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1. Introduction

This work deals with the Dirichlet problem for some PDEs of second order with non-negative

characteristic form. One main motivation is to study some boundary-value problems for

PDEs of Black-Scholes type arising in the pricing problem for financial options of barrier

type. Barrier options on stocks have been traded since the end of the Sixties and the market

for these options has been dramatically expanding, making barrier options the most popular

ones among the exotic. The class of standard barrier options includes ’in’ barriers and ’out’

barriers, which are activated (knocked in) and, respectively, extinguished (knocked out) if the

underlying asset price crosses the barrier before expiration. Moreover, each class includes

’down’ or ’up’ options, depending on whether the barrier is below or above the current asset

price and thus can be breached from above or below. Therefore there are eight types of

standard barrier options, depending on their ’in’ or ’out’, ’down’ or ’up’, and ’call’ or ’put’

attributes. It is possible to include a cash rebate, which is paid out at option expiration if

an ’in’ (’out’) option has not been knocked in (has been knocked out, respectively) during

its lifetime. One can consider barrier options with rebates of several types, terminal payoffs

of different forms (e.g. power options), more than one underlying assets and/or barriers,

and allow for time-dependent barriers, thus enriching this class still further. On the other

hand, a large variety of new exotic barriers have been designed to accommodate investors’

preferences. Another motivation for the study of such options is related to credit risk theory.

Several credit-risk models build on the barrier option formalism, since the default event can be

modeled throughout a signalling variable hitting a pre-specified boundary value (See [3],[8]

among others). As a consequence, a substantial body of academic literature provides pricing

methods for valuating barrier options, starting from the seminal work of [18], where an exact

formula is offered for a down-and-out European call with zero rebate. Further extensions
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are provided - among others - in [22] for the different types of standard barrier options,

in [16] for simultaneous ’down’ and ’up’ barriers with exponential dependence on time, in

[10] for two boundaries via Laplace transform, in [12] and [7] for partial barrier and rainbow

options, in [17] for multi-asset options with an outside barrier, in [5] in a most comprehensive

setting employing the image solution method. Many analytical formulas for barrier options

are collected also in handbooks (see [11], for example).

For analytical tractability most literature assumes that the barrier hitting is monitored in

continuous time. However there exist some works dealing with the discrete version, i.e.

barrier crossing is allowed only at some specific dates -typically at daily closings. (See [1] and

[15], for a survey). Furthermore, a recent literature relaxes the Brownian motion assumption

and considers a more general Lévy framework. For example, [4] study barrier options of

European type assuming that the returns of the underlying asset follows a Lévy process

from a wide class. They employ the Wiener-Hopf factorization method and elements of

pseudodifferential calculus to solve the related boundary problem. This book chapter adopts

a classical Black-Scholes framework. The problem of pricing barrier options is reducible to

boundary value problems for a PDE of Black-Scholes type and with pre-specified boundaries.

The value at the terminal time T is assigned, specifying the terminal payoff which is paid

provided that an ’in’ option is knocked in or an ’out’ option is not knocked out during its

lifetime. The option holder may be entitled or not to a rebate. From a mathematical point

of view, the boundary condition can be inhomogeneous or homogeneous. While there are

several types of barrier options, in this work we will focus on ’up’ barriers in view of the

relationships between the prices of different types of vanilla options (see [25]). Moreover, the

case of floating barriers of exponential form can be easily accommodated by substitution of the

relevant parameters (see [25], Chapter 11), thus we confine ourselves to the case of constant

barriers. On the other hand, we work within a general framework that allows for multi-asset

options, a generic payoff and rebate. Furthermore, we tackle some regularity questions and

the problem of existence of generalized solutions. In Section 2 the (initial) boundary value

problem is studied in a multidimensional framework generalizing the Black-Scholes equation

and analytical solutions are obtained, while a comparison principle is provided in Section

4. Section 3 presents some applications in Finance: our general setting incorporates several

known pricing expressions and, at the same time, allows to generate new valuation formulas.

Section 5 and the Appendix study the existence and regularity of generalized solutions to the

boundary value problems for a class of PDEs incorporating the Black-Scholes type. We build

on the approach of Oleinik and Radkevič and adapt the method to the PDEs of interest in the

financial applications.

2. Generalizations of the Black-Scholes equation in the multidimensional

case: (initial) boundary value problems

Consider in R1
t × Rn

x the following generalization of the Black-Scholes equation:

Lu = ut +
n

∑
i,j=1

aijxixjuxixj
+

n

∑
i=1

bixiuxi
+ cu = f (t, x), (1)
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where 0 ≤ t ≤ T and xj ≥ 0, 1 ≤ j ≤ n.

This is the Cauchy problem: {
Lu = f (t, x),

u|t=T = u0(x)
, (2)

{
xj ≥ 0, 1 ≤ j ≤ n

0 ≤ t ≤ T

and this is the boundary value problem:

⎧
⎨
⎩

Lu = f

u|t=T = u0(x)

u|xj=aj
= gj(t, x)|xj=aj

, 1 ≤ j ≤ n,

(3)

⎧
⎨
⎩

0 ≤ t ≤ T

0 ≤ xj ≤ aj, aj > 0

1 ≤ j ≤ n

In (1) aij = aji = const, bi = const, c = const and

n

∑
i,j=1

aijξiξ j ≥ c0|ξ|2, c0 = const > 0. (4)

Our first step is to make in the non-hypoelliptic PDE L the change of the space variables:

yj = lnxj, 1 ≤ j ≤ n, τ = T − t ⇒ ∂u

∂t
= − ∂u

∂τ
, yj ∈ R1 (5)

∂u
∂xi

= e−yi ∂u
∂yi

, ∂2u
∂xi∂xj

= e−yi−yj [ ∂2u
∂yi∂yj

− δij
∂u
∂yi

], δij being the Kronecker symbol.

Thus, (1) takes the form:

L̃u = − ∂u

∂τ
+

n

∑
i,j=1

aij
∂2u

∂yi∂yj
+

n

∑
i=1

∂u

∂yi
(bi − aii) + cu = f , (6)

i.e.
∂u

∂τ
=

n

∑
i,j=1

aij
∂2u

∂yi∂yj
+

n

∑
i=1

b̃i
∂u

∂yi
+ cu − f ; b̃i = bi − aii

In the case (2) we have

{
L̃u = f , 0 ≤ τ ≤ T

u|τ=0 = ũ0(y) = u0(e
y1 , . . . eyn), y ∈ Rn,

(7)

while in the case (3) ⎧
⎪⎨
⎪⎩

L̃u = f , 0 ≤ τ ≤ T

u|τ=0 = ũ0(y)

u|yj=ãj
= gj|yj=ãj

(8)
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Denote D = {0 ≤ τ ≤ T,−∞ < yj ≤ lnaj = ãj, 1 ≤ j ≤ n}, xj = eyj , 1 ≤ j ≤ n ⇒ f (t, x) =

f (T − τ, ey1 , . . . , eyn).

In (6) we make the change of the unknown function u : u = v(τ, y)e∑ αiyi+βτ in (τ, y) ∈ D.

Thus, after standard computations we get:

vτ + βv = ∑
i,j

aijvyiyj
+ ∑

i,j

aij(αivyj
+ αjvyi

)+ (9)

+
n

∑
i=1

b̃ivyi
+

n

∑
i,j=1

aijαiαjv +
n

∑
i=1

b̃iαiv + cv − f e−∑ αiyi−βτ.

Let us take

β = ∑
i,j

aijαiαj + ∑
i

b̃iαi + c (10)

and put f1 = − f e−∑i αiyi−βτ. Put A = (aij)
n
i,j=1, A∗ = A, α = (α1, . . . , αn). Then the scalar

product (Aα,∇yv) = ∑i,j aijαj
∂v
∂yi

= ∑i,j ajiαi
∂v
∂yj

= ∑i,j aijαi
∂v
∂yj

, i.e. we assume that

2(Aα,∇yv) + (b̃,∇yv) = 0 ⇐⇒ (11)

2Aα + b̃ = 0,

where b̃ = (b̃1, . . . , b̃n) is given, detA 	= 0.

