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1. Introduction 

Nitroxides are stable free radicals which have the >N-O moiety. In most cases, nitroxides 

have a ring structure. For example, imidazoline, isoindoline, piperidine and pyrrolidine ring 

nitroxides (Fig. 1) have been used as agents for spin labeling, imaging, and as antioxidants. 

These nitroxides have four substituents at the α-position; two substituents on each α-carbon. 

All four substituents are needed for avoiding the disproportionation reaction of nitroxides 

except for the case of a bridgehead at the α-position. Methyl groups have been chosen as 

simple and inert substituents. However, it has been reported that other types of 

substituents, especially ethyl groups, showed unique characteristics that were unlike those 

of the conventional methyl group.  

In this chapter, we will introduce the conventional as well as the latest synthetic methods 

used to introduce the various substituents to the α-position. Also, we will describe the 

structure–reactivity relationships of α-substituted nitroxides. 

2. Synthetic methods of α-substituted nitroxides 

2.1. Imidazoline 

Imidazoline nitroxides have been synthesized from α-hydroxyaminoketone with carbonyl 

compounds (Scheme 1) (Volodarsky and Igor A, 1988). The R1 groups of α-

hydroxyaminoketone and R2 groups of carbonyl compounds correspond to the α-position 

of the imidazoline ring. α-Hydroxyaminoketones are synthesized from appropriate 

olefines via nitrosylation, treatment with hydroxylamine, and hydrolysis (Kirilyuk et al., 

2004). This is a practical method because this key compound can be synthesized on the 

gram scale. For R2 groups, chain ketones or cyclic alkyl ketones are used as carbonyl 
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compounds (Bobko et al., 2007; Kirilyuk et al., 2004; Yan’shole et al., 2010; Zubenko et al., 

2006). These give the 2,2,5,5-tetrasubstituted 2,5-dihydro-1H-imidazole-1-ol. After 

oxidation, they give the desired imidazole nitroxides. Imidazolidine nitroxides can be 

synthesized from imidazoline nitroxides by reduction (Zubenko et al., 2006). Therefore, α-

substituted imidazoline nitroxides are also synthesized from α-substituted imidazolidine 

nitroxides.  

 

Figure 1. Basic structure of nitroxides 

 

Scheme 1. α-Substitution synthesis of imidazoline and imidazolidine nitroxides 

R1 = Me; R2 = Me, Et, n-Bu, (CH2)4, (CH2)5 

R1 = Et; R2 = Me, Et, (CH2)5, (CH2)2COONa 

2.2. Isoindoline 

Isoindoline nitroxides have been prepared by the addition of a greater than fourfold excess 

of a single Grignard reagent to N-benzylphthalimide (Scheme 2) (Griffiths et al., 1983). 

Therefore, according to the type of Grignard reagent, various substituents can be introduced 

to the α-position of the nitroxide moiety (Chan et al., 2010). Corresponding 2-benzyl-1,1,3,3-

tetrasubstituted isoindoline derivatives are then deprotected and subsequent oxidation 

gives the α-substituted isoindoline nitroxides. The isoindoline skeleton has the potential to 

have low solubility in water; longer alkyl chains cause a decrease in water solubility. Hence, 

many studies have been conducted with ethyl groups with respect to biological applications 

(Fairfull-Smith et al., 2009; Marx et al., 2000). 
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Scheme 2. α-Substitution synthesis of isoindoline nitroxides 

R = Me, Et, n-Pr, n-Bu, Ph 

2.3. Piperidine 

Piperidine nitroxides have been synthesized by two main approaches. One is the synthesis 

from acetonin (2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) with carbonyl 

compounds (Schemes 3a and b). Murayama et al. reported the isolation of 1,9-diaza-

2,2,8,8,10,10-hexamethylspiro[5.5]undecan-4-one as a byproduct in the method development 

for 2,2,6,6-tetramethyl-4-piperidone (Murayama et al., 1969). Subsequently, using acetonin, 

various α-substituted piperidine derivatives were reported by Ma et al. (Ma et al., 1993) and 

Miura et al. (Scheme 3b) (Mannan et al., 2007; Miura et al., 2003; Miura et al., 2001; Okazaki 

et al., 2007). These methods have the advantage of synthesis in a few steps, but the key 

compound used at the start of the synthesis, acetonin, lacks stability. 

