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1. Introduction 

The design of new energetic molecules is based on compounds exhibiting a high density 

and an elevated heat of formation. These fundamental properties, achieved through the 

presence of numerous nitrogen atoms and/or explosophoric groups, ensure high 

performance levels that can be useful in target applications such as explosives, propellants 

or gas generators. 

The same basics also apply when considering the use of polymers, instead of single 

molecules, as energetic ingredients. However, the quest for high densities and heats of 

formation appears somewhat more challenging in the case of polymers, since the 

polymerization process often requires specific chemical functions that may be detrimental to 

the desired energetic properties. Currently, the most commonly used polymers in the field 

get their energetic content only from explosophoric groups: NO2 for polyNIMMO 

(polynitratomethyl methyloxetane) or polyGLYN (polyglycidyl nitrate), N3 for GAP 

(glycidyl azide polymer), to name a few. This survey gives an overview of research efforts 

that have been devoted to the synthesis of macromolecules with high nitrogen contents. 

Such a unique property is expected to produce materials with particularly elevated heats of 

formation, thus making them very valuable in the field of energetic compounds. 

Azaheterocycles are obviously suitable scaffolds for achieving nitrogen-rich polymers. 

Tetrazole-, tetrazine-, triazole- and triazine-based materials are considered here. Three 

methodologies have been identified as the main routes for obtaining the target polymers: 

polymerization of vinylazaheterocycles, incorporation of the desired azaheterocycle in a 

preformed macromolecular architecture and polycondensation. 
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2. Tetrazole-based polymers 

2.1. Polymerization of vinyltetrazoles 

During the last decade, two major papers have reviewed the synthesis and polymerization 

of vinyltetrazoles, and together they present an extensive literature coverage [1,2]. 

2.1.1. Synthesis of C-vinyltetrazoles 

Polymerization of the starting and/or target vinyl compound is a major concern in the 

reaction of acrylonitrile with sodium azide leading to C-vinyltetrazole (5-vinyltetrazole) 2. 

Masking of the double bond of acrylonitrile 1 through addition of dimethylamine [3] or 

hydrogen chloride [4] circumvents this problem and renders the process more efficient 

(Figure 1). 

CN
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N N
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1) NaN3

2) Elimination

1

2  

Figure 1.  

2.1.2. Synthesis of N-vinyltetrazoles 

Two main strategies have been used for the synthesis of N-vinyltetrazoles. The first one 

involves alkylation of the tetrazole N-H with a functionalized ethyl chain, followed by 

elimination. The second one is the catalyzed direct vinylation with vinylacetate or 

butylvinylether. Recently, a variant of the first approach, using dibromoethane as the 

alkylating agent, has been developed [5]. This method appears now as the method of choice, 

since it is a one-step, high-yielding procedure that only needs readily available, non-toxic 

chemicals. In the majority of cases, a mixture of 1- and 2-vinyltetrazole are produced and 

selectivity depends on the 5-substituent (Figure 2).  
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Figure 2.  
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2.1.3. Synthesis of divinyltetrazoles 

Following the above-mentioned strategies, divinyltetrazole compounds have been obtained. 

Vinylation of 5-vinyltetrazole gave a mixture of 1,5- and 2,5-divinyltetrazole 3a-b in a 1/2.3-

2.4 ratio [5, 6]. In the vinylation of 5,5’-methylenebis(2-vinyltetrazole) 4, only 2 of the 3 

possible isomers were isolated, as the 1,1’-divinyl compound was not detected [5]. Such 

divinyl products could be useful as nitrogen-rich cross-linkers (Figure 3). 
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Figure 3.  

2.1.4. Polymerization of C-vinyltetrazoles 

5-Vinyltetrazoles are readily involved in free-radical polymerization (Figure 4). A 

comparison between C- and N-vinyltetrazoles shows that the former are more active in such 

processes. A number of reaction media have been used for the polymerization of 5-

vinyltetrazoles, and it was shown that the activity was enhanced in more polar solvents, 

especially in water. Molecular weights also increased in aqueous systems. This trend 

prompted a polymerization study in ionic solvents. Of the various ionic liquids (ILs) tested, 

only 1-methyl-3-propylimidazolium bromide gave rise to decent yields. Other ILs gave low 

yields or even decomposition of the tetrazole ring [7]. 

