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1. Introduction

Previous studies have documented various QC tools for use with weather data (26; 4; 6; 25; 9; 3;
10; 16; 18). As a result, there has been good progress in the automated QC ofweather indices,
especially the daily maximum/ minimum air temperature. The QC of precipitation is more dif-
ficult than for temperature; this is due to the fact that the spatial and temporal variability of a
variable (2) is related to the confidence in identifying outliers. Another approach to maintain-
ing quality of data is to conduct intercomparisons of redundant measurements taken at a site.
For example, the designers of the United States Climate Reference Network (USCRN) made it
possible to compare between redundant measurements by specifying a rain gauge with multi-
ple vibrating wires in order to avoid a single point of failure in the measurement process. In
this case the three vibrating wires can be compared to determine whether or not the outputs are
comparable and any outlying values can result in a site visit. CRN also includes three tempera-
ture sensors at each site for the purpose of comparison.

Generally identifying outliers involves tests designed to work on data from a single site (9) or
tests designed to compare a station’s data against the data from neighboring stations (16). Stat-
istical decisions play a large role in quality control efforts but, increasingly there are rules intro-
duced which depend upon the physical system involved. Examples of these are the testing of
hourly solar radiation against the clear sky envelope (Allen, 1996; Geiger, et al., 2002) and the
use of soil heat diffusion theory to determine soil temperature validity (Hu, et al., 2002). It is
now realized that quality assurance (QA) is best suited when made a seamless process be-
tween staff operating the quality control software at a centralized location where data is ingest-
ed and technicians responsible for maintenance of sensors in the field (16; 10).

Quality assurance software consists of procedures or rules against which data are tested.
Each procedure will either accept the data as being true or reject the data and label it as an
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outlier. This hypothesis (Ho) testing of the data and the statistical decision to accept the data
or to note it as an outlier can have the outcomes shown in Table 1:

Statistical Decision True Situation

Ho True Ho False
Accept Ho No error Type Il error
Reject Ho Type | error No Error

Table 1. The classification of possible outcomes in testing of a quality assurance hypothesis.

Take the simple case of testing a variable against limits. If we take as our hypothesis that the
data for a measured variable is valid only if it lies within +30 of the mean (X), then assuming
a normal distribution we expect to accept Ho 99.73% of the time in the abscense of errors.
The values that lie beyond X+30 will be rejected and we will make a Type I error when we
encounter valid values beyond these limits. In these cases, we are rejecting Ho when the val-
ue is actually valid and we therefore expect to make a Type I error 0.27% of the time assum-
ing for this discussion that the data has no errant values. If we encounter a bad value inside
the limits X+30 we will accept it when it is actually false (the value is not valid) and this
would lead to a Type II error. In this simple example, reducing the limits against which the
data values are tested will produce more Type I errors and fewer Type II errors while in-
creasing the limits leads to fewer Type I errors and more Type II errors. For quality assur-
ance software, study is necessary to achieve a balance wherein one reduces the Type II
errors (mark more “errant” data as having failed the test) while not increasing Type I errors
to the point where valid extremes are brought into question. Because Type I errors cannot be
avoided, it is prudent for data managers to always keep the original measured values re-
gardless of the quality testing results and offer users an input into specifying the limits + fo
beyond which the data will be marked as potential outliers.

In this chapter we point to three major contributions. The first is the explicit treatment of
Type I and Type II errors in the evaluation of the performance of quality control proce-
dures to provide a basis for comparison of procedures. The second is to illustrate how the
selection of parameters in the quality control process can be tailored to individual needs
in regions or sub-regions of a wide-spread network. Finally, we introduce a new spatial
regression test (SRT) which uses a subset of the neighboring stations to provide the “best
fit” to the target station. This spatial regression weighted procedure produces non-biased
estimates with characteristics which make it possible to specify statistical confidence inter-
vals for testing data at the target station.

2. A Dataset with seeded errors

A dataset consisting of original data and seeded errors (18) is used to evaluate the perform-
ance of the different QC approaches for temperature and precipitation. The QC procedures
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can be tracked to determine the number of seeded errors that are identified. The ratio of er-
rors identified by a QC procedure to the total number of errors seeded is a metric that can be
compared across the range of error magnitudes introduced. The data used to create the
seeded error dataset was from the U.S. Cooperative Observer Network as archived in the
National Climatic Data Center (NCDC).We used the Applied Climate Information (ACIS)
system to access stations with daily data available for all months from 1971~2000(see 24).
The data have been assessed using NCDC procedures and are referred to as “clean” data.
Note, however, that “clean” does not necessarily infer that the data are true values but,
means instead that the largest outliers have been removed.

About 2% of all observations were selected on a random basis to be seeded with an error. The
magnitude of the error was also determined in a random manner. A random number, r, was se-
lected using a random number generator operating on a uniform distribution with a mean of
zero and range of +3.5. This number was then multiplied by the standard deviation (o,) of the
variable in question to obtain the error magnitude E for the randomly selected observation x:

E =or (1)

X X

The variabler is not used when the error would produce negative precipitation, (E ,+x)<0.,
Thus the seeded error value is skewed distributed when r<0 but roughly uniformly distrib-
uted when r> 0. The selection of 3.5 for the range is arbitrary but does serve to produce a
large range of errors (+3.50,).This approach to producing a seeded data set is used below in
some of the comparisons.

3. The spatial regression test (estimates)and Inverse Distance Weighted
Estimates (IDW)

When checking data from a site, missing values are sometimes present. For modeling and oth-
er purposes where continuous data are required, an estimate is needed for the missing value.
We will refer to the station which is missing the data as the target station. The IDW method has
been used to make estimates (x’) at the target stations from surrounding observations (x;).

X'ZZ(xi/f(d,-)) /Zl/f(d,») @)

Where d; is the distance from the target station to each of the nearby stations, f(di) is a func-
tion relying on d;(in our case we took f(d;)=1/d;). This approach assumes that the nearest sta-
tions will be most representative of the target site.

Spatial Regression (SRT) is a new method that provides an estimate for the target station and
can be used to check that the observation (when not missing) falls inside the confidence in-
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terval formed from N estimates based on N “best fits” between the target station and neigh-
boring stations during a time period of length n. The surrounding stations are selected be
specifying a radius around the station and finding those stations with the closest statistical
agreement to the target station. Additional requirements for station selection are that the
variable to be tested is one of the variables measured at the target site and the data for that
variable spans the data period to be tested. A station that otherwise qualifies could also be
eliminated from consideration if more than half of the data is missing for the time span (e.g.

more than 12 missing dayswhere n=24) First non-biased, preliminary estimates X;; are de-
rived by use ofthe coefficients derived from linear regression, so for any time f, and for each

surrounding station (/) an estimate is formed.
X, =a+by, ©)

The approach obtains an un-biased estimate (x’) by utilizing the standard error of estimate
(s) for each of the linear regressions in the weighting process.

N N
x':Z:(x;/sf)/le/Si2 4)
i=1

i=1
N
N/s?=>1/s (5)
i=1

The surrounding stations are ranked according to the magnitude of the standard error of es-
timate and the N stations with the lowest s values are used in the weighting process:

This approach provides more weight to the stations that are the best estimators of the target
station. Because the stations used in (4) are a subset of the neighboring stations the estimate
is not an areal average but a spatial regression weighted estimate

The approach differs from inverse distance weighting in that the standard error of esti-
mate has a statistical distribution, therefore confidence intervals can be calculated on the
basis of s” and the station value (x) can be tested to determine whether or not it falls with-
in the confidence intervals.