In conclusion we solve the algebraic system (11): α = − 1
2 A−1(b̃) and then we define β by (10).

This way (9) takes the form:

vτ =
n

∑
i,j=1

aijvyiyj
+ f1(τ, y) (12)

The Cauchy problem (12) has initial condition

v0(y) = v|τ=0 = ũ0(y)e
− ∑i αiyi ; ũ0 ≡ u0(e

y1 , . . . , eyn), y ∈ Rn.

To find a formula (Poisson type) for the solution of the Cauchy problem (12), v|τ=0 = v0(y)

we must use some auxiliary results from the linear algebra. So let Mu = ∑
n
i,j=1 aijvyiyj

. Then

the change of the independent variables y = Bz ⇐⇒ z = B−1y, B−1 = (βli)
n
l,i=1 leads to

∂2

∂yi∂yj
= ∑

n
k,l=1 βliβkj

∂2

∂zk∂zl
, i.e.

Mu =
n

∑
k,l=1

(∑
i

(∑
j

aijβkj)βli)
∂2u

∂zk∂zl
.

One can easily guess that ∑i(∑j aijβkj)βli = c̃kl are the elements of the matrix B−1 A(B−1)∗ and

of course (B−1)∗ = (B∗)−1. On the other hand consider the elliptic quadratic form (Ax, x) =

(C∗ACy, y) after the nondegenerate change x = Cy. As we know one can find such a matrix

C that

C∗AC = In, (13)
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In being the unit matrix. Put now C = (B−1)∗ ⇒ C∗ = B−1. Then C∗AC = In ⇒
B−1 A(B−1)∗ = In ⇒ Mu = ∑

n
k=1

∂2u
∂z2

k

.

This way the change y = (C−1)∗z ⇒ z = B−1y transforms the Cauchy problem (12) to:

⎧
⎨
⎩

∂v
∂τ = ∑

n
k=1

∂2v
∂z2

k

+ f̃1(τ, z), 0 ≤ τ ≤ T

v|τ=0 = v0((C
−1)∗z) ≡ ṽ0(z), z ∈ Rn.

(14)

The solution of the Cauchy problem (14) is given by the formula

v(τ, z) =
1

(2
√

πτ)n

∫

Rn
ṽ0(λ)e

− |z−λ|2
4τ dλ+ (15)

+
∫

Rn

∫ τ

0

f̃1(Θ, λ)

[2
√

π(τ − Θ)]n
e
− |z−λ|2

4(τ−Θ)dλdΘ,

z ∈ Rn, λ ∈ Rn ⇒ |z − λ|2 = ∑
n
i=1(zi − λi)

2 (see [6] or [21]).

Going back to the old coordinates (τ, x) and the old function u = ve∑ αiyi+βτ, we find

u(t, x)-the solution of (2); t = T − τ, yj = lnxj, z = B−1y = B−1(lnx1, . . . , lnxn); u =

vxα1

1 . . . xαn
n eβ(T−t).

We shall concentrate now on (3), n = 2.

Remark 1. To simplify the things, consider the quadratic form (elliptic) Q = a11ξ2 + 2a12ξη +

a22η2, a11 > 0, a22 > 0, a2
12 − a11a22 < 0, Q = (A(

ξ

η
), (

ξ

η
)).

Then Q = 1
a11

(a11ξ + a12η)2 + bη2; b = a22 − a2
12

a11
> 0. The change

(
x

y

)
=

(√
a11

a12√
a11

0
√

b

)(
ξ

η

)
(16)

leads to Q = x2 + y2. Moreover, the first quadrant ξ ≥ 0, η ≥ 0 is transformed under the linear

transformation with matrix D =

(√
a11

a12√
a11

0
√

b

)
, D−1 =

⎛
⎝

1√
a11

− a12

a11

√
b

0 1√
b

⎞
⎠ into angle between

the rays (straight lines ) l1 :

∣∣∣∣∣
x ≥ 0

y = 0
and l2 :

∣∣∣∣∣
x = a12√

a11
η

y =
√

bη ≥ 0
with opening ϕ0. Evidently,

(D−1)∗AD−1 = I2.

Consequently, the transformation D is not orthogonal for a12 	= 0.

Let us now consider the boundary value problem (8). The above-proposed procedure yields:
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⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vτ = ∑
2
i,j=1 aijvyiyj

+ f1(τ, y)

v|τ=0 = v0(y) = u0(e
y1 , ey2)e−∑ αiyi

v|y1=ã1
= g1(T − τ, ey1 , ey2 )|y1=ã1

e−βτ a−α1

1 e−α2y2 ≡ g̃1(τ, y2)

v|y2=ã2
= g2(T − τ, ey1 , ey2 )|y2=ã2

e−βτ a−α2
2 e−α1y1 ≡ g̃2(τ, y1)

(17)

{
−∞ < yj < lnaj = ãj

0 ≤ τ ≤ T

The change

{
λj = ãj − yj ≥ 0, j = 1, 2

τ = τ
in (17) yields:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ṽτ = ∑
2
i,j=1 aij ṽλiλj

+ f̃1(τ, λ)

ṽ|τ=0 = ṽ0(λ) = v0(ã1 − λ1, ã2 − λ2)e
− ∑

2
i=1 αi(ãi−λi)

ṽ|λ1=0 = g̃1(τ, ã2 − λ2)

ṽ|λ2=0 = g̃2(τ, ã1 − λ1),

(18)

Ω = {0 ≤ τ ≤ T, λj ≥ 0, j = 1, 2}, Ω is a wedge with opening π
2 .

Now we use the linear transformation described in Remark 1, that maps the first quadrant

λ1 ≥ 0, λ2 ≥ 0 onto the angle between the rays l1 and l2 in the plane 0z1z2 and we obtain:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

wτ = wz1z1 + wz2z2 + f (τ, z)

w|τ=0 = w0(z)

w|z1=0 = g̃1(τ, z1), (τ, z) ∈ Ω̃

w|l2
= g̃2(τ, z1, z2)|(z1,z2) ∈ l2,

(19)

l1 :

{
z1 = 0

z2 = λ2√
b

, l2 :

{
z1 = λ1√

a11

z2 = −a12√
ba11

λ1
, Ω̃ is a wedge with opening ϕ0, i.e. Ω̃ = [0, T] × Γ, Γ

being the interior of the angle between l1, l2.

In fact, λ = Bz ⇐⇒ z = B−1λ and B−1A(B−1)∗ = I2 implies that ∑
2
i,j=1 aij

∂2

∂λi∂λj
is

transformed in ∂2

∂z2
1

+ ∂2

∂z2
2
. According to Remark 1: (D−1)∗AD−1 = I2. Taking B−1 = (D−1)∗,

i.e. B = D∗ we obtain that {λ1 ≥ 0, λ2 ≥ 0} is mapped onto the angle ϕ0 between the rays

l1, l2. Of course, there are three possibilities: ϕ0 = π
2 , 0 < ϕ0 < π

2 , π
2 < ϕ0 < π.

From now on we shall make polar coordinates change in (19):

{
z1 = rcosϕ

z2 = rsinϕ
and to fix the

ideas let 0 < ϕ0 < π
2 ,

{
r ≥ 0
π
2 − ϕ0 ≤ ϕ ≤ π

2

, ϕ0 is the angle between l2 and l1.