HN

N N

N

n

HN

N N

N

radical polymerisation

58.3% N2 6  

Figure 4.  

Poly-5-vinyltetrazole 6 contains 58.3% nitrogen, which clearly makes it a high-nitrogen 

compound. However, it seems that its N-vinyl congener has been favored for industrial 

applications. 
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2.1.5. Polymerization of N-vinyltetrazoles 

Figure 5 presents the most interesting polymers obtained in terms of nitrogen-content or 

expected energetic output. To the best of our knowledge, polymerization of 5-nitro-1-

vinyltetrazole8 is unknown. However, 1-vinyltetrazoles are generally readily polymerized in 

free-radical conditions, with water as the solvent of choice. The activity depends on the 

nature of the 5-substituent. For example, 5-amino-1-vinyltetrazole 7 is less active than the 

unsubstituted compound due to the electron-donating character of the amino group [9,10]. 

Unusually, yields of poly(5-amino-1-vinyltetrazole) 8 are slightly higher in N,N-

dimethylformamide (DMF) than in water. Recently, emulsion polymerization gave porous 

monoliths of the corresponding so-called ‘polyHIPEs’ of 8, exhibiting remarkable 

mechanical properties [11]. 

The synthesis and polymerization of 5-(methyl)hydrazino-1-vinyltetrazole 9 have been 

described. It was necessary to add the initiator (AIBN) in several portions to enhance the 

conversion of the starting vinyl compound. However, while 9b (R = Me) yielded 85% of the 

corresponding polymer 10b, the yield of 10a from 9a (R = H) was limited to about 25-30% 

and the degree of polymerization was very low. The synthesis of the very nitrogen-rich 

azide-functionalized polymer 11 was attempted through diazotization of 10a. However, 

elemental analyses were unsatisfactory because of partial decomposition of the 

tetrazolylhydrazine moieties [12].  
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Figure 5.  

The different examples cited herein highlight the high nitrogen content of 

polyvinyltetrazoles and their prospects as energetic compounds. In 2003, a pilot-plant 

production of polyvinyltetrazoles was started in two companies in Russia. 

2.2. Incorporation of tetrazole via polymer-analogous transformation 

It is well-known that tetrazoles can be obtained by addition of an azide onto a cyano 

derivative. This method was applied to polyacrylonitrile (PAN) in order to synthesize 

poly(5-vinyltetrazole) (Figure 6).  
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Figure 6.  

When using NaN3/NH4Cl, it was shown that higher temperatures and molecular weights of the 

initial PAN resulted in a higher incorporation of tetrazole moieties in the polymer [13]. Thus, at 

105°C, a PAN with a Mw of 180,000 g/mol was almost completely transformed in the 

corresponding poly(5-vinyltetrazole) (tetrazole units: 97.5%). The tetrazole content was estimated 

by 2 independent methods: weight measurements and acid-base titration. According to the 

authors, this poly(5-vinyltetrazole) synthesis using polymer-analogous transformation is 

advantageous since there is no commercial source of 5-vinyltetrazole and its synthesis is difficult. 

Zinc chloride has also been used as a catalyst to carry out the desired transformation [14]. 

The best components ratio was NaN3/NH4Cl/RCN 4/4/1. Infrared and NMR spectroscopies 

demonstrated the total conversion of nitrile functions into tetrazoles. In addition to PAN, 

other nitrile-containing polymers were succesfully tetrazolated. 

Poly(5-vinyltetrazole) for gas generants was also synthesized upon the action of a zinc salt 

(ZnBr2) but polymerization was carried out in emulsion in the presence of a surfactant [15]. A 

related patent subsequently extended this water-based synthesis [16]. At 115°C tetrazolation 

was limited to 70%, but reached 95% at 170°C. Further reaction of the resulting poly(5-

vinyltetrazole) with ammonia yielded the corresponding ammonium salt 12 (Figure 7). The 

latter theoretically contains 61.9% of nitrogen and is therefore a promising material for gas 

generants. A related triaminoguanidinium salt 13 had been disclosed as early as in 1968 [17]. 