X'—f5'<x<x'+ fs' (6)

If the above relationship holds, then the datum passes the spatial test. This relationship indi-
cates that with successively larger values of f, the number of potential Type I errors decreas-
es. Unlike distance weighting techniques, this approach does not assume that the best
station to compare against is the closest station but, instead looks to the relationships be-
tween the actual station data to settle which stations should be used to make the estimates
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and what weighting these stations should receive. An example of the estimates obtained
from the SRT is given in Table 2.

iting yi based on x 20E 35S Hawelock 82E 20S 12W 55N 51E 13S
A254739 | A254749 days X y1 y2 y3 y4 x'1 X2 x'3 x'4 x'1/s1""2 x'2/s2'"2 x'3/s3"2
83.696 85.586 6/1/2011 85.1 85.5 83.4 83.7 85.6 8551 84.30 84.82 84.62 47.016 92.680 170.315
85.604 87.584 6/2/2011 86.2 86.2 85.3 85.6 87.6 86.28 86.33 86.78 86.62 47.438 94.906 174.255
89.942 92.282 6/3/2011 91.9 89.5 90.0 89.9 92.3 89.73 91.33 91.24 91.30 49.338 100.408 183.214
85.478 85.1 6/4/2011 84.1 85.9 83.5 85.5 85.1 85.91 84.42 86.65 84.14 47.238 92.806 173.995
94.46 97.286 6/5/2011 96.3 94.9 941 94.5 97.3 9549 9567 95.89 96.29 52.504 105.175 192.545
97.574  100.994 6/6/2011 99.8 98.0 97.7 97.6 101.0 98.83 99.51 99.09 99.99 54.341 109.395 198.977
95.918 98.726 6/7/2011 97.2 96.3 96.4 95.9 98.7 97.03 98.10 97.39 97.73 53.349 107.841 195.557
83.066 86.288 6/8/2011 83.5 86.4 84.8 83.1 86.3 86.41 85.81 84.17 8532 47.512 94.339 169.014
69.674 72.878 6/9/2011 71.0 71.8 71.9 69.7 729 70.92 72.18 70.40 71.95 38.994 79.345 141.355
66.2 67.766 6/10/2011 66.2 69.8 67.6 66.2 67.8 68.77 67.59 66.82 66.86 37.812 74.306 134.181
75.758 76.694 6/11/2011 76.2 76.2 74.8 75.8 76.7 7553 75.19 76.65 75.76 41.527 82.663 153.921
77.324 78.98 6/12/2011 78.8 77.9 77.7 77.3 79.0 77.43 7829 78.26 78.04 42.572 86.065 157.155
69.314 70.97 6/13/2011 69.2 70.3 69.9 69.3 71.0 69.23 69.98 70.03 70.05 38.066 76.930 140.612
76.028 78.728 6/14/2011 78.1 79.5 78.1 76.0 787 79.12 78.67 76.93 77.79 43.501 86.485 154.478
84.632 86.396 6/15/2011 86.4 85.0 85.3 84.6 86.4 84.97 86.35 85.78 85.43 46.720 94.927 172.248
85.118 86.27 6/16/2011 86.8 85.3 84.0 85.1 86.3 8524 8494 86.28 8531 46.868 93.373 173.252
90.266 92.732 6/17/2011 91.3 92.5 90.9 90.3 92.7 9292 9233 91.58 91.75 51.090 101.500 183.884
80.312 82.904 6/18/2011 81.5 82.9 81.4 80.3 829 8271 8222 81.34 81.95 45475 90.391 163.326
85.118 87.458 6/19/2011 85.6 86.6 85.5 85.1 87.5 86.66 86.60 86.28 86.49 47.649 95.200 173.252
86.81 88.448 6/20/2011 87.9 88.2 86.7 86.8 88.4 88.35 87.88 88.02 87.48 48.578 96.607 176.746
71.258 72.788 6/21/2011 72.0 72.9 71.9 71.3 72.8 72.07 7216 72.03 71.87 39.628 79.324 144.627
74.948 76.586 6/22/2011 76.7 75.0 74.4 74.9 76.6 7426 74.83 75.82 75.65 40.831 82.264 152.248
76.604 78.62 6/23/2011 771 78.9 76.4 76.6 78.6 7845 76.87 7752 77.68 43.132 84.511 155.668
78.17 80.168 6/24/2011 79.4 79.4 78.3 78.2 80.2 78.96 78.92 79.13 79.22 43.417 86.758 158.902
80.564 82.544 6/25/2011 82.0 80.8 80.6 80.6 82.5 80.52 81.33 81.60 81.59 44.272 89.404 163.846
81.302 82.814 6/26/2011 82.1 82.3 82.1 81.3 82.8 8209 8291 8236 81.86 45137 91.147 165.370
78.044 80.06 6/27/2011 79.1 79.8 77.9 78.0 80.1 79.37 7854 79.00 79.12 43.638 86.338 158.642
79.61 81.716 6/28/2011 81.1 80.2 79.1 79.6 81.7 79.87 79.80 80.62 80.77 43.913 87.724 161.876
89.78 91.76 6/29/2011 91.3 89.7 89.3 89.8 91.8 89.96 90.55 91.08 90.78 49.465 99.547 182.880
98.78 101.48 6/30/2011 100.0 100.3 98.4 98.8 101.5 101.25 100.29 100.33 100.47 55.671 110.256 201.467

Linear regression Slope 1.066 1.061 1.029 0.997

parameters Intercept  -5.687  -4.170 -1.265 -0.705 sum(1/si"2) s'

Si(x,yi) 1.349 0.954 0.706 0.694 5.73249 0.83533

0.069812 0.208934
0.382169 0.206952

0.48731 0.408523
6.273045 3.18E-05

One example for day 30 (i=1 to 4 for four reference stations) :
yi 1.1 0.4 -0.7 -0.6 1.43312 0.83533

Table 2 An example of QC using Spatial Regression Test (SRT) method for daily maximum temperature estimation
(unit: F). Stations are from the Automated Weather Data Network and locations are on an East-West by North South
street naming convention. The original station (Lincoln 20E 35S) is labeled x while the four neighboring stations are

y1y2, y3, and y4. Equation 3 is used to derive the unbiased estimates x;, x, etc. for n=30. The final estimate x(est) is
determined from the unbiased estimates using equations 4 and 5.

Using the above methodology, the rate of error detection can be pre-selected. The reader
should note that the results are presented in terms of the fraction of data flagged against
the range of f values (defined above) rather than selecting one f value on an arbitrary ba-
sis. This type of analysis makes it possible to select the specific f values for stations in dif-
fering climate regimes that would keep the Type I error rate uniform across the country.
For example for sake of illustration, suppose the goal is to select f values which keep the
potential Type I errors to about two percent. A representative set of stations and years
can be pre-analyzed prior to QC to determine the f values appropriate to achieve this
goal.The SRT method implicitly resolves the bias between variables at different stations
induced by elevation difference or other attributes.