The new change Φ = ϕ − (π
2 − ϕ0) ⇒ 0 ≤ Φ ≤ ϕ0 and ∂

∂Φ
= ∂

∂ϕ . To simplify the notation

we shall write again (r, ϕ) instead of (r, Φ), 0 ≤ Φ ≤ ϕ0. Thus we have a wedge type
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initial-boundary value problem for (19) with unknown function w(τ, r, ϕ):

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wτ = ∂2w
∂r2 + 1

r
∂w
∂r + 1

r2
∂2w
∂ϕ2 + f (τ, r, ϕ)

w|τ=0 = w0(r, ϕ)

w|ϕ=0 = ˜̃g1(τ, r)

w|ϕ=ϕ0 = ˜̃g2(τ, r)

(20)

r ≥ 0, 0 ≤ ϕ ≤ ϕ0, l1 : {ϕ = 0, r ≥ 0}, l2 : {ϕ = ϕ0, r ≥ 0}, r ↔ ξ, ϕ ↔ η, 0 ≤ Θ ≤ τ,

0 ≤ ξ ≤ ∞, 0 ≤ η ≤ ϕ0, 0 < ϕ0 < π. Then

w(τ, r, ϕ) =
∫ τ

0

∫ ϕ0

0

∫ ∞

0
f (Θ, ξ, η)G(r, ϕ, ξ, η, τ − Θ)ξdξdηdΘ+ (21)

+
∫ τ

0

∫ ∞

0
˜̃g1(Θ, ξ)

1

ξ
[

∂

∂η
G(r, ϕ, ξ, η, τ − Θ)]η=0dξdΘ−

−
∫ τ

0

∫ ∞

0
˜̃g2(Θ, ξ)

1

ξ
[

∂

∂η
G(r, ϕ, ξ, η, τ − Θ)]η=ϕ0 dξdΘ+

+
∫ ϕ0

0

∫ ∞

0
w0(ξ, η)G(r, ϕ, ξ, η, τ)ξdξdη,

where G(r, ϕ, ξ, η, τ) = 1
ϕ0τ e−

(r2+ξ2)
4τ ∑

∞
n=1 I nπ

ϕ0
( rξ

2τ )sin nπ
ϕ0

ϕsin nπ
ϕ0

η and the modified Bessel

function w = Iν(z) satisfies the equation:

z2 d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0, ν ≥ 0, (22)

Iν(z) = ∑
∞
m=0

( z
2
)2m+ν

m!Γ(m+ν+1)
(see [2]).

Remark 2. One can see that limτ→+0

∫ ϕ0

0

∫ ∞

0 w0(ξ, η)G(r, ϕ, ξ, η, τ)ξdξdη = w0(r, ϕ), i.e.

formally limτ→+0ξG(r, ϕ, ξ, η, τ) = δ(r − ξ, ϕ − η) in the sense of Schwartz distributions

D
′
(R1

+ × [0, ϕ0]), R+ = {ξ ≥ 0}. G is the corresponding Green function.

Formula (21) is given in [21], pages 182 and 166 or in [6], pp.498. The proof of (21) is based on

the properties of the Bessel functions and Hankel transform.

Remark 3. In the special case when a12 = 0 in (16) we obtain (18) and after the change τ = τ,

λj =
√

ajjzj, 1 ≤ j ≤ 2 (18) takes the form:

∣∣∣∣∣∣∣∣∣∣∣∣

∂ ˜̃v
∂τ = ∂2 ˜̃v

∂z2
1

+ ∂2 ˜̃v
∂z2

2
+ ˜̃f1(τ, z)

˜̃v|τ=0 = ˜̃v0(z)

˜̃v|z1=0 = ˜̃g1(τ, z2)

˜̃v|z2=0 = ˜̃g2(τ, z1)

(23)
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0 ≤ τ ≤ T, zj ≥ 0, 1 ≤ j ≤ 2. Certainly, ϕ0 = π
2 .

According to [21]:

˜̃v(τ, z) =
∫ τ

0

∫ ∞

0

∫ ∞

0

˜̃f1(Θ, ξ, η)G(τ − Θ, z1, z2, ξ, η))dξdηdΘ+ (24)

+
∫ ∞

0

∫ ∞

0
˜̃v0(ξ, η)G(τ, z1, z2, ξ, η)dξdη+

+
∫ τ

0

∫ ∞

0
˜̃g1(Θ, η)[

∂

∂ξ
G(τ − Θ, z1, z2, ξ, η)]ξ=0dηdΘ+

+
∫ τ

0

∫ ∞

0
˜̃g2(Θ, ξ)[

∂

∂η
G(τ − Θ, z1, z2, ξ, η)]η=0dξdΘ,

where the Green function G(τ, z1, z2, ξ, η) = 1
4πτ [e

− (z1−ξ)2

4τ − e−
(z1+ξ)2

4τ ]× [e−
(z2−η)2

4τ − e−
(z2+η)2

4τ ].

3. Applications to financial options and numerical results via CNN

Here the analysis of Section 2 is applied to some problems arising in option pricing theory.

Some known pricing formulas are revisited in a more general setting and some new results

are offered. We apply Cellular Neural Networks (CNN) approach [24] in order to obtain some

numerical results. Let us consider a two-dimensional grid with 3 × 3 neighborhood system as

it is shown on Figure 1.

(1, 1)

(2, 1)

(1, 2)

(2, 2)

(1, 3)

(2, 3)

(3, 1) (3, 2) (3, 3)✲✛✲✛

✲✛ ✲✛

❄

✻

❄

✻

❄

✻

❄

✻

❄

✻

❄

✻

❅
❅
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❅
❅■

	
	
	✒	
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❅❘❅
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Figure 1. 3 × 3 neighborhood CNN.

[htb] One of the key features of a CNN is that the individual cells are nonlinear dynamical

systems, but that the coupling between them is linear. Roughly speaking, one could say

that these arrays are nonlinear but have a linear spatial structure, which makes the use of

techniques for their investigation common in engineering or physics attractive.

We will give the general definition of a CNN which follows the original one:
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Definition 1. The CNN is a

a). 2-, 3-, or n- dimensional array of

b). mainly identical dynamical systems, called cells, which satisfies two properties:

c). most interactions are local within a finite radius r, and

d). all state variables are continuous valued signals.

Definition 2. An M × M cellular neural network is defined mathematically by four specifications:

1). CNN cell dynamics;

2). CNN synaptic law which represents the interactions (spatial coupling) within the neighbor cells;

3). Boundary conditions;

4). Initial conditions.

Now in terms of definition 2 we can present the dynamical systems describing CNNs. For
a general CNN whose cells are made of time-invariant circuit elements, each cell C(ij) is
characterized by its CNN cell dynamics :

ẋij = −g(xij, uij, Is
ij), (25)

where xij ∈ Rm, uij is usually a scalar. In most cases, the interactions (spatial coupling) with
the neighbor cell C(i + k, j + l) are specified by a CNN synaptic law:

Is
ij = Aij,klxi+k,j+l + (26)

+ Ãij,kl ∗ fkl(xij, xi+k,j+l) +

+ B̃ij,kl ∗ ui+k,j+l(t).

The first term Aij,klxi+k,j+l of (26) is simply a linear feedback of the states of the neighborhood
nodes. The second term provides an arbitrary nonlinear coupling, and the third term accounts
for the contributions from the external inputs of each neighbor cell that is located in the Nr

neighborhood.

It is known [24] that some autonomous CNNs represent an excellent approximation to
nonlinear partial differential equations (PDEs). The intrinsic space distributed topology
makes the CNN able to produce real-time solutions of nonlinear PDEs. There are several
ways to approximate the Laplacian operator in discrete space by a CNN synaptic law with an

appropriate A-template:

- one-dimensional discretized Laplacian template:

A1 = (1,−2, 1),

- two-dimensional discretized Laplacian template:

A2 =

⎛
⎝

0 1 0
1 −4 1
0 1 0

⎞
⎠ .
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Example 1 (Single-asset inside barrier options) The case of single-barrier zero-rebate
down-and-out options was already priced in [18], while the case with rebate is found in [22]. A
simple method for obtaining analytical formulas for barrier options is the reflection principle
that has a long history in Physics and is commonly used in Finance. Here we write down
the pricing formula for a general payoff and rebate and study its analytical properties. Let us
consider the following boundary value problem:

⎧
⎨
⎩

Lu = 0 in Ω = {(t, S); 0 < t < T, 0 < S < S∗}
u|t=T = u0(S), 0 ≤ S ≤ S∗

u|S=S∗ = g(t), 0 ≤ t ≤ T

where L = ∂t + rS∂S +
1
2 σ2S2∂2

S − r , u0 and g are continuous and u0(S
∗) = g(T). Using the

notation of Section 2 and taking α = 1
2 − r

σ2 , β = −r
[

1
2 + r

σ2

]
, C =

√
2

σ we straightforwardly

obtain the following pricing formula (after changing to variables σ√
2

λ = ln S∗ − ξ):

u(t, S) =

(
S

S∗

)α eβ(T−t)
√

2πσ
[

1√
(T − t)

∫ +∞

0
u0(S

∗e−ξ)eαξ× (27)

×[exp(− [ln(S/S∗) + ξ]2

2σ2(T − t)
)− exp(− [ln(S/S∗)− ξ]2

2σ2(T − t)
)]dξ+

+ ln
S∗

S

∫ T−t

0

g(T − s)

(T − t − s)3/2
e−

βσ2s
2 exp(− ln2(S/S∗)

2σ2(T − t − s)
)ds]

Let us study the properties of u(t, S) analytically. Without loss of generality we can assume

S∗ = 1 and therefore e−β(T−t)u(t, S) = ũ(t, S) is written in the form I1 + I2 + I3 with:

I1(τ, y) =
−yeαy

2
√

π

∫ τ
0

g(T− 2γ

σ2 )

(τ−γ)3/2 e−
βγ

exp(− y2

4(τ−γ)
)dγ

I2(τ, y) = eαy

2
√

πτ

∫ +∞

0 u0(e
−ξ)eαξ exp(− [y+ξ ]2

4τ )dξ

I3(τ, y) = − eαy

2
√

πτ

∫ +∞

0 u0(e
−ξ)eαξ exp(− [y−ξ ]2

4τ )dξ

where y = ln S and τ = σ2

2 (T − t). We shall examine the asymptotics of ṽ(τ, y) = ũ(t, S) for

0 < τ < σ2

2 T (i.e. 0 < t < T) fixed and for y −→ −∞ (i.e. S → 0+). Put h(ξ) = u0(e
−ξ), ξ ≥ 0.

Then:

I2(τ, y) = eτα2

2
√

πτ

∫ +∞

0 h(ξ) exp(− [y+ξ−2ατ]2

4τ )dξ = eτα2

√
π

∫ +∞
y−2ατ

2
√

τ

h(−y + 2aτ + 2η
√

τ)e−η2
dη.

According to Lebesgue’s dominated convergence theorem, since limy−→−∞h(−y + 2aτ +

2η
√

τ) = u0(0) for each fixed η and τ, one has limy−→−∞ I2(τ, y) = eτα2
u0(0). On the other

hand:

|I3(τ, y)| ≤ const
2
√

πτ

∫ +∞

0 eα(y+ξ)(− (ξ−y)2

4τ )dξ =

=const.eτα2 ∫ +∞
−y+2ατ

2
√

τ

exp[−μ2 + 2αy − 4τα2 + 2αμ
√

τ]dμ =

=const.e2αy−2τα2 ∫ +∞
−y

2
√

τ

e−ε2
dε.
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Thus, for fixed τ, 0 < τ <
σ2

2 T, and y << −1, we have

|I3(τ, y)| ≤const.e2αy−2τα2
√

τ
−y e−

y2

4τ , which implies that limy−→−∞ I3(τ, y) = 0. Finally, we

observe that:

|I1(τ, y)| ≤ max|g|
2
√

π
|y| eαy

∫ τ
0

e−
βτ

(τ−γ)3/2 exp(− y2

4(τ−γ)
)dγ as β ≤ 0 implies 0 ≤ −βγ ≤ −βτ. The

change θ =
−y

2
√

τ−γ
yields

|I1(τ, y)| ≤const.eαy
∫ +∞

−y

2
√

τ

e−θ2
dθ, that is

|I1(τ, y)| ≤const.eαy 2
√

τ√
π|y| e

− y2

4τ for y −→ −∞, τ fixed. Therefore we get:

limS−→0+u(t, S) = u0(0)e
−r(T−t), 0 < t < T.

Remark 4. Assume that u ∈ C2(Ω). Then, putting S = 0, U(t) = u(t, 0), we get U′(t) = rU,

U(T) = u0(0). Evidently, U(t) = u0(0)e
−r(T−t) is the only solution of that Cauchy problem.

So u |Σ0
, with Σ0 =

{
0 < t < T, S = 0+

}
, is uniquely determined by u0(0).

For this example our CNN model is the following:

dSij

dt
+ rSij A1 ∗ Sij +

1

2
σ2S2

ij A2 ∗ Sij − r = 0, (28)

where ∗ is the convolution operator [24], M ≤ i, j ≤ M. We shall consider this model with

free-boundary conditions:

uij(x, t) = x − k,
∂uij(x, t)

dt
= +1,

uij(x, t) = k − x,
∂uij(x, t)

dt
= −1.

These are classical first-order contact free-boundary conditions for obstacle problems.

Based on the above CNN model (28) we obtain the following simulations for different values

of the parameters:

Example 2. (Multi-asset option with single barrier) Analytic valuation formulas for standard

European options with single external barrier have been provided in Heynen-Kat (1994),

Kwok-Wu-Yu (1998) and Buchen (2001). Here we give a slightly more general formula in that

we allow for any payoff and for both an internal and an external barrier. We confine ourselves

to the case of an upstream barrier and zero rebate for simplicity of exposition. Consider the

following boundary value problem in Ω = {(t, S1, S2); 0 < t < T, 0 < S1, 0 < S2 < S∗}:
⎧
⎨
⎩

Lu = 0

u|t=T = u0(S1, S2) 0 ≤ S2 ≤ S∗

u|S2=S∗ = 0 0 ≤ t ≤ T

where L = ∂t + ∑
2
i=1

σ2
i S2

i
2 ∂2

Si
+ ρσ1σ2S1S2∂2

S1S2
+ r ∑

2
i=1 Si∂Si

− r , u0 is continuous and

u0(S1, S∗) = 0. Assume that σ1, σ2 > 0, ρ2 < 1. Using the notation of Section 2 and
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(a) (b)

Figure 2. CNN simulations for Example 1. (a) r = 1, 1 ≤ t ≤ 30, σ = 1; (b) r = 0.5, 1 ≤ t ≤ 30, σ = 1.5 .

taking μi = r − σ2
i

2 for i, j = 1, 2, we have αi =
−μi+ρμjσi/σj

σ2
i (1−ρ2)

for i, j = 1, 2 and i 	= j,

β = ∑i,j=1,2
σiσj

2 αiαj + ∑i=1,2 μiαi − r. Then we have the following pricing formula:

u(t, S1, S2) = Sα1

1 Sα2
2

eβτ

4πτ

∫
R2 w0(λ1, λ2) exp[−

∣∣∣∣
√

2 ln S1

σ1

√
1−ρ2

−ρ
√

2 ln S2

σ2

√
1−ρ2

−λ1

∣∣∣∣
2

4τ ]{
exp[− (

√
2 ln S2/σ2−λ2)2

4τ ]− exp[− (
√

2 ln S2 /σ2+λ2)2

4τ ]
}

dλ1dλ2

where

w0(λ1, λ2) = exp[− α1σ1√
2
(λ1

√
1 − ρ2 + ρλ2) − α2σ2√

2
λ2]u0(

σ1√
2
(λ1

√
1 − ρ2 + ρλ2),

σ2λ2√
2
)1λ2

<
√

2 ln S∗
σ2

.

