techniques can be classified based on their architecture or neuron connec‐
tion pattern. The feed-forward networks are composed by unidirectional connections be‐
tween network layers. In other words, there is a connection flow from the input to output
direction.  The  feedback  or  recurrent  networks  are  the  ANNs  where  the  connections
among layers occur in both directions. In this kind of neural network, the connection pat‐
tern is characterized by loops due to the feedback behavior. In recurrent networks, when
the output signal of a neuron enter in a previous neuron (the feedback connection),  the
new input data is modified [25,44-47].

Applications of Artificial Neural Networks in Chemical Problems
http://dx.doi.org/10.5772/51275

205



threshold linear hyperbolic tangent gaussian

φ(r) =  {1 ifn≥0;  0 ifn0}

φ(r) =  {1ifv ≥0
0ifv 0

φ(r) =  {1 r≥½; n−½
n½; 0n≤ −½}

φ(v) = { 1−v ≥
1
2

v −
1
2 v

1
2

0v ≤ −
1
2

φ(r) = tanh(n / 2) =  
1−exp(−n) / 1 + exp(−n)

φ(v) = tanh( v2 ) =
1−exp(−v)
1 + exp(−v)

φ(r) =e− (ε v )2̂

Table 1. Some activation functions used in ANN studies.

Each ANN architecture has an intrinsic behavior. Therefore, the neural networks can be clas‐
sified according to their connections pattern, the number of hidden unities, the nature of ac‐
tivation functions and the learning algorithm [44-47]. There are an extensive number of
ANN types and Figure 2 exemplifies the general classification of neural networks showing
the most common ANN techniques employed in chemistry.

Figure 2. The most common neural networks employed in chemistry (adapted from Jain & Mao, 1996 [25]).

According to the previous brief explanation, ANN techniques can be classified based on
some  features.  The  next  topics  explain  the  most  common  types  of  ANN  employed  in
chemical problems.
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2.1. Multilayer perceptrons

Multilayer perceptrons (MLP) is one of the most employed ANN algorithms in chemistry.
The term “multilayer” is used because this methodology is composed by several neurons ar‐
ranged in different layers. Each connection between the input and hidden layers (or two
hidden layers) is similar to a synapse (biological counterpart) and the input data is modified
by a determined weight. Therefore, a three layer feed-forward network is composed by an
input layer, two hidden layers and the output layer [38,48-50].

MLP is also called feed-forward neural networks because the data information flows only
in the forward direction. In other words, the produced output of a layer is only used as
input for the next layer. An important characteristic of feed-forward networks is the su‐
pervised learning [38,48-50].

The crucial task in the MLP methodology is the training step. The training or learning step is a
search process for a set of weight values with the objective of reducing/minimizing the squared
errors of prediction (experimental x estimated data). This phase is the slowest one and there is
no guarantee of minimum global achievement. There are several learning algorithms for MLP
such as conjugate gradient descent, quasi-Newton, Levenberg-Marquardt, etc., but the most
employed one is the back-propagation algorithm. This algorithm uses the error values of the
output layer (prediction) to adjust the weight of layer connections. Therefore, this algorithm
provides a guarantee of minimum (local or global) convergence [38,48-50].

The main challenge of MLP is the choice of the most suitable architecture. The speed and the
performance of the MLP learning are strongly affected by the number of layers and the
number of hidden unities in each layer [38,48-50]. Figure 3 displays the influence of number
of layers on the pattern recognition ability of neural network.

Figure  3.  Influence  of  the  number  of  layers  on  the  pattern  recognition  ability  of  MLP  (adapted  from  Jain  &
Mao, 1996 [25]).

The increase in the number of layers in a MLP algorithm is proportional to the increase of
complexity of the problem to be solved. The higher the number of hidden layers, the higher
the complexity of the pattern recognition of the neural network.
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2.2. Self-organizing map or Kohonen neural network

Self-organizing map (SOM), also called Kohonen neural network (KNN), is an unsupervised
neural network designed to perform a non-linear mapping of a high-dimensionality data
space transforming it in a low-dimensional space, usually a bidimensional space. The visuali‐
zation of the output data is performed from the distance/proximity of neurons in the output
2D-layer. In other words, the SOM technique is employed to cluster and extrapolate the data
set keeping the original topology. The SOM output neurons are only connected to its nearest
neighbors. The neighborhood represents a similar pattern represented by an output neuron. In
general, the neighborhood of an output neuron is defined as square or hexagonal and this
means that each neuron has 4 or 6 nearest neighbors, respectively [51-53]. Figure 4 exemplifies
the output layers of a SOM model using square and hexagonal neurons for a combinatorial de‐
sign of purinergic receptor antagonists [54] and cannabinoid compounds [30], respectively.

Figure 4. Example of output layers of SOM models using square and hexagonal neurons for the combinatorial design
of (a) purinergic receptor antagonists [54] and (b) cannabinoid compounds [30], respectively.

The SOM technique could be considered a competitive neural network due to its learning
algorithm. The competitive learning means that only the neuron in the output layer is select‐
ed if its weight is the most similar to the input pattern than the other input neurons. Finally,
the learning rate for the neighborhood is scaled down proportional to the distance of the
winner output neuron [51-53].

