
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 16 

 

 

 
 

© 2012 Pontes et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

A Survey of Equations of State for Polymers 

Yuri Guerrieri, Karen Valverde Pontes,  
Gloria Meyberg Nunes Costa and Marcelo Embiruçu 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/48391 

1. Introduction 

The thermodynamics of polymeric systems play an important role in the polymer industry 

and are often a key factor in polymer production, processing and material development, 

especially for the design of advanced polymeric materials. Many polymeric products are 

produced with a solvent or diluent (or a mixture of them) and often with other low 

molecular weight compounds (plasticizers, among others). A problem which often arises is 

how to remove the low molecular weight constituent(s) from the final product (polymer). 

The solution to this problem involves, among other tasks, solving the vapor-liquid 

equilibrium (VLE) and/or the vapor-liquid-liquid equilibrium (VLLE) problem. Other 

applications of polymer thermodynamics directly involve the polymerization processes. For 

example, several processes such as the production of PET (polyethylene terephthalate) are 

carried out in two-phase (vapor-liquid) reactors. Phase equilibrium compostions of the 

reacting components will determine their phase concentrations and thus the outcome of the 

polymerization reaction. Another example is the case of LDPE (Low Density PolyEthylene) 

made in autoclave reactors where it may be desirable to perform the polymerization 

reaction nearby but outside the two-liquid phase region, but close to it, which makes 

accurate liquid-liquid equilibrium (LLE) information at high pressure essential. During PE 

(polyethylene) or PP (polypropylene) industrial processing, for example, deposition of the 

polymer on the reactor surface, heat exchangers and flash drums frequently occurs and this 

can cause clogging in pipelines. Modeling solid-liquid equilibrium (SLE) is a useful basis 

from which to gain a better understanding of these industrial polymer problems and thus to 

avoid their occurrence. 

Analogous to the modeling of conventional phase equilibrium, there are two basic 

approaches available to describe phase equilibrium of polymer-solvent mixtures: activity 

coefficient models and equations of state (EOS). There are several drawbacks to the activity 

coefficient approach, for example: it is hard to define standard states, especially for 
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supercritical components; the parameters of the activity coefficient models are very 

temperature dependent, and critical phenomena are not predicted because different models 

are used for the vapor and liquid phases. Furthermore, other thermodynamic properties 

such as densities, enthalpies, entropies, among others, cannot usually be obtained from the 

same model because the excess Gibbs free energy is rarely known as a function of 

temperature and pressure. 

EOS are powerful tools for investigating thermodynamic properties and phase behavior of 

pure fluids and their mixtures. There are many well-tested EOS available for fluid mixtures 

of conventional substances. For mixtures of polymers with solvents, on the other hand, 

problems arise due to the different characteristics of the components. To address these many 

polymer-specific EOS have been proposed, which focus on the polymer component(s) of the 

mixture. Efforts to represent conventional systems with these EOS have not always been 

very successful; indeed some of these models perform less successfully than traditional 

cubic EOS in this regard. This may be a handicap when these models are used for the VLE of 

the polymer-solvent mixtures. In such cases, little or no polymer is present in the vapor 

phase and the solvent compressibility plays an important role in the phase behavior. 

Consequently, there is a strong incentive to extend the conventional EOS developed for 

small molecules to polymers. 

There are two basic issues in extending cubic EOS to apply to polymers and their use. The 

first issue is the description of the pure component EOS parameters for polymers. To obtain 

these parameters, various techniques have been suggested. The second issue in extending 

cubic EOS to apply to polymers is the selection of mixing rules (MR) for the EOS 

parameters. The classical mixing rules of van der Waals (vdW) have already been tested for 

polymer solvent mixtures, however, it has been observed that, in order to fit the 

experimental data, some unrealistic values are necessary for the binary interaction 

parameters (BIP). 

The use of equations of state in phase equilibrium modeling instead of activity coefficient 

models is mainly a result of the recent development of a class of mixing rules that enable the 

use of liquid activity coefficient models in the EOS formalism. The implication of this 

change is far-reaching as an EOS offers a unified approach in thermodynamic property 

modeling. With this approach, the applicability of simple cubic EOS has been extended to 

complex systems, such as polymeric systems, if coupled with the appropriate activity 

coefficient model. Therefore, there is much interest in mixture EOS models capable of 

describing higher degrees of nonideality than that possible with the van der Waals one-fluid 

model and its modifications. 