Taking into account the 6% of PAN units remaining in the starting poly-5-vinyltetrazole, a 

theoretical value of 69.2% of nitrogen was achieved in the salt (Figure 7). 
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Figure 7.  
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All these conditions surpass earlier methods that yielded lower levels of tetrazole 

incorporation (see for example ref [18]). 

Polyvinylchloride (PVC) can also be used as a polymer precursor. Upon reaction with a 

tetrazolate anion, the corresponding polyvinyltetrazole is formed (Figure 8). However, this 

method seems less practical since partial elimination of hydrogen chloride generates 

unsaturated fragments in the final product [1]. 
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Figure 8.  

2.3. Synthesis of tetrazole-based polymers via polycondensation 

5-Chloromethyltetrazole 14 is an interesting substrate as it has both a nucleophilic (tetrazole 

N-H) and a highly electrophilic (CH2-Cl) center. In the presence of triethylamine as a base, 

the tetrazole ring can be deprotonated which gives rise to poly(methylenetetrazole) 15 in 

good yields [19,20] (Figure 9).  
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Figure 9.  
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This polyalkylation product is in fact an oligomer, with Mw below 2000 g/mol (ca 15-20 

units). With a measured nitrogen content of up to 67.2%, it surpasses polyvinyltetrazole by 

almost 10%. In addition, its viscous state is attained at relatively low temperatures, thus 

making it a very promising candidate in gas-generating systems. It should be noted that 5-

chloroethyltetrazole can also participate in a similar process. However, polymerization is 

slower and yields do not exceed 20%. 

The high reactivity of 5-chloromethyltetrazole 14 has been used to graft poly(5-

vinyltetrazole). Upon addition of an excess of 14 and triethylamine, a branched poly(5-

vinyltetrazole) bearing poly(methylenetetrazole) bridges was obtained in yields around 

70%. Ten equivalents of 14 produced the best results. Characterization of the polymer 

revealed a 6/1 ratio of methylenetetrazole vs vinyltetrazole moieties. The number of 

vinyltetrazole units between branching junctions was around 2. Its energetic prospects were 

highlighted by a very elevated density of 1.70 and a nitrogen content of 67.9% [19,20]  

(Figure 9). 

A patent describes the polycondensation of various dinitriles with diazides to produce 

tetrazole containing polycondensates [21]. Of these, the most valuable polymer for energetic 

applications is the one obtained from dicyanofuroxane 15. Indeed, despite the fact that the 

hexamethylene spacer lowers the N content, a high energetic output is expected from the 

presence of 2 tetrazole and 1 furoxane rings in the unit of polymer 16 (Figure 10). 
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Figure 10.  

Isopropyl 2-(5-(1-methylhydrazinyl)tetrazol-1-yl)acetate 17 was polymerized at high 

temperature to give the corresponding polycondensate 18 [22]. The yield was higher when 
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working at 120°C rather than 140°C, however elemental analyses still showed a lower 

nitrogen content than expected (44.9 instead of 54.5%). The presence of low molecular 

weight polymers still bearing isopropoxy groups may account for this discrepancy. 

The related monomer N-[1-(2-hydroxyethyl)tetrazol-5-yl]-N-methylhydrazine 19 was also 

involved in polycondensation processes. With succinyl chloride as the partner, only low 

molecular weights could be achieved, and results from elemental analysis were 

unsatisfactory. This was ascribed to the protonation of the hydrazino moieties during 

polycondensation. More positive results were obtained with hexamethylenediisocyanate but 

obviously the resulting polycondensate 20b is less attractive for energetic applications due 

to its lower nitrogen content [23]. Another similar polymer was recently described by the 

same group [24] (Figure 10). 

3. Tetrazine-based polymers 

3.1. Polyvinyltetrazines 

To the best of our knowledge, monovinyl-1,2,4,5-tetrazines are unknown, and the 

corresponding polyvinyltetrazines thus remain elusive compounds. However, the first member 

of the vinyltetrazine family, 3,6-divinyl-1,2,4,5-tetrazine 21 has been described (Figure 11).  
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SPh
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Figure 11.  