The other main approach is a stepwise synthesis from the appropriate starting material 

(Schemes 3c, d and e). For example, Yoshioka et al. reported on the synthesis for piperidine 

nitroxides having a spirocyclohexyl group via α, β-unsaturated ketone derivatives (Yoshioka 

et al., 1972). In addition, focusing on substitution of the tetraethyl group, Studer et al. 

reported a stepwise synthesis via bisphosphonates (Wetter et al., 2004), and also β-lactams 

for obtaining piperidine nitroxides on a large scale (Schulte et al., 2005) which involved 

several synthetic steps and a high-pressure reactor. 

Recently, an alternative synthetic method has been developed (Scheme 3f) (Sakai et al., 

2010). This method involves 2,2,6,6-tetramethyl-4-piperidone as a starting compound; this 

compound is more stable than acetonin and is available commercially. This compound with 

cyclohexanone directly gave the piperidone derivative having spirocyclohexyl groups at the 

2,6-position under a mild reaction condition. Moreover, the reaction yield was increased by 

using 1,2,2,6,6-pentamethyl-4-piperidone and a base. With this starting compound, various 

substituents have been introduced to the α-position (Yamasaki et al., 2011; Yamasaki et al., 

2010). From the investigation of the reaction mechanism, the nitrogen derived from 

ammonium chloride was introduced to the piperidone ring. Therefore, using 15N-labeled 

NH4Cl instead of 14NH4Cl, 15N-labeled 2,2,6,6-tetrasubstituted piperidin-4-one-1-oxyls can be 

produced with high (>98%) 15N content. Thus, the external NH4X compound seems to be the 

source of nitrogen during this reaction.  

RMgX
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Scheme 3. α-Substitution synthesis of piperidine nitroxides. a), b) from acetonin, c), d), e) stepwise 

synthesis, f) from piperidone 
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2.4. Pyrrolidine 

α-Substituted pyrrolidine nitroxides has been synthesized via the nucleophilic addition of 

organometallic reagents such as 2,2,5-trimethyl-3,4-dihydro-2H-pyrrole-1-oxide or 2,5-

dimethyl-3,4-dihydro-2H-pyrrole-1-oxide to nitrone (Ikuma et al., 2004; Keana et al., 1983). 

Grignard reagents are also used as nucleophiles. These moieties are introduced to the α-

position of the nitroxide. Therefore, various substituents could be introduced depending on 

the organometallic reagent. Moreover, substitution of the starting 3,4-dihydro-2H-pyrrole-1-

oxide at the 2 and 5 positions has been carried out (Black et al., 2000). This also led to α-

substituted pyrrolidine nitroxides. These derivatives have been synthesized via 

intramolecular reductive amination from 5-nitrohexan-2-one derivatives. Additionally, the 

stepwise synthesis from 5-methylhex-5-en-2-one to introduce the phosphonate group has 

been reported (Le Moigne et al., 1991).  

 

Scheme 4. α-Substitution synthesis of isoindoline nitroxides 

R = Me, Et, n-Pr, n-Bu, Ph 

3. Evaluation of α-substituted nitroxides 

3.1. Common reactivity of nitroxides 

Nitroxides have several potential advantages as spin probes (Kuppusamy et al., 2002; 

Yamada et al., 2006), spin labels (Borbat et al., 2001), contrast agents (Soule et al., 2007) and 

antioxidants (Wilcox and Pearlman, 2008). These applications are based on the 

complementary nature of the radical moieties in nitroxides; paramagnetism allows them to 

react with free radicals and interact with nuclear spin. For instance, these properties allow 
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nitroxides to be used as contrast agents for magnetic resonance imaging (MRI) to give 

images of the morphological nature and redox imbalance in animal models of oxidative 

stress. 

In biological systems, understanding of biophysical properties is helpful to promote 

effective utilization and control of the reactivity of nitroxides. Nitroxides are readily 

oxidized to oxoammonium cations or reduced to hydroxylamines by various in vivo 

oxidants or reductants (Fig. 2) (Kocherginsky and Swartz, 1995). Upon reaction with 

superoxides, nitroxides undergo one-electron oxidation and subsequent two-electron 

reduction with reductants, which is driven forward by the redox potential of the nitroxide 

redox couple (Krishna et al., 1992). Conversely, nitroxides are reduced by ascorbic acid and 

converted into hydroxylamines (Saphier et al., 2003). This effect is one of the limitations of 

using nitroxides for monitoring in vivo redox status because the lifetime in vivo is shortened. 

The reduction rate by ascorbic acid is dependent mainly upon their ring structures and 

substituent groups. The rate constants decrease in the order oxazolidines > piperidines > 

pyrrolines > pyrrolidines, and the increasing inductive effects by the substituent group at 

the β- or γ-positions of pyrrolidine and piperidine nitroxide also affect the rate 

(Kocherginsky and Swartz, 1995). In this section, the effect of α-substituted nitroxides 

(especially piperidine nitroxide) on reduction by ascorbic acid was summarized and its in 

vivo application discussed. 