Future development of EOS for polymer mixtures is unclear and some contradictory 

statements can be found in the literature. Some authors indicate that cubic equations can be 

extended to correlate and predict VLE in polymer mixtures accurately. On the other hand, 

others state that, considering the complexity of this type of mixture, simplicity is not a 

necessary requirement for an EOS, as the calculation of parameters for the mixture 

components is more important. There is agreement, however, on the fact that future 
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development of EOS for polymer mixtures must emphasize the study of mixing rules and 

that EOS input parameters should be related to the commonly measured properties of the 

polymers. 

The most apparent progress toward EOS with the ability to describe phase behavior with 

polymers has been made by applying statistical mechanics. Some early models derived from 

statistical thermodynamics assumed molecules to be arranged in a lattice, whereas many of 

the more recent theories picture molecules to be moving freely in continuous space. In lattice 

models, the molecules are assumed to have one or more segments, and the partition 

function of the system can be obtained by counting the possible configuration when these 

segments are arranged in hypothetical cells which are like the lattices in solid materials. 

Then the thermodynamic quantities can be calculated from the partition function on the 

basis of statistical mechanics. 

A huge amount of work has been done on the understanding of phase behavior in 

polymeric mixtures, either from an experimental or theoretical point of view. As well as 

supplying important data, experiments enable the evaluation of EOS models for the 

correlation and/or prediction of phase behavior. A model, on the other hand, takes much 

less experimental effort and can guide the researcher/analyst in the right direction. 

A detailed review of the different lines of developing equations of state for the 

calculation of fluid phase equilibria is given by [1]. Recently [2] presented and discussed 

in depth both classical and novel thermodynamic models, which have been developed 

and can potentially be used for industrial applications. A review of the use of some 

equations of state (EOS) for LDPE process simulation can be found in Orbey et al. [3] and 

Valderrama [4]. 

Although there have been some analyses on equations of state that can describe the phase 

equilibria involving polymers, additional assessments are necessary. In general, the 

available works concern a specific approach, not taking into account others. In addition, 

these reviews and surveys focus on detailed model theory or theoretical possibilities of 

model variations, with a few quotes from practical applications. This chapter therefore 

presents an overview of the progress on EOS models for polymer systems considering the 

following approaches: 

 Cubic EOS (mixing rules incorporationg excess Gibbs free energy models) 

 Lattice models [Sanchez-Lacombe (SL) equation of state] 

 Perturbation theory (SAFT equation: the original version and its variants) 

In EOS applications only works dealing with phase equilibrium are discussed, other types of 

applications, such as solvent absorption and/or polymer swelling, are not addressed. The 

timeline diagram in Figure 1 shows some of the key developments and outstanding papers 

related to the development of equations of state for polymer systems, which are discussed in 

this chapter. The following notation is used: 
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 Cubic Equations of State [Huron and Vidal (HV) Mixing Rule (MR); Sako-Wu-Prausnitz 

(SWP) Equation; Wong and Sandler (WS) MR; vdW Applied to Polymer Solutions 

(vdW-P) by Kontogeorgis, Harismiadis, Fredeslund and Tassios; Linear Combination of 

Vidal and Michelsen (LCVM) Mixing Rules by Boukouvalas, Spiliots, Coutsikos, 

Tzouvaras and Tassios; Zhong and Masuoka (ZM) MR] 

 Lattice Models [Flory-Huggins (FH); Sanchez and Lacombe (SL) equation; key 

Modifications and Applications (MA) of SL by KIeintjens and KoningmeId, Panayiotou 

and Vera, Kiran and Xiong and Zhuang, Koak and Heidemann, Gauter and 

Heidemann, Krenz and Heidemann and de Loos] 

 Perturbation theory [Wertheim Thermodynamic Perturbation Theory (TPT); Statistical 

Associating Fluid Theory (SAFT) by Chapman, Gubbins, Jackson, Radosz; Chen and 

Kreglewski [5] SAFT (CK-SAFT) by Huang and Radosz; Perturbed-Chain SAFT (PC-

SAFT) by Gross and Sadowski; Simplified PC-SAFT (sPC-SAFT) by von Solms, 

Michelsen and Kontogeorgis] 

 

Figure 1. Timeline of some Key Model Developments Addressed in this Chapter from van der Waals 

(vdW) Equation in 1873. 