The synthesis was achieved by using the phenylsulfanylethyl group as a masked vinyl 

moiety, the latter being the result of oxidation to the sulfone and elimination. Compound 21 

was obtained as a volatile, pink oil that solidified in the freezer. Preliminary studies showed 

that 21 exhibited a limited stability at high temperatures and in the presence of radicals, 

which obviously precludes its use in polymer chemistry. However, 3,6-divinyl-1,2,4,5-

tetrazine can be seen as a tetraaza analogue of the widely used 1,4-divinylbenzene and is 

therefore believed to be a useful building block in the synthesis of new tetrazine-based 

molecules and materials [25]. Further work is needed to establish the properties and 

reactivity of 21. These studies also open the way towards the synthesis of unsymmetrical 

vinyl-1,2,4,5-tetrazine compounds that may exhibit improved stability and reactivity in 

polymerization conditions. 

3.2. Synthesis of tetrazine-based polymers via polycondensation 

One of the most convenient ways to construct the 1,2,4,5-tetrazine (s-tetrazine) ring is by 

condensation of hydrazine with a diimidate to produce the corresponding 1,2-dihydro-
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1,2,4,5-tetrazine, followed by oxidation. This strategy has been extended to the synthesis of 

diverse poly(phenylene-s-tetrazinylene)s by using diimidates. In order to increase the 

energetic prospects of such polymers, azahetaryl precursors were considered. However, the 

reaction of hydrazine monohydrate with pyridine-2,6-diimidate 22 did not yield the 

expected dihydrotetrazine polymer. Instead, the corresponding diamidrazone 23 was 

isolated in high yield. It is likely that the insolubility of 23 in THF is responsible for the 

uneffective polycondensation reaction. Diamidrazone 23 was used as the monomer in a 

microwave-assisted polycondensation to give the poly(2,6-pyridinediyl-dihydro-s-

tetrazinylene) 24 which was further oxidized to the desired tetrazine polymer 25 using 

sodium nitrite/aq. AcOH [26] (Figure 12). 
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Figure 12.  

Following the same strategy, the previously unknown 1,3,5-triazine-2,4,6-triamidrazone 26 

was subjected to polycondensation to yield the hyperbranched polymer 27. In this case, 

microwave activation was not necessary. Polymer 27 stands out as the most nitrogenated 

tetrazine-containing polymer, even if the measured N content was lower than expected, 

presumably due to water incorporation. A density of 1.56 was determined for 27, which is 

significantly higher than the value reported for amorphous poly(p-phenylene) (1.11). This 

clearly shows how the introduction of nitrogen heterocycles in polyarylene structures is 

valuable in the field of energetic materials as it increases this crucial parameter. 

Unfortunately 27 was found unreactive to common oxidants, presumably because of its high 

insolubility. Only very strong oxidative conditions resulted in the formation of s-tetrazine 

rings, but oxidation remained uncomplete (Figure 12). 
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The structures of all polymers were confirmed using 13C and 15N solid state NMR [26,27]. 

High-resolution spectra also indicated low amounts of 4-amino-1,2,4-triazole moieties 

(coming from the known rearrangement of some 1,2-dihydro-1,2,4,5-tetrazine units). 

4. Triazole-based polymers 

Synthetic strategies for C-vinyl- and N-vinyltriazoles (1,2,3- or 1,2,4-triazoles) are essentially 

the same as the ones presented above for vinyltetrazoles. The preparation and 

polymerization of vinyltriazoles have been reviewed in 2008 [28], 2003 [29,30] and 1974 [31]. 

4.1. 1,2,4-Triazole-based polymers 

4.1.1. Poly(N-vinyl-1,2,4-triazole)s 

Figure 13 presents the most interesting polymers obtained in terms of nitrogen content or 

expected energetic output. 
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Figure 13.  

1-Vinyl-1,2,4-triazole 29 was readily polymerized in free-radical conditions, and the process 

was more efficient in the presence of water. However, it was less active than 1-vinyl-1,2,3-

triazole. This trend in activity was found to correlate with the corresponding Hammet 

constants [29]. Poly(1-vinyl-1,2,4-triazole) 30, obtained in sufficiently aqueous media, was 

essentially insoluble in water or organic solvents. This polymer is a well-established 
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compound that may be interesting in numerous applications. Recently, open-cell porous 

monoliths of poly(1-vinyl-1,2,4-triazole) cross-linked with a low amount of N,N-

methylenebisacrylamide were prepared (Figure 14). They exhibited interesting mechanical 

properties due to the presence of water in the polymer structure, as evidenced by NMR [32]. 

