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1. Introduction 

Hyperspectral remote sensing is one of the most significant recent breakthroughs in remote 

sensing. It obtains image in a large number (usually more than 40), narrow (typically 10 to 

20 nm spectral resolution) and contiguous spectral bands to enable the extraction of spectral 

information at a pixel scale, so it can produce data with sufficient spectral resolution for the 

direct recognition those materials with diagnostic spectral features [1]. Usually classification 

method of hyperspectral remote sensing data are divided into two categories [2]: using sub-

pixel classification techniques [3] and spectral matching techniques [4]. In the former, the 

images should not need to atmospheric correction, however, due to higher dimension of 

hyperspectral image, it will lead to dimensionality disaster and Hughes phenomenon [5, 6] 

which refer to the fact that with the number of spectral bands increased the sample size 

required for training set grows exponentially. The solution methods usually are increasing 

sample size, thus this will cost a lot of human and material resources. Another simple but 

sometimes effective way to solve this problem is dimension reduction of hyperspectral data, 

but some useful information will be lost. Furthermore, it is hard to solve mixed pixels. In the 

latter, matched filtering method is successfully used in information extraction from 

hyperspectral remote sensing image. It classifies by computing the similarity of the pixel 

spectrum and the reference spectrum, and it needs no sample data but the image data 

should be atmospheric corrected beforehand. These methods based on the hypothesis that 

dark currents of the sensor and path radiation are removed and all spectra data have been 

calibrated to apparent reflectance. However, it is only the ideal condition for these effects 

are hard to be removed completely, so some mistakes will be caused due to atmospheric 

influence, especially for low reflectivity ground objects. This chapter proposed an 

unsupervised classification for hyperspectral remote sensing image. It can effectively extract 



 
Advances in Data Mining Knowledge Discovery and Applications 144 

low reflectivity ground objects such as water or vegetation in shadowed area from 

hyperspectral remote sensing data using spectral data mining. Firstly, extracting more than 

40 endmembers from the hyperspectral image using Pixel Purity Index (PPI) and calculating 

the spectral angle between the pixel spectra and each endmember spectra, the pixel was 

assigned to the endmember class with the smallest spectral angle. Then, endmember spectra 

were clustered based on K-mean algorithm. Finally, pixels in the same K-mean result class 

were combined to one class and the final classification outcome was projected and 

outputted. Comparing the classification result and field data, they are in accord with each 

other. This method can produce the objective result with no artificial interference. It can be 

an efficient information extraction method for hyperspectral remote sensing data. 

2. The study area 

The study area is located at Heqing county in Yunnan province in southwest of China (25º38'N 

- 26º30'N; 99º58'E – 100º15'E) (figure 1). It covers mountainous terrain and has big altitude 

difference. It is situated in the Three Parallel Rivers of Yunnan Protected Areas which is a 

UNESCO World Heritage Site in China. The Three Parallel Rivers of Yunnan Protected Areas 

lies within the drainage basins of the upper reaches of three of Asia's great rivers run 

approximately parallel to one another though separated by higher mountain ranges with 

peaks over 6,000 meters. They are the Yangtze (Jinsha), Mekong (Lancang) and Salween 

(Nujiang) rivers, in the Yunnan section of the Hengduan Mountains. After this near confluence 

area, the rivers greatly diverge: the Nujiang River flows at Moulmein, Burma, into the Indian 

Ocean, the Mekong south of Ho Chi Minh City, Vietnam, into the South China Sea and the 

Yangtse impours into the East China Sea at Shanghai. It was awarded World Heritage Site 

status in 2003 for their richer biodiversity and spectacular topographical diversity [7]. 

 

Figure 1. China provincial boundaries and the study area. 
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3. Remote sensing data 

The image investigated in this chapter was obtained by Hyperion sensor boarded on EO-1 

satellite in November 11, 2004, and it covers the 0.4 to 2.5 micrometer spectral range with 

242 spectral bands at roughly 30m spatial resolution and 10nm spectral resolution over a 

7.5 km wide swath from a 705 km orbit. The system has two grating spectrometers; one 

visible / near infrared (VNIR) spectrometer (approximately 0.4–1.0 micrometers) and one 

short-wave infrared (SWIR) spectrometer (approximately 0.9–2.5micrometers) (figure 2). 

Data are calibrated to radiance using both pre-mission and on-orbit measurements. Key 

Hyperion characteristics are discussed by Green et al. [8]. The image has a total of 242 

bands but only 198 bands are calibrated. Because of an overlap between the VNIR and 

SWIR focal planes, there are only 196 unique channels [8, 9]. Due to water vapor 

absorption, some bands nearby 0.94, 1.38 and 1.87 micrometers also can not be available. 

The rest 163 bands can be used in research. Some pre-processing steps are necessary 

before using image. Firstly, some bad pixel value in original image were replaced by the 

means of two pixels value beside its two sides; then the image was radiometrically 

corrected using calibration coefficient; at last, the image was atmospheric corrected using 

FLAASH model [10]. Figure 3 and figure 4 shows different ground objects spectra before 

and after atmospheric correction. Shapes of different ground objects spectra after 

atmospheric correction are similar with shapes of standard laboratory spectra for the 

same ground object type. 

4. Methodology 

4.1. Spectral angle mapper (SAM) 

Spectral Angle Mapper (SAM) algorithm is successfully used in matched filtering based on 

hyperspectral remote sensing image [4, 11-18]. It computes the "spectral angle" between the 

pixel spectrum and the endmember spectrum. When used on calibrated data, this technique 

is comparatively insensitive to illumination and albedo effects. Smaller angles represent 

closer matches to the reference spectra. The result indicates the radian of the spectral angle 

computed using the following equation: 
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Where m=the number of bands. 

it =pixel spectrum. 

ir =reference spectrum. 