2. Cubic equations of state and mixing rules 

The first group of models to describe the phase behavior (by calculating the equilibrium 

constant) corresponds to the van der Waals equations of state, known as cubic equations, 

in either the original version or variants thereof. They are extremely simple and efficient 

for experimental data correlation. In this group, modifications of the Redlich-Kwong 

equation stand out, especially the Soave-Redlich-Kwong (SRK) [31] and the Peng-

Robinson (PR) [32], which can calculate, often successfully, the vapor-liquid equilibrium 

for normal fluid and mixtures. However, application of the cubic equations of state for 

polymeric blends is not immediately obvious as this application does not follow 

standard procedures. The conventional method for calculating the pure parameters in 
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cubic equations of state requires components' critical properties and vapor pressure, 

which do not exist for polymers. Therefore, two basic issues should be addressed when 

extending cubic equations of state for polymers and their mixtures. The first, presented 

in the following paragraphs is the description of the parameters of pure components, 

and the second is the choice of the mixing rule, which will be discussed later in sections 

2.1-2.3. 

There are four conditions to be satisfied when selecting the pure component parameters of a 

cubic equation of state. First, a polymer is non-volatile and therefore should not exhibit any 

vapor pressure. If there are oligomers in the mixture though, low vapor pressures might be 

considered. Therefore, critical properties may be assigned for the oligomers, treating them 

as conventional components. The second condition is that the equation of state should 

predict densities of molten polymers. The third condition requires that the parameters 

reflect the polymers' basic characteristics such as the degree of polymerization. This is 

important because experimental data demonstrate that these polymer characteristics directly 

affect the vapor-liquid equilibrium in polymer-solvent mixtures. The fourth point, 

somewhat connected to the third, requires easily accessible and physical meaning 

characteristics as input parameters for calculating the parameters of the equation of state. As 

stated before, the SRK equation of state is expressed by: 
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and the PR equation is given by: 
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where T is temperature, V is molar volume, P is pressure and R is the universal gas constant. 

The parameter a is a measure of the attractive forces between molecules, and the parameter 

b is the co-volume occupied by these molecules. 

The first attempt to apply a cubic equation to polymers was made by Sako et al. [7] in 

order to calculate the high pressure vapor-liquid equilibrium for a polyethylene-ethylene 

system. To overcome the problem of calculating the pure parameters for the polymer, 

Sako et al. [7] calculated the attractive parameter in the SRK equation using the London 

dispersion formula, and extrapolated the co-volume (b) values from n-alkane data. To 

take into account external degrees of freedom, they also added a third parameter c, whose 

values were fitted from density data. The SWP (Sako-Wu-Prausnitz) equation is a member 

of the cubic family: 
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The SWP equation was used with relative success by Tork et al. [33] when calculating the 

phase equilibria in binary and ternary systems of polyolefins. The calculations focused on 

the high pressure phase equilibrium for ethylene-polyethylene systems and for liquid-

liquid equilibrium in systems containing either high density polyethylene or 

polyethylene-polypropylene copolymer. The results for the copolymer-solvent system 

were compared with those provided by the SAFT (Statistical Associating Fluid Theory) 

equation. The two equations of state can describe the UCST (Upper Critical Solution 

Temperature) and LCST (Lower Critical Solution Temperature) behavior as well as U-

LCST, with similar precision. When using the SAFT equation, the binary interaction 

parameter is maintained constant, while in the SWP equation this parameter is expressed 

as a function of temperature. In addition, Sako et al. [7] investigated the influence of an 

inert gas on the LCST for the polyethylene-hexane system. The polydispersity of different 

polyethylene resins is considered when computing the phase equilibrium using 

pseudocomponents, chosen using the moments of experimental molecular weight 

distributions. 

Kontogeorgis et al. [9] used the van der Waals equation of state to correlate vapor-liquid 

equilibrium data of polymer solutions. They proposed a method to calculate the 

interaction parameter a and co-volume b in the equation of state for polymers from two 

volumetric datasets at low pressure. Both parameters a and b (assumed to be independent 

of temperature) can be analytically expressed from two experimental molar volumes, each 

one at a different temperature. The pressure in the van der Waals equation is then 

considered equal to zero. The parameters a and b are linear functions of molecular weight. 