 

Figure 14.  

For the synthesis of 3-amino-1-vinyl-1,2,4-triazole 31, the classical transvinylation using 

vinyl acetate in the presence of cuprous chloride was ineffective. The product was obtained 

through the reaction of acetylene in a basic medium at high temperature [33] (Figure 13). The 

presence of the amino group resulted in some changes compared to the unfunctionalized 

derivative: the polymerization activity was three times lower, and poly(3-amino-1-vinyl-

1,2,4-triazole) 32 was soluble in water [34]. The nitrogen content was also significantly 

improved to 50.9%, with a density of 1.30-1.36 equalling that of polyglycidyl azide. 

Poly(3-nitro-1-vinyl-1,2,4-triazole) 35 is also a useful target due to the expected output from 

the nitro group. Alkylation of 3-nitro-1,2,4-triazole 33 with dichloroethane followed by 

dehydrochlorination gave a mixture of 1- and 4-vinyltriazole. The former (34) was 

polymerized in DMF and gave a polymer that was soluble only in highly polar solvents [35] 

(Figure 13). 

4.1.2. Poly(C-vinyl-1,2,4-triazole)s 

The strategy involving the construction of the vinyl fragment through dehydrohalogenation, 

dehydration or deamination is also applicable for the synthesis of C-vinyl-1,2,4-triazoles 

[28,36]. Another approach is the use of the Wittig reaction, exemplified below for salts of 

poly(C-vinyl-1,2,4-triazole). 

4.1.3. Energetic poly(vinyl-1,2,4-triazole)s salts 

To further increase the potential of poly(1-vinyl-1,2,4-triazole), protonation with energetic 

inorganic or organic acids was investigated (Figure 15). Polymerization of protonated 1-

vinyl-1,2,4-triazole 36 was successful only with the nitric or perchloric acid-protonated 

product, since the presence of nitro functionalities in the organic acids tended to inhibit 

polymerization. Moreover, only about 70% of the nitrate or perchlorate anions remained 

after polymerization. However, radical polymerization of 1-vinyl-1,2,4-triazole 29 in DMF 

followed by protonation produced a series of energetic salts of poly(vinyl-1,2,4-triazole) 38. 

Elemental analyses established that the molar degree of substitution of anions was between 
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48 and 92% [37]. Thus this process represents a convenient way of improving the 

performances of the well-known poly(vinyl-1,2,4-triazole) 37. 
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The equivalent work in the poly(C-vinyl-1,2,4-triazole) series is also disclosed in a patent [38]. 

Salts (e.g., the ammonium salt) of 3(5)-bromomethyl-1,2,4-triazole 39 were converted to the 

3(5)-vinyl derivatives 40 following a Wittig-type methodology. Free-radical or cationic 

polymerization produced the corresponding salt of poly(3(5)-vinyl-1,2,4-triazole) 41 (Figure 

16). This compound has been used as a fuel in gas-generating compositions. 
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Figure 16.  

4.1.4. Incorporation of 1,2,4-triazole via polymer-analogous transformation 

Energetic heterocyclic analogues of the well-known polyglycidyl azide (GAP) have been 

prepared via substitution of the chlorine atom of polyepichlorhydrin 42 by the anion of 

3(5)nitro-1,2,4-triazole 43-Na [39]. The reaction proceeded in an almost quantitative fashion 

(residual chlorine: 0.1-0.4%) when carried out in high-boiling solvents at 100-130°C. Proton 

NMR enabled the determination of N-1 vs N-2 alkylation at the triazole ring, and a marked 

selectivity (9/1) towards the N-1 substituted polymer was found (Figure 17). The 

introduction of sodium azide together with the nitrotriazole salt resulted in a copolymer of 

glycidylazide and N-glycidyl-3-nitro-1,2,4-triazole. 
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4.1.5. Synthesis of 1,2,4-triazole-based polymers via polycondensation 

Among the few 1,2,4-triazole-based condensation polymers known [40], the most promising 

as energetic materials are poly(4-amino-1,2,4-triazole)s [41]. The latter can be commonly 

obtained through isomerization of poly(dihydrotetrazine)s 45, following the general scheme 

depicted in Figure 18. This process is closely related to the one mentioned in the tetrazine 

section of this chapter. 
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Polymer 46-C2 stands out as the most nitrogenated member of this family with a calculated 

N content of 50.9%. Even though the first synthesis of 46-C2 dates back to 1954 [42], interest 

for this polymer or similar derivatives has been maintained for a long time for diverse 

applications [43, 44]. 