Tables 2 and 3 show the use of SRT (equations 3, 4 and 5 above). The data in the example are re-
trieved from the AWDN stations for the month of June 2011. Only one month was used in this
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example. The stations are located in the city of Lincoln, NE, USA. The station being tested is
Lincoln 20E 35S and is labeled x while the neighboring stations are labeled y1, y2, y3, and y4.
The slope (ai), interception (bi), and standard errors of the linear regression between the x and
yi are computed. The non-biased estimation of x from data at neighboring stations (yi) are
shown as x'1, x'2, x'3, and x’4. The values normalized s by the standard errors ( x’i/si*) are used
in equation 4 to create the estimation x(est). The last column shows the bias between the true X
value and the estimated value (x(est)) from the four stations. We see that the sum of bias of the
30 days has a value of 0.00, which is expected because the estimates using the SRT method are
un-biased. The standard error of this regression estimation is 0.83 F. Here, for instance, where f
was chosen as 3, any value that is smaller than -2.5 F or larger than 2.5 F will be treated as an
outlier. In this example no value of x-x(est) was marked as an outlier.

|Original data at Stations, Lincoln NE, USA | estimated x from y | Normalized by s' |
20E 35S Hawelock 82E 20S 12W 55N 51E 13S
days X y1 y2 y3 y4 x'1 x'2 x'3 x'4 x'1/s1'"2 x'2/s2'"2 x'3/s3"2 x'4/s4"2 X(est) x-x(est)

6/1/2011 85.1 85.5 83.4 83.7 85.6 85.64 84.39 84.84 84.66 54.055 98.238 164.200 171.671 84.8  -0.31
6/2/2011 86.2 86.2 85.3 85.6 87.6 86.39 86.39 86.80 86.64 54.533 100.577 167.980 175.693 86.6 0.46
6/3/2011 91.9 89.5 90.0 89.9 923 89.80 91.36 91.24 91.31 56.686 106.360 176.575 185.152 911 -0.81
6/4/2011 84.1 85.9 83.5 85.5 85.1 86.03 84.50 86.67 84.18 54.306 98.370 167.731 170.692 85.3 1.14
6/5/2011 96.3 94.9 94.1 94.5 97.3 9549 9567 9586 96.28 60.274 111.370 185.527 195.227 95.9 -0.35
6/6/2011 99.8 98.0 97.7 97.6 101.00 98.79 99.48 99.05 99.96 62.356 115.806 191.697 202.692 99.4  -0.32
6/7/2011 97.2 96.3 96.4 95.9 98.7 97.00 98.07 97.36 97.71 61.231 114.173 188.416 198.126 97.6 0.35
6/8/2011 83.5 86.4 84.8 83.1 86.3 86.53 85.88 84.20 85.36 54.617 99.981 162.951 173.084 85.2 1.69
6/9/2011 71.0 71.8 71.9 69.7 729 71.23 7235 70.49 72.04 44.964 84.223 136.417 146.085 71.5 0.47
6/10/2011 69.8 67.6 66.2 67.8 69.11 67.80 66.93 66.97 43.624 78.926 129.534 135.792 67.4
6/11/2011 76.2 76.2 74.8 75.8 76.7 7578 75.34 76.72 75.83 47.835 87.710 148.472 153.768 76.0 -0.15
6/12/2011 78.8 77.9 77.7 77.3 79.0 77.66 78.41 7832 78.10 49.019 91.285 151.575 158.370 78.2  -0.65
6/13/2011 69.2 70.3 69.9 69.3 71.0 69.57 70.17 70.12 70.15 43.911 81.685 135.704 142.243 70.1 0.85
6/14/2011 78.1 79.5 78.1 76.0 78.7 79.32 78.79 76.99 77.85 50.071 91.727 149.007 157.863 779 -0.20
6/15/2011 86.4 85.0 85.3 84.6 86.4 85.10 86.41 85.80 85.46 53.720 100.599 166.054 173.301 85.7 -0.67
6/16/2011 86.8 85.3 84.0 85.1 86.3 85.37 85.01 86.30 85.34 53.887 98.966 167.017 173.048 85.6 -1.18
6/17/2011 92.5 90.9 90.3 927 9295 9235 91.57 91.75 58.672 107.508 177.217 186.058 91.9
6/18/2011 81.5 82.9 81.4 80.3 829 8287 8232 81.38 82.00 52.308 95832 157.495 166.271 81.9 0.47
6/19/2011 85.6 86.6 85.5 85.1 87.5 86.77 86.66 86.30 86.52 54.772 100.886 167.017 175.440 86.5 0.93
6/20/2011 87.9 88.2 86.7 86.8 88.4 8844 8793 88.03 87.50 55.825 102.365 170.370 177.433 87.9 0.01
6/21/2011 72.0 72.9 71.9 71.3 72.8 7237 7233 7211 71.95 45.682 84.201 139.556 145.904 721 0.13
6/22/2011 76.7 75.0 74.4 74.9 76.6 7453 7498 75.89 75.72 47.045 87.291 146.867 153.550 755 -1.18
6/23/2011 771 78.9 76.4 76.6 78.6 78.66 77.01 77.58 77.74 49.653 89.652 150.148 157.645 77.6 0.50
6/24/2011 79.4 79.4 78.3 78.2 80.2 79.17 79.04 79.19 79.28 49.976 92.014 153.251 160.762 79.2  -0.24
6/25/2011 82.0 80.8 80.6 80.6 825 80.71 81.43 81.64 81.64 50.945 94.795 157.994 165.546 81.5 -0.46
6/26/2011 82.1 82.3 82.1 81.3 82.8 8226 83.00 8239 81.91 51.925 96.627 159.456 166.089 82.3 0.24
6/27/2011 79.1 79.8 77.9 78.0 80.1 79.57 78.66 79.06 79.17 50.227 91.572 153.001 160.545 79.1 0.00
6/28/2011 81.1 80.2 79.1 79.6 81.7 80.06 79.91 80.66 80.82 50.538 93.029 156.104 163.879 80.5 -0.61
6/29/2011 91.3 89.7 89.3 89.8 91.8 90.03 90.58 91.07 90.79 56.830 105.455 176.254 184.101 90.8  -0.57
6/30/2011 100.0 100.3 98.4 98.8 101.5 101.17 100.25 100.29 100.44 63.863 116.711 194.087 203.671 100.4 0.45

|Slope 1.053  1.053  1.024  0.993 ] 0.00

Table 3 An example of estimating missing data Spatial Regression Test (SRT) method for daily maximum temperature
estimation (unit: F). In this example, two days were assumed missing: 6/10 and 6/17 and were estimated using equa-
tions 3, 4, and 5 (see highlighted values in the x(est) column. Stations are from the Automated Weather Data Network
and locations are on an East-West by North South naming convention. The original station (Lincoln 20E 35S) is labeled

x while the four neighboring stations are y1,y2, y3, and y4. Equation 3 is used to derive the unbiased estimates x;, x,
etc. for n=28. The final estimate x(est) is determined from the unbiased estimates using equations 4 and 5.

If one value or several values at the station x is missing, the x(est) will provide an esti-
mate for the missing data entry (see Table 3). The example in Table 3 shows that the val-
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ue of x is missing in June 10 and June 17, 2011, through the SRT method we can obtain
the estimates as 67.4 F and 91.9 F for the two days independent of the true values of 66.2
F and 91.3 F with a bias of 1.2 F and 0.6 F, respectively. Here we note that the estimated
values of the two days are slightly different than those estimated in Table 2 because there
are 2 less values to include in the regression.