When dealing with polymer solutions, these parameters are obtained from van der Waals 

mixing rules as well as from the classic combination rules. Fitting only one binary 

parameter, the van der Waals equation of state is able to correlate the equilibrium 

pressure for various solutions of polyethylene and polyisobutylene accurately. However, 

large negative values for the binary interaction parameters, very different from typical 

values, are frequently required, indicating that this procedure, although empirically 

successful, does not have a significant physical basis. For almost athermic solutions, the 

Berthelot combining rule [34] is considered, and the binary interaction parameter is 

predicted by a simple function of the molecular weight of the solvent. Thus, satisfactory 

results are obtained. 

The performance of cubic equations of state is directly related to the efficiency of mixing 

rules to represent the phase equilibria at high pressures. Basically, the mixing rules can be 

divided into two classes: van der Waals-type and those that incorporate excess Gibbs energy 

(GE). 

2.1. van der Waals mixing rules 

In order to extend the application of PR and SRK cubic equations of state for polymer-

solvent systems, the conventional mixing rules employed are those from van der Waals 

(vdW) [34], which are expressed as: 
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where xi and xj are the mol fractions, aij is the cross-energy parameter and bij is the cross co-

volume parameter. 

It should be stressed that these rules are limited to non-polar fluids and therefore are unable 

to represent the highly non-ideal behavior of polar or associative fluids. 

An empirical approach to overcome the shortcomings of the vdW mixing rule has been to 

simply add new parameters and composition dependence to the combination rule for 

parameter a, usually keeping the combination rule for parameter b. Some examples may be 

cited: Adachi and Sugie [35]; Panagiotopoulos and Reid [36] and Schwartzentruber et al. 

[37]. These modified rules usually aim to solve specific problems, and the number of binary 

interaction parameters is quite variable. There are many problems associated with these 

multiparametric combination rules which limit their use in process design for mixtures 

containing many components (such as mixtures of isomers). Among them, the dilution 

effect may be cited: as the number of components in a mixture increases, the molar fraction 

of any component becomes smaller. This leads to small contributions of the new added 

parameters and terms that are strongly composition dependent. Consequently, as the 

number of components increases, the mixing rule is effectively reduced to a quadratic 

dependence, as in the one-fluid van der Waals fluid theory [38]. 

2.2. Mixing rules for excess free energy (GE) models 

Like conventional phase equilibrium modeling, there are two basic modeling tools for 

dealing with polymer-solvent mixtures: excess Gibbs free energy (GE) models (or activity 

coefficient models) and equation of state models. There are plenty of models in each 

category and selecting the best model for a specific project can often be quite difficult. 

Furthermore, equation of state and activity coefficient models have varying abilities in 

extrapolating data beyond given ranges of temperature and pressure, which further 

hampers the choice of the best model. These models also behave differently when predicting 

vapor-liquid equilibrium from other measured properties, such as the infinite dilution 

activity coefficient for a polymer in solvent. 

Over the last two decades several methods combining activity coefficient models with 

equations of state have emerged. These methods are useful for correlating/predicting the 

phase equilibria of conventional mixtures, and are promising for mixtures containing 

polymers. Moreover, they allow us to investigate an activity coefficient model in two ways: 

first as a conventional model (i.e. in the approach γ-φ); secondly as part of an equation of 

state. In general, activity coefficient models are considered more flexible to accommodate a 

highly complex phase behavior. Equation of state models, on the other hand, may take into 
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account the effects of compressibility in a thermodynamically more consistent way, and are 

most useful at higher pressures. 

Huron and Vidal [6], pioneers in this field, incorporated an excess Gibbs free energy model 

into a mixing rule. Their method is based on three assumptions: (i) the excess Gibbs free 

energy, calculated from an equation of state at infinite pressure equals the excess Gibbs free 

energy calculated from an activity coefficient model for the liquid phase (ii) the co-volume 

parameter b is set to the volume at infinite pressure (iii) the excess volume equals zero. Thus 

the mixing rule is written as: 
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where    ( )V a b R T  and  2 ln 2q  for SRK equation. Huron and Vidal [6] showed that 

their mixing rule gives good results for non-ideal mixtures. Soave [39] showed that the 

Huron and Vidal rule represents an improvement over the classical quadratic mixing rules 

and can accurately correlate the vapor-liquid equilibrium for highly nonideal systems. The 

Huron and Vidal mixing rule has also been applied to several polar and asymmetric systems 

[40]-[42]. 