 

Figure 2. Redox couples of nitroxide 

3.2. Reduction stability  

As well as at β- or γ-positions, substituent groups at α-positions in a nitroxide ring can 

change their reactivity. For instance, phosphorylated pyrrolidinyl nitroxide showed 

moderate increase toward ascorbate reduction compared with the tetramethyl pyrrolidine 

nitroxide (Mathieu et al., 1997). On the other hands, the tetraethyl-substituted isoindoline 

(Marx et al., 2000), imidazoline (Kirilyuk et al., 2004), and imidazolidine (Kirilyuk et al., 

2004) nitroxides showed high resistivity to ascorbate reduction than the corresponding 

tetramethyl compounds. Furthermore, Kirilyuk et al. reported that tetraethyl-substituted 

imidazoline nitroxides had significantly longer half-lives in rat blood samples as compared 

with the corresponding tetramethyl-nitroxides (Kirilyuk et al., 2004). Although piperidine 

nitroxides with spirocyclohexyl groups at α-positions showed no difference in reactivity 

with ascorbic acid, the enzymatic reaction was efficiently protected (Okazaki et al., 2007). 

Recently, tetraethyl-substituted piperidine nitroxide was also reported to exhibit resistance 
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to ascorbate reduction (Kinoshita et al., 2009). The electron spin resonance (ESR) or electron 

paramagnetic resonance (EPR) signal intensities of tetraethyl-substituted piperidine 

nitroxide remained 97% after ascorbate addition (Fig. 3). These reports indicated that the 

reduction rates of nitroxides vary significantly depending on their structure and 

microenvironment resulting from the α-substitution of nitroxides. Tetraethyl-type nitroxides 

could be potentially useful for monitoring in vivo free-radical reactions, pH changes, and 

redox status without undesirable reduction by ascorbic acid. 

Tetraethyl-nitroxides, having higher lipophilicity than tetramethyl compounds, have been 

reported to be less toxic to cells (Kinoshita et al., 2010) although the toxicity is reported to 

be correlated with the structure and lipophilicity of nitroxides (Ankel et al., 1987). 

Furthermore, single-dose administration of tetraethyl piperidine nitroxide has been 

shown to have lower blood pressure-lowering effects compared with that of Tempol 

(Kinoshita et al., 2010). 

 

 

Figure 3. Effect of AsA on the decay of ESR signals of nitroxides. Nitroxides (100 µM) were mixed with 

AsA (1 mM) in phosphate buffered saline and their ESR spectra measured as a function of time. �:  

4-oxo-2,2,6,6-tetraethyl-piperidine-1-oxyl; ○: carbamoyl-PROXYL; ▲: hydroxy-TEMPO (TEMPOL); □: 

oxo-TEMPO (TEMPONE); ◊: 7-Aza-3,11-dioxa-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl. (Kinoshita et 

al., Free Radic Res 2009;43: 565, copyright© 2012, Informa Healthcare. Reproduced with permission of 

Informa Healthcare) 

3.3. Electrochemical behaviours 

The change in nitroxide reactivity due to the presence of tetraethyl substituents suggests 

that introduction of bulky alkyl groups at α-positions in a nitroxide ring are responsible for 

their reduction stability. Steric hindrance around the radical moiety is one of the most 

important factors inhibiting access to reductants. However, the ESR signal intensities of 7-

Aza-3,11-dioxa-15-oxodispiro[5.1.5.3]hexadec-7-yl-7-oxyl (which has also bulky 

spirocyclohexyl rings at α-positions) decrease rapidly in the presence of ascorbate  
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Figure 4. Structure of α-substituted piperidine nitroxides 

 
a glassy carbon electrode, Ag/AgCl, Pt, sweep rate: 0.1 V s-1. Potentials were shown as vs. SHE. b anodic 

peak potential. c cathodic peak potential. d E1/2 = (Epa + Epc)/2. e ΔE = Epa –Epc. f The peak currents (ipa and 

ipc) were measured from the respective baseline currents. g The current of the cathodic peak was too low 

to determine the potential value. Adapted with permission from (Yamasaki et al., J Org Chem 

2011;76:435). Copyright (2012) American Chemical Society. 