Another polycondensate incorporating 4-amino-1,2,4-triazole units has been mentioned in a 

patent. The synthesis is based on the simultaneous condensation of 3,5-dihydrazino-4-

amino-1,2,4-triazole 47 and diaminoguanidinium azide 48 with formaldehyde/glyoxal (4/1) 

[45]. The exact structure of the resulting polymer 49 is not disclosed but has been claimed to 

provide a N/C ratio of 2.3 (Figure 19). 
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It should also be noted that 3-amino-1,2,4-triazole can be subjected to electrooxidation to 

yield films of the corresponding polymer [46,47]. However, the use of these films seems to be 

limited to corrosion protection applications and they obviously cannot be implemented as 

energetic materials. 

4.2. 1,2,3-Triazole-based polymers 

4.2.1. Poly(N-vinyl-1,2,3-triazole)s  

1-Vinyl-1,2,3-triazole 50 can be classically synthesized via reaction of 1,2,3-triazole with 

acetylene in the presence of a catalyst  [48], or by transvinylation with vinyl acetate [49]. 

Another possibility is the construction of the 1,2,3-triazole ring through ‘click’ chemistry 

between a functionalized azide and (substituted) acetylene, followed by elimination. A 

recent synthesis [50] following this scheme is presented in Figure 20. By using vinylacetylene 

in this approach, 1,5-divinyl-1,2,3-triazole 52 can be obtained [51]. 1-Vinyl-1,2,3-triazole itself 

is highly active in classical free-radical polymerization [29] and can also be polymerized to 51 

using reversible addition-fragmentation and transfer (RAFT) conditions [50], but 5-nitro-1-

vinyl-1,2,3-triazole 53 [49] is inert in this process (see below).  
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4.2.2. Poly(C-vinyl-1,2,4-triazole)s 

4-Vinyl-1,2,3-triazole 56 has been obtained through 'click' chemistry with different acetylene 

and azido derivatives. A recent example describes the use of vinylacetylene 54 and azidomethyl 

pivalate 55 as starting materials [52]. This monomer is also active in radical polymerization [53], 

but less than its N-vinyl congener. Poly(4-vinyl-1,2,3-triazole) 57 has also been synthesized by 

deprotection of poly[4-vinyl-1(4-methoxybenzyl)-1,2,3-triazole] 58 [54] (Figure 21). 
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Figure 21.  

4.2.3. Incorporation of 1,2,3-triazole via polymer-analogous transformation 

Reaction of the sodium salt of 4(5)-nitro-1,2,3-triazole 59-Na with polyvinylchloride (PVC) 

afforded poly(1-vinyl-4-nitro-1,2,3-triazole) 60. By using at least 2 equivalents of 59-Na at 

120°C for 1 day, a complete substitution of the chloride functions could be achieved as 

demonstrated by elemental analysis showing 39.9% of N (calc. 40.0%) [55] (Figure 22).  

This is the only method rendering it possible to obtain this nitrated polymer since it cannot 

be synthesized through polymerization of 1-vinyl-4-nitro-1,2,3-triazole 53. As a matter of 

fact, in 53, the nitro group acts as an inhibitor under radical and ionic conditions, which is 

apparently not the case for the isomeric 3-nitro-1-vinyl-1,2,4-triazole 34 (see above). 

The same chemistry was applied to copolymers of vinylchloride and 2-methyl-5-vinyl-

tetrazole to yield the corresponding nitro-1,2,3-triazole containing copolymers 61a-b. 

Copolymer 61a exhibited a measured N content of 47.2%. 

Similarly, the salt 59-Na was used to quantitatively substitute the chlorine atoms on 

polyepichlorhydrin 42. As in the nitro-1,2,4-triazole series (see above), a mixture of isomers 

was obtained, but the selectivity was reversed: the N-2 isomer was the major one (60%) [56] 

(Figure 22). 