The Huron and Vidal mixing rule has some undesirable characteristics, such as: it does not 

reproduce the quadratic dependence of the second virial coefficient (QDSVC) with the 

composition at low pressure; it has no predictive value because the parameters of the 

activity coefficient model, estimated at low pressure, have to be re-estimated at high 

pressure; furthermore, these parameters are temperature dependent. Various proposals [43]-

[44] have tried to cope with these constraints, however, they fail to succeed as discussed 

below. 

Mollerup [45] suggested an alternative method to that of Huron and Vidal, assuming that 

the excess volume is zero at low pressure and that the excess Gibbs free energies calculated 

from an equation of state and from an activity coefficient model can be matched in this 

condition. Therefore, the activity coefficient parameters do not need be re-estimated if 

pressure and temperature conditions correspond to those at which they are fitted. However, 

since this theory cannot be applied to supercritical fluids, as well as the difficulty of 

computing roots (of the equation of state) for the liquid phase at zero pressure, its 

application is restricted. 

Heidemann and Kokal [46], in accordance with Mollerup [45], also take the reference state at 

null pressure, attempting, however, to overcome the problem of calculating the root for the 

liquid phase at zero pressure. The major contribution of this method is to propose an 

extrapolation procedure from the system pressure, enabling calculation at temperatures 

near and above the critical point. Important to mention is that this method requires the 

solution of a transcendental equation when calculating the mixing rule. Comparative studies 

demonstrate a better performance of the Heidemann and Kokal rule when compared to the 

Huron and Vidal rule [6]. 
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A method very similar to Heidemann and Kokal’s [46] was proposed by Michelsen [47]. 

The main difference between them lies in the extrapolation method used for supercritical 

components. The mixing rule in the Michelsen approach also requires the solution of a 

transcendental equation. The SRK-Wilson model (using SRK equation of state and Wilson 

activity coefficient model), obtained using this method, was tested to obtain the phase 

envelope, including the critical points, and to calculate the phase diagrams at high 

pressure, without re-estimating the parameters of the Wilson model. Good results were 

achieved. 

Michelsen [48] modified his own method, considering an explicit mixing rule, i.e. avoiding 

the solution of the transcendental equation. The only drawback of this modification lies in 

the impossibility of ensuring the accurate reproduction of the GE model at low temperatures. 

Thus, imposing a linear mixing rule to the parameter a, an expression similar to the Huron 

and Vidal rule [6] was obtained, and therefore it is called the first-order Modified Huron 

and Vidal (MHV1) mixing rule. 

Dahl and Michelsen [49] found out that replacing the linear approach (MHV1) by a 

quadratic approximation considerably improves the reproductibility of the GE model. The 

resulting mixture rule, a second-order modification of the Huron and Vidal rule, became 

known as the MHV2 (second-order Modified Huron and Vidal mixing rule), where the 

linear rule for the co-volume b was maintained. Like the Huron and Vidal mixing rule, the 

MHV2 does not satisfactorily describe the excess molar volume. Additionally, it is 

theoretically incorrect at the lower bound pressure (when the pressure goes to zero), where 

it does not show the QDSVC with the mole fraction. 

Attempting to straighten out the theoretical inconsistency of the aforementioned mixing 

rules, Wong and Sandler [8] proposed a new method in which the rules fulfill the 

QDSVC with the composition at low pressure condition. The basic idea was to consider 

the excess Helmholtz free energy as much less dependent on pressure than the excess 

Gibbs free energy. In this way, the excess Helmholtz free energy at high pressure might 

be equal to the excess Gibbs free energy at low pressure. Therefore, this mixing rule is 

given by: 
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and c is a constant, equals –ln(2) for the SRK equation. The mixing rule gives the correct low 

density limit (the mixture second virial coefficient has a quadratic dependence on mole 

fraction). The high density limit, in turn, is consistent with experimental data: the equation 

of state provides the same molar excess Helmholtz free energy at infinite pressure as a 

function of composition, as well as that obtained from the selected activity coefficient model. 

The Wong and Sandler [8] mixing rule is not density dependent. It should be highlighted 

that, unlike the methods proposed above, the Wong-Sandler mixing rule introduced an 

additional binary interaction parameter besides those predicted by the activity coefficient 

model, which is the second virial coefficient binary interaction parameter itself. According 

to the authors, this parameter as well as those from the activity coefficient model, estimated 

at low pressure, may be interchangeably used (i.e. without restriction) at high pressure. 