4. Providing estimates: robustness of SRT method and weakness of IDW
method

The SRT method was tested against the Inverse Distance Weighted (IDW) method to deter-
mine the representativeness of estimates obtained (29). The SRT method outperformed the
IDW method in complex terrain and complex microclimates. To illustrate this we have taken
the data from a national cooperative observer site at Silver Lake Brighton, UT.The elevation
at Silver Lake Brighton is 8740 ft. The nearest neighboring station is located at Soldier Sum-
mit at an elevation of 7486 ft. This data is for the year 2002. Daily estimates for maximum
and minimum temperature were obtained for each day by temporarily removing the obser-
vation from that day and applying both the IDW (eq. 1) and the SRT (eq.2) methodsagainst
15 neighboring stations. The estimations for the SRT method were derived by applying the
method (deriving the un-biased estimates) every 24 data.

100 # SRT y=12152x "
o idw . 7
Linear (SRT) R = 0.9232 g
— ——-Linear H:I'HE- ol
Linear [idw }

- (=] £Ly
] ] [}
1 1 1

y = 1.0684x + 8.2771
R®=0.9439

n

Estimated (F)
— g [}

[ B L
o o
1 1

w0

427845 SILVER LAKE BRIGHTON, UT

10 20 30 40 50 &0 70 &0 90
Observed (F)

—
[} o]
1

o]

Figure 1. The results of estimating maximum temperature at Silver Lake Brighton, UT for both the IDW and the
SRT methods.
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Fig. 1 shows the result for maximum temperature at Silver Lake Brighton, Utah. The IDW
approach results in a large bias. The best fit line for IDW indicates the estimates are system-
atically high by over 8 F (8.27); the slope is also greater than one (1.0684). When the best fit
line for IDW estimates was forced through zero, the slope was 1.2152. On the other hand the
estimates from the SRT indicate almost no bias as evidenced by the best-fit slope (0.9922).

For the minimum temperature estimates a similar result was found (Fig. 2). The slope of the
best-fit line for the SRT indicates an unbiased (0.9931) while the slope for the IDW estimates
indicates a large bias on the order of 20% (slope = 1.1933). The reader should note the SRT
unbiased estimators are derived every 24 days (see ) and that applying the SRT only once
for the entire period will degrade the results shown (7).

B0, * SAT y =1.1933x
= idw R® = 0.8524

70 Linear (SRT) )

&0 | = —— - Linear (idw) :

50 A
— 4'] =
e
o v=09931x
" R: = 0.9343
E
W
L
205 gt ] 30 40 50 60

r

427845 SILVER LAKE BRIGHTON, UT

-30 Obzerved (F)

Figure 2. The results of estimating minimum temperature at Silver Lake Brighton, UT for both the IDW and the
SRT methods.

5. Techniques used to improve the quality control procedures during the
extreme events.

Quality of data during the extreme events such as strong cold fronts and hurricanes may de-
crease resulting in a higher number of "true" outliers than that during the normal climate
conditions. (28) carefully analyzed the sample examples of these extreme weather conditions
to quantitatively demonstrate the causes of the outliers and then developed tools to reset the
Type II error flags. The following discussion will elaborate on this technique.
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5.1. Relationship between interval of measurement and QA failures

Analyses were conducted to prepare artificial max and min temperature records (not the
measurements, but the values identified as the max and min from the hourly time series) for
different times-of-observation from available hourly time series of measurements. The ob-
servation time for coop weather stations varies from site-to-site. Here we define the AM sta-
tion, PM station, and nighttime station according to the time of observation (i.e. morning,
afternoon-evening, and midnight respectively). The cooperative network has a higher num-
ber of PM stations but AM measurements are also common; the Automated Weather Data
Network uses a midnight to midnight observation period.

The daily precipitation accumulates the precipitation for the past 24 hours ending at the
time of observation. The precipitation during the time interval may not match the precipi-
tation from nearby neighboring stations due to event slicing, i.e. precipitation may occur
both before and after a station’s time of observation. Thus, a single storm can be sliced in-
to two observation periods.
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Figure 3. Example time intervals for observations at Mitchell, NE (after 28).

The measurements of the maximum and the minimum temperature are the result of making
discrete intervals on a continuous variable. The maximum or minimum temperature takes
the maximum value or the minimum value of temperature during the specific time interval.
Thus the maximum temperature or the minimum temperature is not necessarily the manxi-
mum or minimum value of a diurnal cycle. Examples of the differences were obtained from
three time intervals (see Fig 3) after28)). The hourly measurements of air temperature were
retrieved from 1:00 March 11 to 17:00 March 13, 2002 at Mitchell, NE. The times of observa-
tion are marked. Point A shows the minimum air temperature obtained for March 11 for AM
stations, and B is the maximum temperature obtained for March 13 at the PM stations. The
minimum temperature may carry over to the following interval for AM stations and the
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maximum temperature may carry over to the following interval for PM stations. We have
therefore marked these as problematic in Table 4to note that the thermodynamic state of the
atmosphere will be represented differently for AM and PM stations. Through analysis of the
time series of AM, PM and midnight calculated from the high quality hourly data we find
that measurements obtained at the PM station have a higher risk of QA failure when com-
pared to neighboring AM stations. The difference in temperature at different observation
times may reach 20 °F for temperature and several inches for precipitation. Therefore the QA
failures may not be due to sensor problems but, to comparing data from stations where the
sensors are employed differently. To avoid this problem AM stations can be compared to
AM stations, PM stations to PM stations, etc. Note this problem will be solved if moderniza-
tion of network provides hourly or sub-hourly data at most station sites.

Nighttime station

AM station PM station (AWDN)
Time intervals (e.g.) ~7:00 ~17:00 ~midnight
Maximum temperature Problematic
Minimum temperature Problematic
Precipitation Good Good Good

Table 4. Time interval and possible performance of three intervals of measurements.

5.2. 1993 floods

Quality control procedures were applied to the data for the 1993 Midwest floods over the
Missouri River Basin and part of the upper Mississippi River Basin, where heavy rainfall
and floods occurred (28). The spatial regression test performs well and flags 5~7 % of the
data for most of the area at f=3. The spatial patterns of the fraction of the flagged records do
not coincide with the spatial pattern of return period. For example, the southeast part of Ne-
braska does not show a high fraction of flagged records although most stations have return
periods of more than 1000 years. While, upper Wisconsin has a higher fraction of flagged
records although the precipitation for this case has a lower return period in that area.

The analysis shows a significantly higher fraction of flagged records using AWDN stations
in North Dakota than in other states. This demonstrates that the differences in daily precipi-
tation obtained from stations with different times of observation contributed to the high
fraction of QA failures. A high risk of failure would occur in such cases when the measure-
ments of the current station and the reference station are obtained from PM stations and AM
stations respectively. The situation worsens if the measurements at weather stations were
obtained from different time intervals and the distribution of stations with different time-of-
observation is unfavorable. This would be the case for an isolated AM or PM station.

Among the 13 flags at Grand Forks, 9 flags may be due to the different times of observation
or perhaps the size and spacing of clouds (28). Four other flags occurred during localized
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precipitation events, in which only a single station received significant precipitation. Higher
precipitation entries occurring in isolation are more likely to be identified as potential outli-
ers. These problems were expected to be avoided by examining the precipitation over larger
intervals, e.g. summing consecutive days into event totals.