Splitting the integral into two integrals and changing to variables η1 =
λ1

√
1−ρ2+ρλ2−

√
2 ln S1

σ1

√
2τ

,

η2 = λ2−
√

2 ln S2

σ2

√
2τ

(η2 = λ2+
√

2 ln S2

σ2

√
2τ

) in the first (second) integral, one gets:

u(t, S1, S2) = I1 − I2

where

I1 = eβτ

2π
√

1−ρ2

∫ +∞

−∞

∫ ln(S∗/S2)

σ2
√

τ

−∞ exp[−(α1σ1η1 + α2σ2η2)
√

τ]u0(S1eσ1

√
τη1 , S2eσ2

√
τη2 )

exp[− (η1−ρη2)2

2(1−ρ2)
− η2

2
2 ]dη1dη2

I2 = S2eβτ

2π
√

1−ρ2

∫ +∞

−∞

∫ ln(S∗/S2)

σ2
√

τ

−∞ exp[−(α1σ1η1 + α2σ2η2)
√

τ]u0(S1eσ1

√
τη1 , S−1

2 eσ2

√
τη2 )

exp[− (−η1+ρη2−2ρ ln S2/(σ2

√
τ))2

2(1−ρ2)
− η2

2
2 ]dη1dη2.

Note that (β + r)(1 − ρ2) +
μ2

1

2σ2
1
+

μ2
2

2σ2
2
− ρ

μ1μ2

σ1σ2
= 0. Then the first integral (after changing to

variables X1 = −η1 +
μ1

σ1

√
τ, X2 = η2 − μ2

σ2

√
τ) is written in the form:
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I1 = e−rτ

2π
√

1−ρ2

∫ +∞

−∞

∫ − ln(S2/S∗)+μ2τ

σ2
√

τ

−∞ exp[− 1
2(1−ρ2)

(X2
1 + X2

2 + 2ρX1X2)]u0(S1eμ1τ−σ1

√
τX1 ,

S2eμ2τ+σ2

√
τX2 )dX1dX2.

Changing to the variables X1 = −η1 +
μ1

σ1

√
τ − 2ρ ln S2

σ2

√
τ

, X2 = η2 − μ2

σ2

√
τ, the second integral

becomes:

I2 = e−rτ

2π
√

1−ρ2
(S2)

− 2μ2
σ2

2

∫ +∞

−∞

∫ ln(S2S∗)−μ2τ

σ2
√

τ

−∞ exp[− 1
2(1−ρ2)

(X2
1 + X2

2 + 2ρX1X2)]

u0(S1S
−2ρ

σ1
σ2

2 eμ1τ−σ1

√
τX1 , S−1

2 eμ2τ+σ2

√
τX2 )dX1dX2.

In the special case of standard options one has: u0(S1, S2) = max(ω(S1 − K), 0), ω = ±1.

Then I1 can be written in the form:

ωS1N2(ωd+, e+;−ρω)− ωKe−rτN2(ωd−, e−;−ρω)

where N2 is the bivariate cumulative normal distribution function, d± =
ln(

S1
K )+(r± σ2

1
2 )τ

σ1

√
τ

, e− =

− ln(
S2
S∗ )+μ2τ

σ2

√
τ

, e+ = e− − ρσ1
√

τ. Similarly I2 is written in the form:

ωe
−2

μ2
σ2

2
ln(

S2
S∗ )

[e
−2ρ

σ1
σ2

ln(
S2
S∗ )S1N2(ωd̂+, ê+;−ρω)− Ke−rτN2(ωd̂−, ê−;−ρω)

where d̂± = d± − 2ρ

σ2

√
τ

ln( S2
S∗ ), ê± = e± + 2

σ2

√
τ

ln( S2
S∗ ).

Simulating CNN for multi-asset option with single barrier model, we obtain the following

figure with different values of the parameter set:

(a) (b)

Figure 3. CNN simulations for Example 2. (a) r = 1, T = 60 days, σ = 1, ρ = 0.05; (b) r = 0.5, T = 120
days, σ = 1.5, ρ = 0.06 .

Example 3. (Two-asset barrier options with simultaneous barriers) While single-asset barrier

options have received substantial coverage in the literature, multi-asset options with several

barriers have been discussed only in some special cases (e.g. sequential barriers, radial
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options, etc.). Here we show how the case of two simultaneous barriers can be valued

straightforwardly from the arguments in Section 2. Let us confine ourselves to zero-rebate

options for simplicity’s sake, although Section 2 deals with the general case too. Then the

boundary value problem takes the form:

⎧
⎪⎨
⎪⎩

Lu = 0 in Ω

u|t=T = u0(S1, S2)

u|S1=S∗
1
= 0 and, u|S2=S∗

2
= 0 0 ≤ t ≤ T

where L = ∂t + ∑
2
i=1

σ2
i S2

i
2 ∂2

Si
+ ρσ1σ2S1S2∂2

S1S2
+ r ∑

2
i=1 Si∂Si

− r, Ω = {(t, S1, S2); 0 < t <

T, 0 < S1 < S∗
1 , 0 < S2 < S∗

2}. Arguing as in the last part of Section 2 and taking

D =

(
σ1 ρσ2

0
√

1 − ρ2σ2

)
, ρ2 < 1, σ1 > 0, σ2 > 0

and ϕ0 as the opening of the angle between

{
x ≤ 0

y = 0
and

{
x = ρσ2η, η ≥ 0

y =
√

1 − ρ2σ2η
, from (21) we

have

w(τ, r, ϕ) =
∫ ϕ0

0

∫ ∞

0
w0(ξ, η)G(r, ϕ, ξ, η, τ)ξdξdη, (29)

where G(r, ϕ, ξ, η, τ) = 1
ϕ0τ e−

(r2+ξ2)
4τ ∑

∞
n=1 I nπ

ϕ0
( rξ

2τ )sin nπ
ϕ0

ϕsin nπ
ϕ0

η and Iv is the modified Bessel

function satisfying (22). Here w0(r, ϕ) = ṽ0(D
∗z) |z1=r cos ϕ,z2=r sin ϕ where ṽ0(λ) =

u0(S
∗
1e−λ1 , S∗

2e−λ2)e−Σαi(ln S∗
i −λi). Changing back the variables one obtains u(t, S1, S2).

Simulating CNN for two-asset barrier options with simultaneous barriers model, we obtain

the following figure with different values of the parameter set:

(a) (b)

Figure 4. CNN simulations for Example 3. (a) r = 1, T = 120 days, σ = 1, ρ = 0.05; (b) r = 0.5, T = 180
days, σ = 1.5, ρ = 0.06 .
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4. Comparison principle for multi-asset Black-Scholes equations

For the sake of simplicity consider

ut +
2

∑
i,j=1

aijxixjuxixj
+

2

∑
i=1

bixiuxi
+ cu = f , (30)

where (aij)
∗ = (aij), (aij) > 0, aij, bi, c are real constants and c < 0 in the domain

D :

{
0 < t < T

0 < xj < aj,
j = 1, 2

}
, aj = const > 0. The boundary of the parallelepiped D is split

into two parts: Parabolic Γ = {x1 = a1, 0 < x2 < a2, 0 < t < T} ∪ {x2 = a2, 0 < x1 < a1, 0 <

t < T} ∪ {t = T, 0 < xj < aj, j = 1, 2} and free of boundary data part Γ1 = I ∪ I I ∪ I I I,

where I = {0 < xj < aj, j = 1, 2; t = 0}, I I = {x1 = 0, 0 < x2 < a2, 0 < t < T},

I I I = {x2 = 0, 0 < x1 < a1, 0 < t < T}. The Dirichlet data are prescribed on Γ:

u|Γ = g (31)

Theorem 1. (Comparison principle)

Assume that u is a classical solution of (30), (31), i.e. u ∈ C2(D ∪ Γ̄1) ∩ C0(D̄). Let v be another

solution of (30), (31) belonging to C2(D ∪ Γ̄1) ∩ C0(D̄). Suppose that u|Γ ≤ v|Γ. Then u ≤ v

everywhere in D̄.

Proof. Put w = u − v. Assume that max w = w(t0, x0) = M > 0, P0 = (t0, x0) ∈ D̄. Evidently,

(t0, x0) ∈ D ∪ Γ1 as w|Γ ≤ 0.

Case a). (t0, x0) ∈ D. Having in mind that ∑ aijxixjwxixj
is a strictly elliptic operator in

the open rectangle {0 < xj < aj, j = 1, 2} we shall apply the interior parabolic maximum

principle ( see A.Friedman, Partial Differential equations of parabolic type, Prentice Hall, Inc.