Table 1. Experimental redox potentials of oxoammonium cation / nitroxide redox couplea  

Nitroxide Epa
b Epc

c E1/2 d ΔEe ipa/ipc
f

1 0.939 0.869 0.904 0.070 2.30 

2 0.926 0.860 0.893 0.065 1.56 

3 0.806 0.747 0.776 0.058 2.64 

      

4 0.878 0.811 0.845 0.067 2.97 

5 1.013 0.874 0.944 0.139 3.29 

6 1.053 0.940 0.997 0.113 3.06 

7a 1.113 -
g
 - - - 

7b 1.019 0.902 0.961 0.117 3.34 

8a 1.303 -
g
 - - - 

8b 1.122 1.012 1.067 0.110 3.51 

8c 1.116 1.020 1.068 0.096 3.65 
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a glassy carbon electrode, Ag/AgCl, Pt, sweep rate: 0.1 V s-1. Potentials were shown as vs. SHE. b anodic 

peak potential. c cathodic peak potential. d E1/2 = (Epa + Epc)/2. e ΔE = Epa –Epc. f The peak currents (ipa and 

ipc) were measured from the respective baseline currents. Adapted with permission from (Yamasaki et 

al., J Org Chem 2011;76:435). Copyright (2012) American Chemical Society.  

Table 2. Experimental redox potentials of nitroxide / deprotonated hydroxylamine redox couplea 

(Kinoshita et al., 2009). This suggests that the electronic environment around the N-O 

moiety also influences its reduction stability. In fact, the rate of reduction of β- or γ-

substituted nitroxides by ascorbate has been reported to be primarily dependent upon their 

structure and correlation with E1/2 (Blinco et al., 2008; Kocherginsky and Swartz, 1995). The 

reactivity of α-substituted nitronyl nitroxides is also dependent upon the electronic 

properties of the substituent groups (Wu et al., 2006). The α-substitution of piperidine 

nitroxide has been reported to change dramatically their redox potentials for one-electron 

oxidation and reduction (Yamasaki et al., 2011). In the oxidation step, electron-donating 

substituents are likely to stabilize oxoammonium cations, and substituents with heteroatoms 

destabilize them because of the electron-withdrawing inductive effect (Fig. 4, Table 1). The 

redox potentials for one-electron reduction are listed in Table 2. The electron-withdrawing 

groups at the α-positions of the piperidine ring destabilize the reduced form of nitroxides, 

whereas electron-donating substituents stabilize them. 

3.4. Structure–reactivity relationships 

As described above, ascorbate can readily convert nitroxides into the corresponding 

hydroxylamines. The reduction rate is correlated with the inductive effects from the β-

position in the piperidine ring and the γ-position in the pyrrolidine ring (Morris et al., 1991). 

Nitroxide Epa
b
 Epc

c
 E

1/2 d ΔE
e
 ipa/ipc

f

1 0.524 -0.371 0.076 0.895 0.20 

2 0.453 -0.401 0.026 0.854 0.20 

3 0.226 -0.298 -0.036 0.524 2.12 

      

4 0.244 -0.141 0.051 0.385 0.99 

5 0.515 -0.364 0.076 0.879 0.09 

6 0.644 -0.386 0.129 1.029 0.19 

7a 0.613 -0.247 0.183 0.860 0.27 

7b 0.585 -0.381 0.102 0.967 0.31 

8a 0.653 -0.357 0.148 1.010 2.18 

8b 0.694 -0.494 0.100 1.189 0.16 

8c 0.416 -0.427 -0.006 0.844 0.22 



 
Nitroxides – Theory, Experiment and Applications 256 

Also, nitroxides with heteroatoms in their ring are unstable for the reduction (Couet et al., 

1985). 

Imidazole, isoindoline and piperidine nitroxides have a common feature: tetraethyl-

nitroxides at α-positions adjacent to the radical moiety have high resistance to reduction by 

ascorbate compared with the widely used tetramethyl-nitroxides (see above). The rate of 

decay of the ESR signals of nitroxides seems to be inversely proportional to the number of 

ethyl groups (Yamasaki et al., 2010). Nitroxides containing four ethyl groups are more 

resistant to the reduction than those with two ethyl groups. The reduction rates of nitroxides 

which have heteroatoms in their spirocyclohexyl ring have been found to be higher than 

tetramethyl nitroxides. Electron-withdrawing groups at spirocyclohexyl rings decrease the 

electron density around the N-O moiety, thereby favoring the reduction reaction. The trend 

of redox potentials for nitroxide reduction from electrochemical experiments is likely to be 

exactly the same as that of the nitroxide reduction rate by ascorbate. The ESR signal decay 

rate and the electromotive force between nitroxide and ascorbate (ΔEN–A) or the change in 

Gibbs free energy (ΔG) demonstrates very good correlations with ΔG in the negative ΔG 

region (r2 = 0.988) (Fig. 5) (Yamasaki et al., 2010). This indicates that reduction of the 

nitroxide by ascorbate occurred spontaneously if the ΔG value is negative, and that the 

reduction is not spontaneous if the ΔG value is positive. The factors influencing the 

reduction process of the nitroxide are dependent not only upon steric hindrances but also on 

redox potentials. The α-substitutions of piperidine nitroxides would be an effective 

approach to control the reactivity of nitroxides as a function of their applications. 