5.3. 2002 drought events

No significant relationship is found between the topography and the fraction of flagged re-
cords. Some clusters of stations with high flag frequency are located along the mountains;
however, other mountainous stations do not show this pattern. Moreover, some locations
with similar topography have different patterns. For the State of Colorado, a high fraction of
flags occurs along the foothills of the Rocky Mountains where the mountains meet the high
plains. A high fraction was also found along interstate highways 25 and 70 in east Colorado.
These situations may come about because the weather stations were managed by different
organizations or different sensors were employed at these stations. These differences lead to
possible higher fraction of flagged records in some areas.
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Figure 4. Time series of Stratton and a neighboring station during 2002 droughts. a) The daily time series of Tmax for
Stratton and Stratton AWDN station (a058019). b) Hourly time series at Stratton AWDN station. (after 28).
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Instrumental failures and abnormal events also lead to QA failures. Fig. 4 shows the time
series of the Stratton Station in Color adooperated as part of the automated weather net-
work. This station has nighttime (midnight) readings while all of the neighboring sites are
AM or PM stations. Stratton thus has the most flagged records in the state (6): the highlight-
ed records in Fig. 4 were flagged. We checked the hourly data time series to investigate the
QA failure in the daily maximum temperature time series for the time period from April 20
to May 20, 2002. No value was found to support a Tmax of 88 for May 6 in the hourly time
series, thus 88 °F appears to be an outlier. On May 7 a high of 85 °F is recorded for the PM
station observation interval, in which the value of the afternoon of May 6 is recorded as the
high on May 7. The 102 °F observation of May 8 at 6:00 AM appears to be an observation
error caused by a spike in the instrument reading. The observation of 93 °F at 8:00 AM May
17 is supported by the hourly observation time series (see Fig. 4 (b)) and is apparently asso-
ciated with a down burst from a decaying thunderstorm.

5.4. 1992 Andrew Hurricane

In Fig. 5 the evolution of the spatial pattern of flagged records from August 25 to August 28,
1992 during Hurricane Andrew and the corresponding daily weather maps shows a heavy pat-
tern of flagging.. The flags in the spatial pattern figures are cumulative for the days indicated.
The test shows that the spatial regression test explicitly marks the track of the tropical storm.
Starting from the second land-fall of Hurricane Andrew at mid-south Louisiana, the weather
stations along the route have flagged records. The wind field formed by Hurricane Andrew
helps to define the influence zone of the hurricane on flags. Many stations without flags have
daily precipitation of more than 2 inches as the hurricane passes, which confirms that the spa-
tial regression test is performing reasonably well in the presence of high precipitation events.

5.5. Cold front in 1990

Flags for the cold front event during October, 1990 were examined. The maximum air tem-
perature dropped by as much as 40 °F during the passage of the cold front. Spatial patterns
of flags on October 6 coincide with the area traversed by the cold front and many stations
were flagged in such states as North Dakota, South Dakota, Iowa, and Nebraska. On Octo-
ber 7, the cold front moved to southeast regions beyond Nebraska and Iowa. Of course near-
by stations on opposite sides of the cold front may experience different temperatures thus
leading to flags. This may be further complicated when different times of observation are
involved. The cold front continues moving and the area of high frequency of flags also
moves with the front correspondingly.

A similar phenomenon can be found in the test of the precipitation and the minimum tem-
perature. A spatial regression test of any of these three variables can roughly mark the
movements of the cold front events. The identified movements of the cold fronts and associ-
ated flagging of “good records” may lead to more manual work to examine the records.
Simple pattern recognition tools have been developed to identify the spatial patterns of
these flags and reset these flags automatically (see Fig. 6).
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Figure 5. Daily weather maps and spatial pattern of flagged records for 1992 Andrew Hurricane events. (after 28).

The spatial patterns of flagged records are significant for both the spatial regression test of
the cold front events and the tropical storm events. However, most of these flagged records
are type I errors, thus we tested a simple pattern recognition tool to assist in reducing these
flags. Differences still exist between the distribution patterns of the flagged records for the
cold front event and the tropical storm events due to the characteristics of cold front events
and tropical storm events. These differences are:

* Cold fronts have wide influence zones where the passages of the cold fronts are wider
and the large areas immediately behind the cold front may have a significant flagged frac-

15
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tion of weather stations. The influence zones of the tropical storms are smaller where only
the stations along the storm route and the neighboring stations have flags.

* Cold fronts exert influences on both the air temperature and precipitation. The temper-
ature differences between the regions immediately ahead of the cold fronts and regions
behind can reach 10~20 °C. The precipitation events caused by the cold fronts may be
significant, depending on the moisture in the atmosphere during the passage. The trop-
ical storms generally produce a significant amount of precipitation. A few inches of
rainfall in 24 hours is very common along the track because the tropical storms general-
ly carry a large amount of moisture.
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Figure 6. Spatial patterns of flagged records for cold front events and related fronts. The temperature map is the in-
terpolated maximum temperature difference between October 6 and October 7, 1990. The color front is on October
7, and the black one is on October 6. The flags are the QA failures on that day.
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5.6. Resetting the flags for cold front events and hurricanes

Some measurements during the cold front and the hurricane were valid but flagged as outliers
due to the effect of QC tests during times of large temperature changes caused by the cold front
passages and the heavy precipitation occurring in hurricanes. A simple spatial scheme was de-
veloped to recognize regions where flags have been set due to Type I errors. The stations along
the cold front may experience the mixed population where some stations have been affected by
the cold fronts and others have not. A complex pattern recognition method can be applied to
identify the influence zone of the cold fronts through the temperature changes (e.g. using some
methods described in Jain et al, 2000). In our work, we use the simple rule to reset the flag given
that significant temperature changes occur when the cold front passes. The mean and the
standard deviation of the temperature change can be calculated as:

AT=1%aT 7)
nio
Our =%2(AT,-*MZ)—E*A_T (8)

where AT is the mean temperature change of the reference stations, AT,is the temperature
change at thei " station for the current day, n is the number of neighboring stations, and o0,

is the standard deviation of the temperature change for the current day. A second round test
is applied to records that were flagged in the first round:

AT - f'0,, <AT<AT+ f'o,, )

whereAT is the difference between maximum/minimum air temperature for the current day
and the last day. The cutoff value f” takes a value of 3.0. The test results with this refinement
for T, are shown in Fig. 7 for Oct. 7, 1990. The results obtained using the refinements de-
scribed in this section were labeled “modified SRT” and the results using the original SRT
were labeled “original SRT” in Fig. 7 and 8. Of the 291 flags originally noted only 41 flags
remain after the reset phase. The daily temperature drops more than 20 °F at most stations
where the flags were reset and the largest drop is 55 °F.

For the heavy precipitation events, we compare the amount of precipitation at neighboring
stations to see whether heavy precipitation occurred. We use a similar approach as for tem-
perature to check the number of neighboring stations that have significant precipitation,

é/ = count(pi 2 pthreshald) (10)
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where the p ; is the daily precipitation amount at a neighboring station, and p .04 IS @
threshold beyond which we recognize that a significant precipitation event has occurred at
the neighboring station, e.g. 1 in. When C22and pp,,;,,,, we reset the flag. Here p is the precip-

itation amount of the current station, and p ,; is the upper threshold beyond which the
threshold will flag the measurement. Fig.8 shows maps of flags after the reset process. Of
the 78 flags originally noted only 41 flags remain after the reset phase. Most of the remain-
ing flags are due to the precipitation being higher than the upper threshold.