(1964), Chapter II). To do this we shall work in the domain D1 :

{
0 < t < T

0 < ε j < xj < aj, j = 1, 2

}
,

such that x0 ∈ Π = (ε1, a1) × (ε2, a2), 0 < t0 < T. Then Th1 from Chapter II of the above

mentioned book gives: w ≡ M > 0 for T ≥ t ≥ t0, x ∈ Π̄ and this is a contradiction with

w ≤ 0 on t = T.

Case b). (t0, x0) ∈ I ⇒ t0 = 0, (1)

{
0 < x10 < a1

0 < x20 < a2
, (2)

{
0 < x10 < a1

x20 = 0
, (3)

{
x10 = 0

x20 = 0
and

a similar case with respect to x20 ∈ [0, a2), x10 = 0. Thus,

b). (1) x0 is interior point of (0, a1) × (0, a2) and therefore ∂w
∂xj

(P0) = 0, j = 1, 2, while

∑
2
i,j aijxi0xj0

∂2w
∂xi∂xj

(P0) ≤ 0 as it is shown in Friedman book. Obviously, wt(P0) ≤ 0, as

w(0, x0) = M = maxD̄w. As we know, (30) is satisfied on I ⇒ ∑
2
1 aijxi0xj0

∂2w
∂xi∂xj

(P0)+ cw(P0)+

wt(P0) = 0 -contradiction with c < 0, w(P0) > 0.

b). (2) Again wt(P0) ≤ 0 and wx1(P0) = 0, wx1x1 (P0) ≤ 0 as P0 is interior point for the interval

(0, a1). According to (30) : a11x2
10

∂2w
∂x2

1

(P0) + b1
∂w
∂x1

(P0) + cw(P0) + wt(P0) = 0 → contradiction.
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b). (3) Then (30) takes the form: cw(P0) + wt(P0) = 0 - contradiction.

Case c). (t0, x0) ∈ I I ⇒ 0 ≤ t0 < T, x10 = 0; (1)

{
0 < t0 < T

0 < x20 < a2
, (2)

{
t0 = 0

0 < x0
2 < a2

,

(3)

{
t0 = 0

x0
2 = 0

, (4)

{
T > t0 > 0

x0
2 = 0

.

Certainly, wt(P0) ≤ 0 in each case (1) -(4).

c). (1) As P0 is interior point in the rectangle {0 < t < T} × {0 < x2 < a2} ⇒ wt(P0) = 0,

wx2(P0) = 0, wx2x2 (P0) ≤ 0. According to (30) a2x2
20wx2x2(P0) + b2x20wx2(P0) + cw(P0) +

wt(P0) = 0 - contradiction.

c). (2) As x0
2 ∈ (0, a2) ⇒ wx2(P0) = 0, wx2x2(P0) ≤ 0. The contradiction is obvious.

c). (3) The equation (30) takes the form:

cw(P0) + wt(P0) = 0 (32)

and again a contradiction.

c). (4). Then wt(P0) = 0 and according to (30) cw(P0) + wt(P0) = 0 - contradiction.

We conclude that M = supD̄w ≤ 0 ⇒ u − v ≤ 0 in D̄ ⇒ u ≤ v in D̄.

The comparison principle is proved.

Remark 5. The operator

Lu = ut +
n

∑
i,j=1

aijxixjuxixj
+

n

∑
i=1

bixiuxi
+ cu

is non-hypoelliptic. The constants aij, bi, c are arbitrary. To verify this we recall that the

function sa
+ =

{
sa, s > 0

0, s ≤ 0
considered as a Schwartz distribution in D

′
(R1) satisfies for Re a >

1 the following identities:

ssa
+ = sa+1

+ ,
d

ds
sa
+ = asa−1

+ ,
d2

ds2
sa
+ = a(a − 1)sa−2

+ .

Consider now the distribution u = eλtu1(x1)
⊗

. . .
⊗

un(xn), where λ = const, uj(xj) = x
dj

j ∈
D

′
(R1

xj
), Redj > 1. Then u ∈ D

′
(Rn+1) satisfies in distribution sense Lu = 0 if

λ +
n

∑
i 	=j

aijdidj +
n

∑
i=j

aiidi(di − 1) +
n

∑
i=1

bidi + c = 0

Of course, sing supp u = ∂{x ∈ Rn : xj ≥ 0, 1 ≤ j ≤ n}, i.e. sing supp u is the boundary of

the first octant of Rn
x multiplied by R1

t . The nonhypoellipticity is proved. Evidently, under (4)

L is hypoelliptic in the open domain {xj > 0, 1 ≤ j ≤ n} as it is strictly parabolic there.
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5. The approach of Fichera-Oleinik-Radkevič

In this section we revise the results of [9] and [20] for the Dirichlet problem for PDEs of second

order having non-negative characteristic form; then the method is applied to some PDEs of

Black-Scholes type.

To begin with consider the following equation in a bounded domain Ω ⊂ Rm with piecewise

smooth boundary Σ:

L(u) = ∑
k,j=1,...,m

akj(x)uxkxj
+ ∑

k=1,...,m

bk(x)uxk
+ c(x)u = f (x) (33)

where ∑k,j=1,...,m akj(x)ξkξ j ≥ 0 , ∀x ∈ Ω, ∀ξ ∈ Rm; akj(x) = ajk(x), ∀x ∈ Ω. Moreover,

akj ∈ C2(Ω), bk ∈ C1(Ω), c ∈ C0(Ω). Denote the unit inner normal to Σ by −→n = (n1, ..., nm)

and let Σ3 =
{

x ∈ Σ; ∑k,j=1,...,m akj(x)nknj > 0
}

be the non-characteristic part of Σ. Define

Σ0 =
{

x ∈ Σ; ∑k,j=1,...,m akj(x)nknj = 0
}

, i.e. Σ = Σ0 ∪ Σ3 and Σ0 is the characteristic part of

Σ. Following Fichera (1956) we introduce on Σ0 the Fichera function:

β(x) = ∑
k=1,...,m

(bk(x)− ∑
j=1,...,m

a
kj
xj
(x))nk, x ∈ Σ0 (34)

Then we split Σ0 into three parts, namely

Σ1 =
{

x ∈ Σ0; β(x) > 0
}

,

Σ2 =
{

x ∈ Σ0; β(x) < 0
}

,

Σ0 =
{

x ∈ Σ0; β(x) = 0
}

.

As it is proved in Oleinik and Radkevič (1971) the sets Σ0, Σ1, Σ2, Σ3 are invariant under

smooth non-degenerate changes of the variables. More precisely, let L(u) = f in Ω; after the

change y = F(x) it takes the form L̃(ũ) = f̃ in Ω̃. Denote the Fichera function for L̃(ũ) = f̃ by

β̃. Then β̃ = β.A where A > 0 and A is continuous.

Assume now that u ∈ C2(Ω) and v ∈ C∞
0 (Ω). Then

∫
Ω

L(u)vdx =
∫

Ω
uL∗(v)dx,

where

L∗(v) = ∑
k,j=1,...,m

akj(x)vxk xj
+ ∑

k=1,...,m

b∗k(x)vxk
+ c∗(x)v (35)

and b∗k = 2 ∑j=1,...,m a
kj
xj
− bk, c∗ = ∑k=1,...,m(∑j=1,...,m a

kj
xk xj

− bk
xk
) + c. One can easily see that

if we denote the Fichera function for L∗(v) by β∗, then β∗ = −β and β is defined by (34).

Assume now that u ∈ C2(Ω), u = 0 at Σ2 ∪ Σ3, and define the following set of test functions:

V =
{

v ∈ C2(Ω); v = 0 at Σ1 ∪ Σ3

}
. In view of the Green formula for L we get:

∫

Ω
(L(u)v − L∗(v)u)dx = 0 ⇔

∫

Ω
L(u)vdx =

∫

Ω
uL∗(v)dx (36)
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for any u and v ∈ V . Let us now recall the definitions of generalized solution.