 

Figure 5. Relationship between the rates of decay of ESR signals and ΔG. ΔG was calculated from ΔEN–A 

with use of the standard expression ΔG = −nFΔEN–A, where ΔEN–A is a subtraction of the redox potential 

of ascorbate from that of nitroxides, n is the number of electrons per mole of product, and F is the 

Faraday constant. The correlation coefficient when ΔG was negative was 0.988. Reprinted with 

permission from (Yamasaki et al., J Org Chem 2011;76:435). Copyright (2012) American Chemical 

Society) 

3.5. In vivo evaluation and imaging 

Nitroxides are reduced to mainly the hydroxylamine form in vivo by non-enzymatic 

processes involving gluthathione, the reduced form of nicotinamide adenine dinucleotide 
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phosphate (NADPH), and ascorbic acid. Tetramethyl-nitroxides are widely used as 

biological reporters such as superoxide-dismutase mimics (Krishna et al., 1996), 

antioxidants (Wilcox and Pearlman, 2008) and radiation-protecting agents (Metz et al., 

2004). However, non-specific reactions limit their applications to monitor changes in 

redox status. To increase their general versatility, improvement of the stability of 

nitroxides in vivo is important. 

In general, the stability of nitroxide is reflected by their type of ring, substituent groups, and 

lipophilicity. Piperidine-nitroxides show a short half-life compared with that of pyrroridine-

nitroxides. A typical tetramethyl-piperidine nitroxide, Tempone (oxo-TEMPO), has a short 

life-time (2 min) in blood due to rapid reduction (Ishida et al., 1989; Schimmack et al., 

1976). However, piperidine nitroxides with spirocyclohexyl groups show resistance to 

enzymatic reduction in mouse liver homogenates (Okazaki et al., 2007). Conversely, 

tetraethyl nitroxides show resistance to reduction by ascorbic acid and seem to be stable in 

vivo. In fact, the half-lives of 4-oxo- and 4-hydroxy-2,2,6,6-tetraethyl-piperidine-1-oxyl in the 

mouse tail were 16.4±1.3 min and 20.0±3.0 min, respectively, although that of carbamoyl-

PROXYL was 8.5±2.7 min (Kinoshita et al., 2010). The factor influencing the reactivity of 

nitroxides to reductants is thought to be their redox potential. Also, higher inductive 

substitution constants at the 4-position of piperidine nitroxides were found to confer higher 

rate constants for ascorbic acid reduction, emphasizing the importance of the electronic 

effects of the substituents of nitroxides.  

 

Figure 6. Temporal changes in three-dimensional surface-rendered EPR images (A) and two-

dimensional slice images (B) of TEEPONE in mouse brains. EPR images were obtained 10, 20, 30, and 40 

min after intravenous injection of TEEPONE. (Emoto et al., Free Radic Res 2011;45: 1325, copyright© 

2012, Informa Healthcare. Reproduced with permission of Informa Healthcare) 
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A nitroxide with a long half-life can also be a candidate in vivo imaging agent. In vivo 

evaluations have revealed that tetraethyl-nitroxides have several advantages for application 

as contrast agents for monitoring redox status: non-toxicity, lack of blood pressure-lowering 

effects, and stability in vivo. Recently, it has been reported that the half-life of 4-oxo-2,2,6,6-

tetraethyl-piperidine-1-oxyl (TEEPONE) obtained in mice brains is 81.1±0.7 min, indicating 

that TEEPONE is more stable compared with other nitroxides that are readily converted into 

hydroxylamines in tissues (Fig. 6) (Emoto et al., 2011). The decay rate of TEEPONE has no 

relation with ascorbic acid reduction: this compound can effectively scavenge free radicals 

such as carbon- and oxygen-centered radicals. 

4. Conclusions 

Recently, various types of α-substituted nitroxides have been synthesized and their in vivo 

and in-vitro characteristics evaluated. Introducing α-substituent groups can modify and 

control their nature according to usage as spin probes, antioxidants, and contrast agents. 

Although tetramethyl-nitroxides have been widely used in physiological and biological 

systems, the unique properties of α-substituted nitroxides will extend the possibilities of 

their applications. Development of α-substituted nitroxides creates the possibility of 

expansion of their use in a wide range of fields. 
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