OCT. 7, 1990

¢ Modified SRT
Original SRT

Figure 7. All points shown were flagged by the original SRT method while the red points were those that are
flagged by the modified SRT method for maximum daily Temperature. Blue symbols are those that are reset by
the modified SRT method.

Aug. 20 - 29, 1992
1 flag for modified SRT

! 2 flags for modified SRT
1 flag for original SRT

! 2 flags for original SRT
Stations without flag T ke

Figure 8. This is the reset of flags for the Andrew 1992 hurricane. The flags are the cumulative flags starting from Aug.
20 to Aug. 29, 1992. The flags by the modified SRT method overlay the flags by the original SRT method.
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Flags for the Andrew 1992 hurricane. The flags are the cumulative flags starting from
Aug. 20 to Aug. 29, 1992. The flags by the modified SRT method overlay the flags by the
original SRT method.

6. Multiple interval methods based on measurements from reference
stations for precipitation.

One QC approach involved developing threshold quantification methods to identify a sub-
set of data consisting of potential outliers in the precipitation observations with the aim of
reducing the manual checking workload. This QC method for precipitation was developed
based on the empirical statistical distributions underlying the observations.

The search for precipitation quality control (QC) methods has proven difficult. The high
spatial and temporal variability associated with precipitation data causes high uncertainty
and edge creep when regression-based approaches are applied. Precipitation frequency dis-
tributions are generally skewed rather than normally distributed. The commonly assumed
normal distribution in QC methods is not a good representation of the actual distribution of
precipitation and is inefficient in identifying the outliers.

The SRTmethod is able to identify many of the errant data values but the rate of finding er-
rant values to that of making type I errors is conservatively 1:6. This is not acceptable be-
cause it would take excessive manpower to check all the flagged values that are generated in
a nationwide network. For example, the number of precipitation observations from the co-
operative network in a typical day is 4000. Using an error rate of 2% and considering the
type I error rate indicates that several hundred values may be flagged, requiring substantial
personnel resources for assessment.

(29) found the use of a single gamma distribution fit to all precipitation data was ineffective.
A second test, the multiple intervals gamma distribution (MIGD) method, was introduced.
It assumed that meteorological conditions that produce a certain range in average precipita-
tion at surrounding stations will produce a predictable range at the target station. The
MIGD method sorts data into bins according to the average of precipitation at neighboring
stations; then, for the events in a specific bin, an associated gamma distribution is derived
by fit to the same events at the target station. The new gamma distributions can then be
used to establish the threshold for QC according to the user-selected probability of exceed-
ance. We also employed the Q test for precipitation (20) using a metric based on compari-
sons with neighboring stations. The performance of the three approaches was evaluated by
assessing the fraction of “known” errors that can be identified in a seeded error dataset(18).
The single gamma distribution and Q-test approach were found to be relatively efficient at
identifying extreme precipitation values as potential outliers. However, the MIGD method
outperforms the other two QC methods. This method identifies more seeded errors and re-
sults in fewer Type I errors than the other methods.
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6.1. Estimation of parameters for distribution of precipitation and thresholds from the
Gama distribution

The Gamma distribution was employed to represent the distribution of precipitation. While
other functions may provide a better overall fit to precipitation data our goal is to establish a
reasonable threshold on values beyond which further checking will be required to deter-
mine if the value is an outlier or simply an extreme precipitation event. The precipitation
events are fit to a Gamma distribution,G(y, [3). The shape and scale parameters y,  can be
estimated from the precipitation events following (21) and (13),

y=2- a1
S
S2

- (12

whereX and s are the sample mean and the sample standard deviation, respectively.

The data for each station in the Gamma distribution test include all precipitation events on a
daily basis for a year. The parameters for left-censored (0 values excluded) Gamma distribu-
tions, on a monthly basis, are also calculated, based on the precipitation events for individu-
al months in the historical record. To ascertain the representativeness of the Gamma
distribution, the precipitation value for the corresponding percentiles (P): 99, 99.9, 99.99, and
99.999% were computed from the Gamma distribution and compared with the precipitation
values for given percentiles based on ranking (original data).

The criterion for a threshold test approach can be written as,
x(j,t)<I(p) (13)

wherex(j,t) is the observed daily precipitation on day t at station j and I(p) is the threshold
daily precipitation for a given probability, p (=P/100), calculated using the Gamma distribu-
tion. A value not meeting this criterion is noted as a potential outlier (the shaded area to the
right of the p=0.995 value for the distribution for all precipitation events in Fig. 9). The test
function uses the one-sided test for precipitation, a non-negative variable.

6.2. Multiple interval range limit gamma distribution test for precipitation (MIGD)

Analysis has shown that precipitation data at a station can be fit to a Gamma distribution,
which can then be applied to a threshold test approach. With this method only the most ex-
treme precipitation events will be flagged as potential outliers so errant data at other points
in the distribution are not identified.
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Figure 9. Schematic of gamma distribution for all daily precipitation events and for the it interval of the MIGD approach.

The MIGD was developed to address these non-extreme points along the distribution. It as-
sumes that meteorological conditions that produce a certain range in average precipitation at
surrounding stations will produce a predictable range at the target station. Our concept is to
develop a family of Gamma distributions for the station of interest and to selectively apply the
distributions based on specific criteria. The average precipitation for each day is calculated for
neighboring stations during a time period (e.g. 30 years). These values are ranked and placed
into n bins with an equal number of values in each. The range for 1 intervals can be obtained
from the cumulative probabilities of neighboring average time series, {0, 1/n, 2/n, ..., n-1/n, 1}.
For the i ™ interval all corresponding precipitation values at the station of interest (target sta-
tion) are gathered and parameters for the gamma distribution estimated. This process is re-
peated for each of the n intervals resulting in a family of Gamma curves (G ;). The operational
QCinvolves the application of the threshold test where the gamma distribution for a given day
is selected from the family of curves based on the average precipitation for the neighboring sta-
tions. Each interval can be defined as(E(p(i /1)), E(p((i +1)/n))], where p(i / n)is the cumula-
tive probability associated with i/n, i=0 to n-1, and &(p(i/n)) is the neighboring stations’
average for a given cumulative probability.

Now for each precipitation event, x, at the station of interest, the neighboring stations” aver-
age is calculated. If the average precipitation falls in the interval(E(p(i /n)), E(p((i +1)/n))],
then G ; is used to form a test:

G (1-p)<x(j.t)<G (p) (14)

where p is a probability in the range (0.5, 1), and the G ; (p) is the precipitation value for the
given probability p in the gamma distribution associated with the i * interval. This equation
forms a two sided test. Any value that does not satisfy this test will be treated as an outlier
for further manual checking. The intervals and the estimation of this method were imple-
mented using R statistical software (19).