Definition 3. The function u ∈ Lp(Ω), p ≥ 1, is called a generalized solution of the boundary value

problem

{
L(u) = f in Ω

u = 0 at Σ2 ∪ Σ3
(37)

if for each test function v ∈ V the following integral identity holds:

∫

Ω
f vdx =

∫

Ω
uL∗(v)dx. (38)

Theorem 2. (See [20],Th.1.3.1).

Suppose that c < 0, c∗ < 0 in Ω and p > 1. Then for each f ∈ Lp(Ω) there exists a generalized

solution u ∈ Lp(Ω) of (37) in the sense of (38) and such that

inf
u0∈Z

‖u + u0‖Lp(Ω) ≤ K ‖ f ‖Lp(Ω) (39)

K = const > 0. The set Z =
{

u0 ∈ Lp(Ω) :
∫

Ω
u0L∗(v)dx = 0, ∀v ∈ V

}
.

Theorem 3. (See [20], Th. 1.3.2).

Let c < 0 in Ω, 1
p + 1

q = 1 and −c + (1 − q)c∗ > 0 in Ω. Then for each f ∈ Lp(Ω) there exists a

generalized solution u of (37) satisfying the a-priori estimate (39).

Theorem 4. (See [20], Th. 1.3.3).

Let c∗ < 0 in Ω and −c + (1 − q)c∗ > 0 in Ω, 1
p + 1

q = 1. Then for each f ∈ Lp(Ω) there exists a

generalized solution u of (37) satisfying the estimate (39).

Conclusion. Assume that c < 0. Then (37) is solvable in the sense of Definition 1 for p >> 1

as p → +∞ ⇒ q → 1. On the other hand, c∗ < 0 implies the solvability of (40) for p ≥ 1, p ≈ 1

as p → 1 ⇒ q → +∞.

We shall now discuss the problem for existence of a generalized solution of (37) in the Sobolev

space H1(Ω) with an appropriate weight. Define the following set of test functions:

W = {v ∈ C1(Ω); v |Σ3
= 0}

and equip W with the scalar product: (u, v)H =
∫

Ω
(∑k,j akjuxj

vxk
+ uv)dx +∫

Σ1∪Σ3
uv |β| dσ. The completion of W with respect to the norm ‖u‖H is a real Hilbert space

denoted by H. For each two functions u, v ∈ W we consider the bilinear form B(u, v) =

−
∫

Ω
[∑k,j akjuxj

vxk
+ ∑k(u�

kvxk
+ (�k

xk
− c)uv)]dx −

∫
Σ1

uvβdσ, where lk = bk − ∑j a
kj
xj

.

According to the Cauchy-Schwartz inequality |B(u, v)| ≤ const[‖v‖H1(Ω) + ‖v‖L2(Σ1)
] ‖u‖H .

Therefore, B(u, v) is well defined for v ∈ W and u ∈ H.

Definition 4. Let f ∈ L2(Ω). We shall say that the function u ∈ H is a generalized solution of (37)

if for each v ∈ W the following identity is satisfied:
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∫

Ω
v f dx = B(u, v). (40)

Theorem 5. (See [20], Th. 1.4.1).

Assume that f ∈ L2(Ω) and 1
2 ∑k(b

k
xk
− ∑j a

kj
xkxj

) − c ≥ c0 > 0 in Ω. Then the boundary value

problem (37) possesses a generalized solution u ∈ H (i.e. a weak solution) in the sense of (40).

Finally we propose the existence of a generalized solution of (37) in the space L∞(Ω). To fix

the ideas we assume that the coefficients of L and L∗ belong to C1(Ω) and Σ is thrice piecewise

smooth (i.e. Σ can be split into several parts and each of them is C3 smooth). Consider the

boundary value problem: {
L(u) = f in Ω

u = g on Σ2 ∪ Σ3
(41)

If u ∈ C2(Ω) is a classical solution of (41) and v ∈ V then according to the Green formula

∫

Ω
L∗(v)udx =

∫

Ω
f vdx −

∫

Σ3

g
∂v

∂−→ν dσ +
∫

Σ2

βgvdσ, (42)

where −→ν = (ν1, . . . , νm), νk = ∑j akjnj,
∂

∂−→ν = ∑k νk
∂

∂xk
.

Definition 5. We shall say that the function u ∈ L∞(Ω) is a generalized solution of (41) if for each

test function v ∈ V the identity (42) is fulfilled.

We point out that f ∈ L∞(Ω) and g ∈ L∞(Σ2 ∪ Σ3).

Theorem 6. (See [20], Th. 1.5.1).

Assume that the coefficient c(x) of L is such that c(x) ≤ −c0 < 0 in Ω, f ∈ L∞(Ω), g ∈ L∞(Σ2 ∪
Σ3) and β(x) ≤ 0 in the interior points of Σ2 ∪ Σ0. Then there exists a generalized solution of (41) in

the sense of Definition 5. Moreover, |u(x)| ≤ max(sup
| f |
c0

, sup |g|).

Remark 6. In Th.6 it is assumed that ∑k,j=1,...,m akj(x)ξkξ j ≥ 0 in an m−dimensional

neighbourhood of Σ0, ∀ξ ∈ Rm.

Theorem 7. (See [20], Th. 1.5.2).

Suppose that g is continuous in the interior points of Σ2 ∪ Σ3. Then the generalized solution u of (41)

constructed in Th. 6 is continuous at those points and, moreover, u = g there.

As we shall deal with (degenerate) parabolic PDEs we shall have to work in cylindrical

domains (rectangles in R2). Therefore Σ = ∂Ω will be piecewise smooth. Consider now the

bounded domain Ω having piecewise C3 smooth boundary Σ. The corresponding boundary

value problem is: {
L(u) = f in Ω,

u = 0 on Σ2 ∪ Σ3
(43)

We shall say that the point P ∈ Σ is regular if locally near to P the surface Σ can be written

in the form xk = ϕk(x1, ..., xk−1, xk+1, ..., xm), (x1, . . . , xk−1, xk+1, . . . , xm) describing some
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neighborhood of the projection of P onto the plane xk = 0. The set of the boundary points

which do not possess such a representation will be denoted by B.

Definition 6. The function u ∈ L∞(Ω) is called a generalized solution of (43) for f ∈ L∞(Ω) if for

each function v ∈ C2(Ω), v = 0 at Σ1 ∪ Σ3 ∪ B the following identity holds:∫
Ω

uL∗(v)dx =
∫

Ω
f vdx.

Theorem 8. (See [20], Th. 1.5.5).

Suppose that the boundary Σ of the bounded domain Ω is C3 piecewise smooth, f ∈ L∞(Ω), g = 0,

c(x) ≤ −c0 < 0 in Ω and β ≤ 0 in the interior points of Σ0 ∪ Σ2. Then there exists a generalized

solution u of (43) in the sense of Definition 6 and such that |u| ≤ sup
| f |
c0

.

We shall not discuss here in details the problems of uniqueness and regularity of the

generalized solutions. Unicity results are given by Theorems 1.6.1.-1.6.2. in [20]. For

domains with C3 smooth boundary under several restrictions on the coefficients, including

c(x) ≤ −c0 < 0, c∗ < 0 in Ω, β ≤ 0 in the interior points of Σ0 ∪ Σ2, β∗ = −β < 0 at Σ1, the

maximum principle is valid for each generalized solution u in the sense of Definition 5:

|u| ≤ max
{

supΩ
| f |
c0

, supΣ3∪Σ2
|g|

}
.

In Th. 1.6.9. uniqueness result is proved for the boundary value problem (43) in the class

L∞(Ω). The existence result is given Th. 8. Regularity result is given in the Appendix.

Remark 7. Backward parabolic and parabolic operators satisfy the conditions: akm = 0, k =

1, ..., m, and bm = ±1 if x = (x1, ..., xm−1, t), i.e. t = xm. Put now u = veαt in (33). Then

L1(v) = ∑k,j=1,...,m akjvxk xj
+ ∑k=1,...,m bkvxk

+ (c + α)v = f e−αt

and

L∗
1(w) = ∑k,j=1,...,m akjwxkxj

+ ∑k=1,...,m b∗kwxk
+ c∗1w

where c1 = c + α, b∗k = 2 ∑j=1,...,m a
kj
xj
− bk, c∗1 = ∑k,j=1,...,m a

kj
xkxj

− ∑k=1,...,m bk
xk
+ c + α.