Artificial Neural Networks – Architectures and Applications208



2.3. Bayesian regularized artificial neural networks

Different from the usual back-propagation learning algorithm, the Bayesian method consid‐
ers all possible values of weights of a neural network weighted by the probability of each set
of weights. This kind of neural network is called Bayesian regularized artificial neural
(BRANN) networks because the probability of distribution of each neural network, which
provides the weights, can be determined by Bayes’s theorem [55]. Therefore, the Bayesian
method can estimate the number of effective parameters to predict an output data, practical‐
ly independent from the ANN architecture. As well as the MLP technique, the choice of the
network architecture is a very important step for the learning of BRANN. A complete re‐
view of the BRANN technique can be found in other studies [56-59].

2.4. Other important neural networks

Adaptative resonance theory (ART) neural networks [60,61] constitute other mathematical
models designed to describe the biological brain behavior. One of the most important char‐
acteristic of this technique is the capacity of knowledge without disturbing or destroying the
stored knowledge. A simple variation of this technique, the ART-2a model, has a simple
learning algorithm and it is practically inexpensive compared to other ART models [60-63].
The ART-2a method consists in constructing a weight matrix that describes the centroid na‐
ture of a predicted class [62,63]. In the literature, there are several chemical studies that em‐
ploy the ART-based neural networks [64-73].

The neural network known as radial basis function (RBF) [74] typically has the input layer, a
hidden layer with a RBF as the activation function and the output layer. This network was
developed to treat irregular topographic contours of geographical data [75-76] but due to its
capacity of solving complex problems (non-linear specially), the RBF networks have been
successfully employed to chemical problems. There are several studies comparing the ro‐
bustness of prediction (prediction coefficients, r2, pattern recognition rates and errors) of
RBF-based networks and other methods [77-80].

The Hopfield neural network [81-82] is a model that uses a binary n x n matrix (presented as
n x n pixel image) as a weight matrix for n input signals. The activation function treats the
activation signal only as 1 or -1. Besides, the algorithm treats black and white pixels as 0 and
1 binary digits, respectively, and there is a transformation of the matrix data to enlarge the
interval from 0 – 1 to (-1) – (+1). The complete description of this technique can be found in
reference [47]. In chemistry research, we can found some studies employing the Hopfield
model to obtain molecular alignments [83], to calculate the intermolecular potential energy
function from the second virial coefficient [84] and other purposes [85-86].

3. Applications

Following, we will present a brief description of some studies that apply ANN techniques as
important tools to solve chemical problems.
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3.1. Medicinal Chemistry and Pharmaceutical Research

The drug design research involves the use of several experimental and computational strat‐
egies with different purposes, such as biological affinity, pharmacokinetic and toxicological
studies, as well as quantitative structure-activity relationship (QSAR) models [87-95]. An‐
other important approach to design new potential drugs is virtual screening (VS), which can
maximize the effectiveness of rational drug development employing computational assays
to classify or filter a compound database as potent drug candidates [96-100]. Besides, vari‐
ous ANN methodologies have been largely applied to control the process of the pharma‐
ceutical production [101-104].

Fanny et al. [105] constructed a SOM model to perform VS experiments and tested an exter‐
nal database of 160,000 compounds. The use of SOM methodology accelerated the similarity
searches by using several pharmacophore descriptors. The best result indicated a map that
retrieves 90% of relevant neighbors (output neurons) in the similarity search for virtual hits.

3.2. Theoretical and Computational Chemistry

In theoretical/computational chemistry, we can obtain some applications of ANN techniques
such as the prediction of ionization potential [106], lipophilicity of chemicals [107, 108],
chemical/physical/mechanical properties of polymer employing topological indices [109]
and relative permittivity and oxygen diffusion of ceramic materials [110].

Stojković et al. [111] also constructed a quantitative structure-property relationship (QSPR)
model to predict pKBH+ for 92 amines. To construct the regression model, the authors cal‐
culated  some  topological  and  quantum  chemical  descriptors.  The  counter-propagation
neural network was employed as a modeling tool and the Kohonen self-organizing map
was employed to graphically visualize the results. The authors could clearly explain how
the input descriptors  influenced the pKBH+  behavior,  in special  the presence of  halogens
atoms in the amines structure.

3.3. Analytical Chemistry

There are several studies in analytical chemistry employing ANN techniques with the aim
to obtain multivariate calibration and analysis of spectroscopy data [112-117], as well as to
model the HPLC retention behavior [118] and reaction kinetics [119].

Fatemi [120] constructed a QSPR model employing the ANN technique with back-propaga‐
tion algorithm to predict the ozone tropospheric degradation rate constant of organic com‐
pounds. The data set was composed of 137 organic compounds divided into training, test
and validation sets. The author also compared the ANN results with those obtained from
the MLR method. The correlation coefficients obtained with ANN/MLR were 0.99/0.88,
0.96/0.86 and 0.96/0.74 for the training, test and validation sets, respectively. These results
showed the best efficacy of the ANN methodology in this case.
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3.4. Biochemistry

Neural networks have been largely employed in biochemistry and correlated research fields
such as protein, DNA/RNA and molecular biology sciences [121-127].