4.2.4. Synthesis of 1,2,3-triazole based polymers via polycondensation 

The well-established reaction of an azide with an alkyne, that has been extensively used for 

monomeric 1,2,3-triazole compounds, can be further extended to the synthesis of polymers.  
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Figure 22.   

Thus, (azidoalkyl)- or (azidoaryl) acetylenes were polymerized without catalyst to afford 

materials that were presumed to contain 1,4- and 1,5-substituted 1,2,3-triazole rings in a 

random distribution [57]. The most interesting compound for energetic applications was 

polymer 64, obtained from 3-azido-1-butyne 63 (Figure 23). 

N3

N

N

N

O

N3

O

N N

N

N

N

N

O

N3

O

N
N

N

n

n

Neat or CH2Cl2

51.8% N

63

64

65  

Figure 23.  

Similarly, an azido-1,3,5-triazine containing propargyl ether was used as the monomer. Of 

the different conditions (bulk, solution, with or without catalyst or heating), polymerization 

in bulk without catalysts was found to be the best way to minimize decomposition reactions 
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and formation of by-products [58]. The hyperbranched product 65 offers an original 

combination of both triazine and triazole rings, although the nitrogen content was obviously 

lowered by the remaining propargyl ethers moieties . 

5. Triazine-based polymers 

To the best of our knowledge, vinyl-1,2,4-triazines are unknown. Some poly-1,2,4-triazines 

have been obtained by polycondensation [59], however their nitrogen content is much too 

low for them to be considered as energetic materials. This section will thus focus on 

polymers containing 1,3,5-triazines (s-triazines), which have been studied for a long time. 

Ref [60] is a comprehensive review of earlier work. 

5.1. Polyvinyl-1,3,5-triazines 

2-Vinyl-1,3,5-triazine 67 [61] has been prepared from 1,3,5-triazine 66 but it seems that 

interest in it faded quickly due to the ease of hydrolysis. 2-Vinyl-4,6-disubstituted-1,3,5-

triazines were claimed to be more stable [62].  
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2,4,6-Trivinyl-1,3,5-triazine would also be an interesting compound (as a nitrogen-

containing cross-linker) but the reported yield for its synthesis is poor [61]. In fact, the most 

valuable vinyltriazine is 2,4-diamino-6-vinyl-1,3,5-triazine 69, which can be prepared in 2 

steps from dicyandiamide 68 [63]. Compound 69 has been polymerized in free-radical 

conditions, either by using potassium persulfate in water [63] or AIBN in DMSO or DMF [64]. 

The calculated N content of poly(2,4-diamino-6-vinyl-1,3,5-triazine) 70 exceeds 50% (Figure 

24). 

5.2. Synthesis of 1,3,5-triazine-based polymers via polycondensation  

Amino-substituted triazines bearing a leaving group have been heated to obtain the 

corresponding homopolycondensates. A linear polytriazinylamine 72 was formed from 2,4-

diamino-6-phenoxy-1,3,5-triazine 71 [65], whereas a hyperbranched structure 74 resulted 

from 2-amino-4,6-dichloro-1,3,5-triazine 73 since it was impossible to control the reaction in 
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the sense that only one chlorine atom reacted [66] (Figure 25). Although no elemental 

analyses were reported to ascertain the structures, these products are believed to exhibit a 

high nitrogen content. Compound 74 is claimed to approach a cross-linked structure, which 

is corroborated by its limited degree of softening. 
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In a similar fashion, 2,4-bis(methylamino)-1,3,5-triazine 75 was reacted with 4,6-dichloro-5-

nitro-pyrimidine 76 in the presence of a base. Modest molecular masses were obtained 

(1000-10000 g/mol), as confirmed by the presence of end-chain NHMe signals in NMR 

spectra [67]. However, polymer 77 is still of interest thanks to the presence of the energetic 

nitro group in addition to a reasonable nitrogen content (Figure 25).  

Aminoalkyl units can also serve as linkages between triazine rings, as exemplified by the 

commercially available polymer 78, which has been used as a charring agent in flame-

retardant compositions [68] (Figure 26). 
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Figure 26.  