 = radian of the spectral angle 
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Figure 2. Dispaly bands as gray scale (40 = vnir, 93 = swir),  Select three bands as RGB (29, 23, 16 = 

VNIR, 204,150, 93 = SWIR). 
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Figure 3. Different ground objects curves before atmospheric correction 
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Figure 4. Different ground objects spectra after atmospheric correction. 
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Usually, a constant threshold is assigned firstly. When   is lower than the constant 

threshold, that means the pixel spectrum and the reference spectrum are similar with each 

other, and then assigned the pixel into the reference spectral class. 

4.2. Extracting endmembers 

The reference spectra can be selected from Spectral libraries, acquired by the handhold 

spectroradiometer, or extracted from the image itself. The commonly used technique is to 

extract the reference spectra from the image, for this method has the advantage that 

endmembers were collected under similar atmospheric conditions and pixel scale. A variety of 

methods have been used to find endmembers in multispectral and hyperspectral images. 

Iterated Constrained Endmembers (ICE) is an automated statistical method to extract 

endmembers from hyperspectral images [19]. [20] found a unique set of purest pixels based 

upon the geometry of convex sets. Probably Pixel Purity Index (PPI) is the most widely used 

algorithm [21]. In this chapter, PPI was used to find the most spectrally pure pixels in 

hyperspectral images as reference spectra. Firstly, the image was applied to a dimensionality 

analysis and noise whitening using the Minimum Noise Fraction (MNF) transform process [22, 

23]. Then, the data are projected onto random unit vectors repeatedly and the total number of 

each pixel marked as an extreme pixel is noted. At last, the purest pixels in the scene are rapidly 

identified. In this chapter, 48 endmember spectra were extracted from hyperspectral image. 

SAM was used to match each pixel spectrum to 48 endmembers. Figure 5 (b) is the 

classification result using the constant threshold. Different color represents different classes 

and black refer to unclassified classes. Comparing figure 5(a) with figure 5(b), it is shown 

that most vegetation in shadowed region and water are classified into unclassified classes, 

so some vegetation and water information are lost. One of reason is that the radiance of low 

reflectivity ground object such as water and vegetation in shadowed area are severely 

weakened by atmosphere influence when they arrive at the satellite. As is shown from 

figure 4, the digital numbers value of the vegetation in unshadowed area are 2 times higher 

than theirs in shadowed region. After atmospheric correction, the reflectance of the 

vegetation in shadowed area are obviously lower than theirs in unshadowed region, and 

reflectance in some spectral range (0.46-0.68 and 1.98-2.37 micrometers) are near zero. 

However, comparing the shape of vegetation spectra in shadowed and unshadowed area, 

they are similar with each other, so it is possible to identify the low reflectance ground object 

using SAM algorithm for it is relatively insensitive to illumination and albedo effects, but 

the constant threshold is not suitable. In this chapter, 48 endmember spectra were used as 

reference spectra, so the hypothesis that 48 endmember spectra include all land cover type is 

reasonable. The spectral angle of every pixel was calculated using with all endmembers, and 

the pixel belongs to the class which has the smallest spectral angle. Figure 5(c) is the 

processed classification result using adjustable threshold. Comparing with figure 5(b) and 

figure 5(c), they are the same except unclassified pixel in figure 5(b) which belongs to the 

certain land cover type in figure 5(c). This method improved the constant threshold SAM 

classification result, so it is more effective than using constant threshold. 
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Figure 5. (a). The hyperspectral image after atmospheric correction. (b). the classification result of SAM 

using constant threshold. (c). the classification result of SAM using adjustable threshold 

4.3. Clustering using K-mean algorithm 

Figure 5(c) contains so many classes, and some classes may belong to the same class. In this 

chapter, these classes were clustered using K-mean algorithm [24], which is a 

straightforward and effective algorithm for finding clusters in data. It classifies pixels based 

on features into k centroids of group, one for each cluster. These centroids shoud be placed 

as much as possible far away from each other, then take each point belonging to a given 

data set which associate to the nearest centroid. The algorithm proceeds as follows. Firstly, 

the number of classes which the image should be partitioned into is inputted, and k records 

are randomly assigned to be the initial cluster center. Then, for each record, find the nearest 

cluster center. For each of the k clusters, find the cluster centroid, and update the location of 

each cluster center to the new value of the centroid. Repeat steps until convergence or 

termination. In this chapter, endmember spectra were clustered using K-mean algorithm 

and final 5 spectral classed were outputted. Then, classification result using adjustable 

threshold were merged according the K-mean algorithm result. Final classification result is 

shown in figure 6. Comparing the classification result and field data, they are in accord with 

each other. 

(a) (b) (c) 
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Map Projection: Gauss Kruger 3 Degree, Zone 33, False Easting: 500 kilometer, Central Meridian: 99º. 

Figure 6. The classification map of hyperspectral remote sensing image 
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5. Results and discussions 

Matching filter was maturely used in spectral classification in hyperspectral remote sensing 

image, however, due to atmospheric effect, it is hard to extract low reflectivity ground 

object. This chapter proposed an unsupervised classification method. Firstly, the 

hyperspectral remote sensing image was atmospherically corrected. Accuracy atmospheric 

correction is the key to the classification. Then, endmember spectra were extracted using PPI 

algorithm, and the image was classified using SAM. Traditionally SAM algorithm used 

constant threshold. This chapter improved and used adjustable threshold, and the pixel 

belong to class which has the smallest spectral angle. Finally, the endmember spectra were 

clustered based on K-mean algorithm and classes were combined according to the K-mean 

algorithm result. The final classification map was projected and outputted. It is an effective 

classification method especially for hyperspectral remote sensing image. Users also can 

adjust the endmember and classes number according to their applications. 
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