Petritis et al. [128] employed a three layer neural network with back-propagation algorithm to
predict the reverse-phase liquid chromatography retention time of peptides enzymatically di‐
gested from proteomes. In the training set, the authors used 7000 known peptides from D. radi‐
odurans. The constructed ANN model was employed to predict a set with 5200 peptides from
S. oneidensis. The used neural network generated some weights for the chromatographic re‐
tention time for each aminoacid in agreement to results obtained by other authors. The ob‐
tained ANN model could predict a peptide sequence containing 41 aminoacids with an error
less than 0.03. Half of the test set was predicted with less than 3% of error and more than 95% of
this set was predicted with an error around 10%. These results showed that the ANN method‐
ology is a good tool to predict the peptide retention time from liquid chromatography.

Huang et al. [129] introduced a novel ANN approach combining aspects of QSAR and ANN
and they called this approach of physics and chemistry-driven ANN (Phys-Chem ANN).
This methodology has the parameters and coefficients clearly based on physicochemical in‐
sights. In this study, the authors employed the Phys-Chem ANN methodology to predict the
stability of human lysozyme. The data set was composed by 50 types of mutated lysozymes
(including the wild type) and the experimental property used in the modeling was the
change in the unfolding Gibbs free energy (kJ-1 mol). This study resulted in significant coeffi‐
cients of calibration and validation (r2=0.95 and q2=0.92, respectively). The proposed meth‐
odology provided good prediction of biological activity, as well as structural information
and physical explanations to understand the stability of human lysozyme.

3.5. Food Research

ANNs have also been widely employed in food research. Some examples of application of
ANNs in this area include vegetable oil studies [130-138], beers [139], wines [140], honeys
[141-142] and water [143-144].

Bos  et  al.  [145]  employed  several  ANN  techniques  to  predict  the  water  percentage  in
cheese samples.  The authors tested several  different architecture of neurons (some func‐
tions were employed to simulate  different  learning behaviors)  and analyzed the predic‐
tion  errors  to  assess  the  ANN performance.  The  best  result  was  obtained  employing  a
radial basis function neural network.

Cimpoiu et al. [146] used the multi-layer perceptron with the back-propagation algorithm to
model the antioxidant activity of some classes of tea such as black, express black and green
teas. The authors obtained a correlation of 99.9% between experimental and predicted anti‐
oxidant activity. A classification of samples was also performed using an ANN technique
with a radial basis layer followed by a competitive layer with a perfect match between real
and predicted classes.
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4. Conclusions

Artificial Neural Networks (ANNs) were originally developed to mimic the learning process
of human brain and the knowledge storage functions. The basic unities of ANNs are called
neurons and are designed to transform the input data as well as propagating the signal with
the aim to perform a non-linear correlation between experimental and predicted data. As
the human brain is not completely understood, there are several different architectures of
artificial neural networks presenting different performances. The most common ANNs ap‐
plied to chemistry are MLP, SOM, BRANN, ART, Hopfield and RBF neural networks. There
are several studies in the literature that compare ANN approaches with other chemometric
tools (e.g. MLR and PLS), and these studies have shown that ANNs have the best perform‐
ance in many cases. Due to the robustness and efficacy of ANNs to solve complex problems,
these methods have been widely employed in several research fields such as medicinal
chemistry, pharmaceutical research, theoretical and computational chemistry, analytical
chemistry, biochemistry, food research, etc. Therefore, ANN techniques can be considered
valuable tools to understand the main mechanisms involved in chemical problems.

Notes

Techniques related to artificial neural networks (ANNs) have been increasingly used in chemi‐
cal studies for data analysis in the last decades. Some areas of ANN applications involve pat‐
tern  identification,  modeling  of  relationships  between  structure  and  biological  activity,
classification of compound classes, identification of drug targets, prediction of several physi‐
cochemical properties and others. Actually, the main purpose of ANN techniques in chemical
problems is to create models for complex input–output relationships based on learning from
examples and, consequently, these models can be used in prediction studies. It is interesting to
note that ANN methodologies have shown their power and robustness in the creation of use‐
ful models to help chemists in research projects in academy and industry. Nowadays, the evo‐
lution of computer science (software and hardware) has allowed the development of many
computational methods used to understand and simulate the behavior of complex systems. In
this way, the integration of technological and scientific innovation has helped the treatment of
large databases of chemical compounds in order to identify possible patterns. However, peo‐
ple that can use computational techniques must be prepared to understand the limits of applic‐
ability of any computational method and to distinguish between those opportunities which are
appropriate to apply ANN methodologies to solve chemical problems. The evolution of ANN
theory has resulted in an increase in the number of successful applications. So, the main contri‐
bution of this book chapter will be briefly outline our view on the present scope and future ad‐
vances of ANNs based on some applications from recent research projects with emphasis in
the generation of predictive ANN models.
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