The results indicate that the Gamma distribution is well suited for deriving appropriate thresh-
olds for a particular precipitation event. The calculated extreme values provide a good basis
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for identifying extreme outliers in the precipitation observations. The inclusion of all precipita-
tion events reduces the data requirements for the quantification of extreme events which gen-
erally requires a long time series of observations (e.g. using Gumbel distribution.) Using the
approach based on the Gamma distribution, a suitable representation of the distribution of
precipitation can be obtained with only a few years of observation, as is the case with newly es-
tablished automatic weather stations, e.g. Climate Reference Network. Further study is re-
quired for probability selection in the Gamma distribution approach.

sname range lower upper q999 q995 q99 q975 q95 q9 ql q05 q025 q01 q005
028820 0~0.0510 0 0.0510 0.8441 0.6332 0.5431 0.4251 0.3369 0.2502 0.0055 0.0021 = 0.0008 0.0002 9.39E-05
028820 0.0510~0.1111 0.0510 0.1111 | 1.1533 0.8704 0.7493 0.5903 0.4711 0.3532  0.0097 0.0040 0.0017 = 0.0005 0.0002
028820 0.1111~0.1899 0.1111  0.1899  1.2989 0.9896 0.8567 0.6816 0.5495 0.4181 0.0156 0.0071 0.0033 0.0012 0.0006
028820 0.1899~0.3326 0.1899 0.3326  1.8631 1.4162 1.2243 0.9717 0.7815 0.5925 0.0206 0.0092 0.0042 0.0015 0.0007
028820 0.3326~2.1216 0.3326 2.1216  2.8514 2.1861 1.8996 1.5210 1.2346 0.9484 0.0429 0.0208 0.0102  0.0040 0.0020

Table 5. Multiple gamma distributions (n=5) for the Multiple Interval Gamma Distribution (MIGD) method at Tucson,
AZ. Lower and upper represent the upper and lower limits of each bin for surrounding station averages. The precipita-
tion threshold for the target station can be selected from q999, q995, 999, q975, 995, q9, q1,q05,q025,q01, q005,
and g001 as these are associated with gamma distribution for the station of interest.

A simple gamma distribution can be fit to the daily precipitation values at a station. Upper
thresholds can be set based on the cumulative probability of the precipitation distribution.
This single gamma distribution (SGD) test will address the most extreme values of precipita-
tion and flag them for further testing. However, to address non-extreme values of precipita-
tion that are not out on the tail of the SGD another approach is needed. We have formulated
the multiple interval gamma distribution test (MIGD) for this purpose. The main assump-
tion is that the meteorological conditions that produce a certain range in average precipita-
tion at surrounding stations will produce a predictable range of precipitation at the target
station. It does not estimate the precipitation at the target station but estimates the range in-
to which the precipitation should fit.

The average precipitation for each day is calculated for neighboring stations during a histor-
ical period, say 30 years. These values are then ranked and placed into n bins with an equal
number of values in each. For all the values in a given bin, the daily precipitation at the tar-
get station are gathered and a gamma distribution formed. The process is repeated n times
once for each bin resulting in a family of gamma distribution curves. A separate family of
curves can be derived for each month or each season. In operation, the daily average of the
precipitation at surrounding stations is calculated and used to point to the n"th gamma dis-
tribution which in turn provides thresholds against which to test for that day. For instance,
the upper threshold can be selected to correspond with the cumulative probability for the
n’th gamma distribution. The user is able to specify the threshold according the cumulative
probability. For example we can be 99.5 % confident that values will not exceed the corre-
sponding value on the cumulative probability curve. Values that exceed this are not necessa-
rily wrong but flagged for further review. The MIGD will find more precipitation values
that need to be reviewed than the single gamma distribution test.

Table 5 provides an example of the MIGD for n=5 at Tucson, AZ, USA. We update this type of
information on an annual basis. If the precipitation value falls outside the q value of a selected
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confidence level, we mark the value as an outlier. For example, Suppose we select 999 for our
confidence. The precipitation on August 2, 1987 was 1.3 inches while the average of neighbor-
ing stations had a value of 0.06 inches. The average falls between lower and upper in the 2
row, n=2. ie.0.05, 0.11. The rainfall value (1.3 inches) is larger than the q999 threshold (1.15 in-
ches) thus we can say we are 99.9 % confident that the rainfall is an outlier and it should be flag-
ged for further manual examination. Note that 1.3 inches is in no way an extreme precipitation
value but, it's validity can be challenged on the basis of the MIGD test.

One other QC method for precipitation test is the Q-test (20). The Q-test approach serves as
a tool to discriminate between extreme precipitation and outliers and it has proven to mini-
mize the manual examination of precipitation by choice of parameters that identify the most
likely outliers (20). The performance of both the Gamma distribution test and the Q-test is
relatively weak with respect to identifying the seeded errors. The Q-Test is different from
the Gamma distribution method because the Q-Test uses both the historical data and meas-
urements from neighboring stations while the simple implementation of the Gamma distri-
bution method only uses the data from the station of interest.

The MIGD method is a more complex implementation of the Gamma distribution that
uses historical data and measurements from neighboring stations to partition a station’s
precipitation values into separate populations. The MIGD method shows promise and
outperforms other QC methods for precipitation. This method identifies more seeded er-
rors and creates fewer Type I errors than the other methods. MIGD will be used as an op-
erational tool in identifying the outliers for precipitation in ACIS. However, the fraction
of errors identified by the MIGD method varies for different probabilities and among the
different stations. Network operators, data managers, and scientist who plan to use MIGD
to identity potential precipitation outliers can perform a similar analysis (sort the data in-
to bins and derive the gamma distribution coefficients for each interval) over their geo-
graphic region to choose an optimum probability level.

7. Quality control of the NCDC dataset to create a serially complete
dataset.

Development of continuous and high-quality climate datasets is essential to populate Web-
distributed databases (17) and to serve as input to Decision Support Systems (e.g., 27).

Serially complete data are necessary as input to many risk assessments related to human en-
deavor including the frequency analysis associated with heavy rains, severe heat, severe
cold, and drought. Continuous data are also needed to understand the climate impacts on
crop yield, and ecosystem production. The National Drought Mitigation Center (NDMC)
and the High Plains Regional Climate Center (HPRCC) at the University of Nebraska are de-
veloping a new drought atlas. The last drought atlas (1994) was produced with the data
from 1119 stations ending in 1992. The forthcoming drought atlas will include additional
stations and will update the analyses, maps, and figures through the period 1994 to the
present time. A list was compiled from the Applied Climate Information System (ACIS) for
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stations with a length of at least 40 years of observations for all three variables: precipitation
(PRCP), maximum (Tmax), and minimum (Tmin) temperatures. Paper records were scruti-
nized to identify reported, but previously non-digitized data to reduce, to the extent possi-
ble, the number of missing data. A list of 2144 stations was compiled for the sites that met
the criterion of at least 40 years data with less than two months continuous missing gaps for
at least one of the three variables. The remaining missing data in the dataset were supple-
mented by the estimates obtained from the measurements made at nearby stations. The spa-
tial regression test (SRT) and the inverse distance weighted (IDW) method were adopted in
a dynamic data filling procedure to provide these estimates. The replacement of missing val-
ues follows a reproducible process that uses robust estimation procedures and results in a
serially complete data set (SCD) for 2144 stations that provide a firm basis for climate analy-
sis. Scientists who have used more qualitative or less sophisticated quantitative QC techni-
ques may wish to use this data set so that direct comparisons to other studies that used this
SCD can be made without worry about how differences in missing dataprocedures would
influence the results. A drought atlas based on data from the SCD will provide decision
makers more support in their risk management needs.