Having in mind that |c| ≤ c̃ = const we conclude that for bm = ±1 and α → ∓∞ then

c1 → −∞, c∗1 → −∞ uniformly in (x1, ..., xm−1, t) ∈ Ω. So for parabolic (backward parabolic)

equations the conditions of Theorems 2, 5 are fulfilled.

We shall illustrate the previous results by the backward parabolic equations:

L(u) =
∂u

∂t
+

1

2
σ2x2 ∂2u

∂x2
+ rx

∂u

∂x
− ru = f (t, x) (44)

which is the famous Black-Scholes equation, and

M(u) =
∂u

∂t
+ x2 ∂2u

∂x2
+ b(x)

∂u

∂x
+ c(x)u = f (t, x) (45)

We shall work in the following rectangles: Ω1 = {(t, x) : 0 < t < T, 0 < x < a1}, Ω2 =

{(t, x) : 0 < t < T, a2 < x < 0}, Ω = {(t, x) : 0 < t < T, a2 < x < a1}. Under the previous

notation for Ω we have: Σ1 = {t = 0}, Σ2 = {t = T}, Σ3 = {x = a1} ∪ {x = a2}. Certainly,

for Ω1, Ω2 another part of the boundary appears, Σ0 = {x = 0}.
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As we know from [20] there exists an Lp(Ω1) solution of the boundary value problem

{
L(u1) = f ∈ Ω1

u1 = 0 on Σ
(1)
2 ∪ Σ

(1)
3

(46)

According to the Definition 3:
∫

Ω1
u1L∗(v1)dx =

∫
Ω1

f v1dx for each test function v1 ∈
C2(Ω1), v1 |

Σ
(1)
1 ∪Σ

(1)
3

= 0.

In a similar way there exists u2 ∈ Lp(Ω2) such that

{
L(u2) = f in Ω2

u2 = 0 on Σ
(2)
2 ∪ Σ

(2)
3

(47)

Therefore:
∫

Ω2
u2L∗(v2)dx =

∫
Ω2

f v2dx for each test function v2 ∈ C2(Ω2), v2|Σ(2)
1 ∪Σ

(2)
3

= 0.

Certainly, there exists u ∈ Lp(Ω) such that
∫

Ω
uL∗(v)dx =

∫
Ω

f vdx for each test function

v ∈ C2(Ω), v |Σ1∪Σ3
= 0. Evidently, v ∈ C2(Ω), v |Σ1∪Σ3

= 0 ⇒ v ∈ C2(Ωi), v |
Σ
(i)
1 ∪Σ

(i)
3

= 0,

i = 1, 2. Consequently,
∫

Ω1
u1L∗(v)dx =

∫
Ω1

f vdx and
∫

Ω2
u2L∗(v)dx =

∫
Ω2

f vdx, and thus

the function

W =

{
u1 in Ω1

u2 in Ω2
∈ Lp(Ω) (48)

satisfies the identity
∫

Ω
f vdx =

∫
Ω1

f vdx +
∫

Ω2
f vdx =

∫
Ω

WL∗(v)dx, i.e. W is a generalized

Lp(Ω) solution of {
L(W) = f in Ω

W = 0 on Σ2 ∪ Σ3
(49)

We conclude as follows: (a) If ui satisfies

{
L(ui) = f in Ωi

ui = 0 on Σ
(i)
2 ∪ Σ

(i)
3

(50)

i = 1, 2, then (48) satisfies (49).

(b) In the special case when f ∈ L∞(Ω), ui ∈ L∞(Ωi), i = 1, 2, u ∈ L∞(Ω), u satisfies the

identity
∫

Ω
f vdx =

∫
Ω

uL∗(v)dx, we have a uniqueness theorem and therefore u = W.

The set Σ0 is called interior boundary of Ω.
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Appendix

One can find results concerning regularity of the generalized solutions of degenerate parabolic

operators in cylindrical domains in [14] and [19]. For the sake of simplicity we shall consider

only one example from Il’in as the conditions are simple and clear. Consider

N(u) =
∂u

∂t
+ h(t, x)

∂2u

∂x2
+ g(t, x)

∂u

∂x
+ c(t, x)u = F(t, x) (51)

in the rectangle Q = {(t, x) : 0 < t < T, a2 < x < a1} and h, g, c, F ∈ C3(Q̄). Moreover, we

assume that in some domain

(i) Q′ ⊃ Q̄ the function h ≥ 0 and h ∈ C2(Q′).

(ii) Suppose that if h(t, a1) = 0 (h(t, a2) = 0), 0 ≤ t ≤ T, then g(t, a1) > 0 (g(t, a2) < 0).

Moreover, we assume that the following compatibility conditions hold:

(iii) Dα
t,xF(T, a1) = Dα

t,xF(T, a2) = 0, |α| ≤ 2.

Define now the following parts of the boundary ∂Q:

I = {(t, x) : 0 < t < T, x = a2}, I I = {(t, x) : 0 < t < T, x = a1),

I I I = {(t, x) : a2 < x < a1, t = 0} and IV = {(t, x) : a2 < x < a1, t = T}.

One can easily see that: Σ3 = {(t, x) ∈ I ∪ I I : h(t, x) > 0}, Σ0 = {(t, x) ∈ I ∪ I I : h(t, x) = 0}
∪ {(t, x) ∈ I I I ∪ IV}, β = gn1 + n2 − ∂h

∂x n1, i.e. (t, x) ∈ Σ0, (t, x) ∈ I ∪ I I ⇒ h(t, x) = 0 ⇒
∂h
∂x = 0 and −→n = (1, 0) on I, −→n = (−1, 0) on I I. Thus β |I∩Σ0= gn1 = g < 0, while β |I I∩Σ0=

−g < 0. Therefore, I ∩ Σ0 ⊂ Σ2, I I ∩ Σ0 ⊂ Σ2. Evidently, β |I I I= n2 = 1 ⇒ I I I ⊂ Σ1, while

IV ⊂ Σ2; Σ0 = ∅.

In conclusion, I I I is free of data as it is of the type Σ1; (I ∪ I I) ∩ Σ0 and IV are of the type Σ2,

while Σ3 = (I ∪ I I) ∩ {h > 0}. Part of I ∪ I I is non-characteristic, part of I ∪ I I is of Σ2 type.

Data are prescribed on Σ2 ∪ Σ3, i.e. on I ∪ I I ∪ IV.

Theorem 9. (see [14]).

There exists a unique classical solution u of (51), u |I∪I I∪IV= 0 under the conditions (i), (ii), (iii).

More specifically, there exists Lipschitz continuous derivatives: u, ∂u
∂t , ∂u

∂x , ∂2u
∂x2 ∈ C0,α(Q), 0 < α < 1.

In [19] it is mentioned that under several restrictions on the coefficients the boundary value

problem {
N(u) = 0

u |I∪I I∪IV= 0
(52)

possesses a unique generalized bounded solution which is Lipschitz continuous in Q. The

proof relies on the method of elliptic regularization.
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Remark 8. If a2 < x < a1, a2 < 0, a1 > 0, the Black-Scholes equation (44) is with h(t, x) =
σ2

2 x2 > 0 on I ∪ I I, i.e. Σ3 = I ∪ I I and the equation{
L(u) = f in Q

u |I∪I I∪IV= 0

possesses a unique classical solution. As we know, u |x=0= U(t) satisfies in classical sense the

ODE:

U′(t)− rU(t) = f (t, 0), U(T) = 0. Therefore, we can consider the restrictions: u |x>0, u |x<0

and conclude that they are classical solutions of the respective boundary value problems with

0 data at Σ
(1)
2 ∪ Σ

(1)
3 , respectively at Σ

(2)
3 ∪ Σ

(2)
2 .
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