Melamine-formaldehyde resins constitute a well-known class of compounds. Not 

surprisingly, related polymers can also be considered as derivatives with high nitrogen 

contents. For example, the reaction of trichloromelamine 79 with formaldehyde followed by 
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dehydrochlorination has been claimed to give a structure in which triazine rings are linked 

together through carbodiimide or dihydrocarbodiimide units [69] (Figure 27). 
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The chemistry shown above in the case of polytriazinylamines has also been widely 

explored for the synthesis of polytriazinylethers. The latter are obviously less attractive in 

terms of nitrogen content. However, commercially available nitro-containing diols are 

valuable compounds when one wishes to incorporate explosophoric functions in the final 

material. Thus, 2-nitroresorcinol 80 was reacted with trichlorotriazine 81 (cyanuric chloride) 

in the presence of a base to produce a cross-linked polymer 82 with triazine units and nitro 

groups (Figure 28). The interfacial conditions readily employed for such polycondensations 

were naturally adapted for the synthesis of porous polyHIPEs of this material [70] (see 

tetrazole and triazole-based polymers for other examples of high-nitrogen polyHIPEs). The 

chemical structure should be similar to the one obtained by cyclotrimerization of 1,3-

dicyanato-2-nitrobenzene [71]. 
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It should also be noted that carbon dinucleophiles are effective in polycondensation reactions 

with cyanuric chloride. Thus, sodium carbide enabled the construction of cross-linked 

architectures 83 in which triazine rings were connected by ethynylene moieties [72] (Figure 28). 

Another well-known way to obtain triazine compounds is the cyclotrimerization of nitriles. 

However, only scarce examples deal with azaheterocyclic nitriles. 2,6-dicyanopyridine 84 
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was converted at high temperatures, in the presence of zinc chloride, to a porous framework 

85 with alternating pyridine and triazine nuclei [73]. The measured N content was slightly 

below that expected (27.7 vs 32.5%) (Figure 29) 
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The quest for graphitic forms of carbon nitride (g-C3N4) has stimulated a vast amount of 

research in order to find suitable molecular precursors. With a calculated nitrogen content of 

60.9%, C3N4 surely has its place in this overview, although only a few precursors lead to 

materials approaching the theoretical N/C ratio due to the presence of hydrogen or oxygen. 

The structure of C3N4 is still under consideration, but surely involves 1,3,5-triazine moieties. 

Many useful references are provided to the reader in [74]. Theoretical as well as 

characterization results have indicated that tri-s-triazine structures 86 rather than s-triazines 

would be intermediates towards g-C3N4 [75] (Figure 30).  
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6. Miscellaneous 

Azide salts of bis(aminoguanidinium) compounds can be condensed with formaldehyde to 

produce the corresponding polymers 87a-b (Figure 31). Thanks to the azide groups and the 

intrinsically nitrogen-rich aminoguadinium moieties, the nitrogen content of these 
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polycondensates was remarkably high, up to 77% [45,76]. A related copolymer incorporating 

4-amino-1,2,4-triazole units has already been described in the triazole section. 
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Gaseous cyanogen (NC-CN) is a promising monomer as it shows a C/N ratio of 1/1. Studies 

have been devoted to its polymerization and given rise to so-called paracyanogen, either 

through chemical [77] or photochemical [78] methods. The determination of the exact 

structure of the polymer is a difficult task and a number of different hypotheses have been 

postulated (Figure 32). This work is made complicated by the incorporation of solvent or 

water/oxygen during the polymerization process, which leads to a significant presence of 

oxygen in the elemental analyses. Therefore, the theoretical figure of 50% of nitrogen can 

hardly be obtained. However, certain reaction conditions have enabled the synthesis of 

materials exceeding 40% of N. 

 

Figure 32. (from ref [78]) 
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7. Conclusions 

This review highlights a number of azaheterocycles-based polymer structures containing a 

high content of nitrogen, frequently around 50%. In some cases, over 60% and 70% N can be 

achieved, mainly in tetrazole-based materials. The presence of additional explosophoric 

groups such as nitro may also be encountered in such polymers which strengthens the 

interest in using them for energetic applications. The diversity of the described structures 

renders it possible to foresee a wide range of properties for these energetic materials. 

Consequently, a great opportunity is offered to select the appropriate material for a specific 

application in this field. Certain patents cited in this survey show that some of these 

polymers have already been exploited, and many other applied high-nitrogen polymers will 

surely see the light in the future. 
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