After identifying stations with a long-term (at least 40 years) continuous (no data gaps lon-
ger than two months) dataset of Tmax, Tmin, and/or PRCP for a total of 2144 stations, the
missing values in the original dataset retrieved from ACIS were filled to the extent possible
with the keyed data from paper record and the estimates using the SRT and IDW methods.
Two implementations of SRT were applied in this study. The short-window (60 days) imple-
mentation provides the best estimates based on the most recent information available for
constructing the regression. The second implementation of SRT fills the long gaps, e.g. gaps
longer than one month using the data available on a yearly basis. The IDW method was
adopted to fill any remaining missing data after the two implementations of SRT.

This is the first serially complete data set where a statement of confidence can be associated
with many of the estimates, ie. SRT estimates. The RMSE is less than 1F in most cases and
thus we are 95% confident that the value, if available, would lie between +2F of the estimate.
This data set is available ' to interested parties and can be used in crop models, assessment
of severe heat, cold, and dryness. Probabilities related to extreme rainfall for flooding and
erosion potential can be derived along with indices to reflect impact on livestock produc-
tion. The data set is offered as an option to distributing raw data to the users who need this
level of spatial and temporal coverage but are not well positioned to spend time and resour-
ces to fill gaps with acceptable estimates.

Analysis based on the long-term dataset will best reveal the regional and large scale climatic
variability in the continental U.S., making this an ideal data set for the development of a
new drought atlas and associated drought index calculations. Future data observations can
be easily appended to this SCD with the dynamic data filling procedures described herein.

1 Contact the High Plains Regional Climate Center at 402-472-6709
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8. Issues relating QC to gridded datasets,

Gridded datasets are sometimes used in QC but, we caution against this for the following
reasons.New datasets created from inverse distance weighted methods or krigging suffer
from uncertainties. The values at a grid point are usually not "true"measurements but are
interpolated values from the measurements at nearby stations in theweather network.Thus,
the values at the grid points are susceptible to bias. When further interpolation is made to a
given location within the grid, bias will again exist at the specific location between the grid-
ded values..Fig.10provides an example of potential bias. Outside of a gridded data set the
target location would give a large weight to the value at station 5. However, if the radius
used for the gridded data is as in the Fig.10, then the closest station to the target station (5)
will not be included in the grid-based estimation.

Figure 10. An example of station distribution used in the grid method.

9. Quality control of high temporal resolution datasets

The Oklahoma Mesonet (http://www.mesonet.org/) measures and archives weather condi-
tions at 5-minute intervals (Shafer et al., 2000). The quality control system used in the net-
work starts from the raw data of the measurements for the high temporal resolution data. A
set of QC tools was developed to routinely maintain data of the Mesonet. These tools de-
pend on the status of hardware and measurement flag sets built in the climate data sys-
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tem.The Climate Reference Network (CRN, Baker et al. 2004) is another example of the QC
of high frequency data, which installs multiple sensors for each variable to guarantee the
continuous operation of the weather station and thus the quality control can also rely on the
multiple measurements of a single variable. This method is efficient to detect the instrumen-
tal failures or other disturbances; however the cost of such a network may be prohibitive for
non-research or operational networks. The authors of this chapter also carried out QC on a
high temporal resolution dataset in the Beaufort and Chukchi Sea regions. Surface meteoro-
logical data from more than 200 stations in a variety of observing networks and various
stand-alone projects were obtained for the MMS Beaufort and Chukchi Seas Modeling Study
(Phase II). Many stations have a relatively short period of record (i.e. less than 10 years).The
traditional basic QC procedures were developed and tested for a daily data and found in
need of improvement for the high temporal resolution data. In the modification, the time
series of the maximum and the minimum were calculated from the high resolution data. The
mean and standard deviation of the maximum and the minimum can then be calculated
from the time series (e.g max and min temperatures) as the (u,, s,) and (u,, s,), respectively.
The equation (6) using (u, + f s,) and (u,, - f s,) forms limits defined by the upper limits of the
maximum and lower limits of the minimum. The value falling outside the limits will be flag-
ged as an outlier for further manual checking. Similarly, the diurnal change of a variable
(e.g. temperature) was calculated from the high resolution (hourly or sub-hourly) data. The
mean and standard deviation calculated from the diurnal changes will form the limits.

The traditional quality control methods were improved for examining the high temporal
resolution data, to avoid intensive manual reviewing which is not timely or cost efficient.
The identified problems in the dataset demonstrate that the improved methods did find con-
siderable errors in the raw data including the time errors (e.g. month being great than 12).
These newtools offer a dataset that, after manual checking of the flagged data, can be givin a
statement of confidence. The level of confidence can be selected by the user, prior to QC.

The applied in-station limit tests can successfully identify outliers in the dataset. Howev-
er, spatial tests based information from the neighboring stations is more robust in many
cases and identifies errors or outliers in the dataset when strong correlation exists. The
good relationship between the measurements at station pairs demonstrates that there is a
potential opportunity to successfully apply the spatial regression test (SRT, 18) to the sta-
tions which measure the same variables (i.e. air temperature orwind speed). The short
term measurements at some stations may not be efficiently QC’ed with only the three
methods described in this work. One example is the dew point measurements at the first-
order station Iultin-in-Chukot. More than 90 percent of the dew point measurements were
flagged, because the parameters for QC’ing the variable used the state wide parameters
which cannot reflect the microclimate of each station.

10. Summary and Conclusions

Quality control (QC) methods can never provide total proof that a data point is good or bad.
Type I errors (false positives) or Type Il errors (false negatives) can occur and result in labeling
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of good data as bad and bad data as good respectively. Decreasing the number of Type I and
Type Il errors is difficult because often a push to decrease Type I errors will result in an unin-
tended increase inType II errors and vice versa. We have derived a spatial technique to intro-
duce thresholds associated with user selected probabilities (i.e. select 99.7% as the level of
confidence that a data value is an outlier before labeling it as bad and/or replacing it with an es-
timate). We base this technique on statistical regression in the neighborhood of the data in
question and call it the Spatial Regression Test (SRT). Observations taken in a network are of-
ten affected by the same factors. In weather applications individual stations in a network are
generally exposed to air masses in much the same way as are neighboring stations. Thus, tem-
peratures in the vicinity move up and down together and the correlation between data in the
same neighborhood is very high.Similarly seasonal forcings on this neighborhood (e.g. the day
to day and seasonal solar irradiance) are essentially the same. We have defined a neighbor-
hood for a station as those nearby stations that are best correlated to it. We found that the SRT
method is an improvement over conventional inverse distance weighting estimates (IDW). A
huge benefit of the SRT method is it’s ability to remove systematic biases in the data estimation
process. Additionally, the method allows a user selected threshold on the probability as con-
trasted to the IDW. Although the SRT estimates are similar to IDW estimates over smooth ter-
rain, SRT estimates are notably superior over complex terrain (mountains) and in the vicinity
of other climate forcing (e.g. ocean/land boundaries). Gridded data sets that result from IDW,
Kriging or most other interpolation schemes do not provide unbiased estimates. Even when
grid spacing is decreased to a point where the complexity of the land surface is well represent-
ed there remains two problems: what is the microclimate of the nearest observation points and
what is the transfer function between points. This is a future challenge for increasing the quali-
ty of data sets and the estimation of data between observation sites.
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