Boukouvalas et al. [10] proposed a new mixing rule for the parameter a in the attractive term 

of cubic equations of state. The idea was to make a linear combination between the Huron 

and Vidal and the MHV1 mixing rules, producing the name LCVM (Linear Combination of 

Vidal and Michelsen mixing rules), which may be expressed as: 

          1V M  (10) 

where V  and M  are given by Vidal and Michelsen rules, respectively. The contributions 

related to α are weighted by a factor λ, which is proposed by Boulouvalas et al. [10] to be 

0.36. For the parameter b, a classical linear rule was considered. The performance of this 

model was compared to MHV2 and MHV1 models, using the Soave equation and the 

UNIFAC [UNIQUAC (UNIversal QUAsiChemical) Functional-group Activity Coefficient] 

for nonpolar and polar systems, symmetrical and asymmetrical, low and high pressures. 

The results indicate an equivalent performance of LCVM compared to the other two models 

when investigating systems containing molecules of similar sizes. In mixtures composed of 

molecules with quite different sizes, in particular gas systems with alkanes, the LCVM rule 

showed superior results. 

Zhong and Masuoka [50], based on experimental data, evaluated the MHV1 mixing rule 

with SRK equation of state and the original UNIFAC model for GE. They found out that: 1) 

SRK equation with MHV1 can not reproduce the GE of the GE model used in the mixing 

rule for asymmetric systems, even at low pressure; 2) the original UNIFAC is not accurate 

for asymmetric systems with large alkanes. The first point reflects the deficiency of MHV1 

for asymmetric systems, while the second is caused by the low predictive ability of 

UNIFAC for systems containing large alkanes. Moreover, it is evident that, although 

MHV1 is able to reproduce the GE model exactly, it may not be as accurate for gas-large 

alkane systems as UNIFAC can not describe these systems properly. As a result, it is 

pointless to pursue exact reproduction of the GE model when attempting to improve the 

predictive capability for these systems. However, it is interesting to observe that the SRK 

equation with MHV1 can satisfactorily reproduce GE experimental data if a correction 

factor is added to GE in the original UNIFAC model used in MHV1. With this observation, 

a new mixing rule was proposed: the MR1 (mixing rule 1), obtained by Zhong and 
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Masuoka [50]. The MR1 rule is very accurate for systems composed og gas and large 

alkanes, when the correction parameter is obtained as a simple correlation function of the 

carbon number for a given gas. 

A new mixing rule for cubic equations of state, particularly suitable for highly symmetric 

systems, was proposed by Zhong and Masuoka [51]. It was validated by two cubic 

equations of state: a modification of Peng-Robinson equation proposed by Stryjek and Vera 

(PRSV) [52] and the SRK equation. As there is no critical point for polymers, parameters a 

and b in the equation of state cannot be calculated from critical properties and because 

polymers are almost non-volatile, their vapor pressures are very low. Therefore, it is 

possible to use zero-pressure experimental densities to determine them. Alternatively, the 

approach adopted by Orbey and Sandler [38] may be employed, i.e. to use densities at low 

pressure with a hypothetical and very low vapor pressure, for example 10-7 MPa. Zhong and 

Masuoka [51], in the proposal of this new mixing rule, considered a null Helmholtz free 

energy in the limit when pressure tends to infinity. This is the only difference between this 

mixing rule and the one proposed by Wong and Sandler [8]. As a result, only one parameter 

is necessary in the new mixing rule, which is much simpler than the method of Wong and 

Sandler [8], and is as simple as Kontogeorgis et al. method [9]. When using the new mixing 

rule for ten polymer solutions in a wide temperature range, the results show that it allows 

cubic equations of state to correlate the vapor-liquid equilibrium of polymer solutions 

precisely even if just one temperature independent parameter is used. These results verify 

that the assumption, namely the excess Helmholtz free energy is null at infinite pressure, is 

feasible, or at least acceptable, for polymer solutions. The authors demonstrate that accurate 

correlations for polymer solutions are insensitive to parameters a and b in the equation of 

state. 

In recent years, many studies have focused on improving hybrid models, i.e. equations of 

state which embody GE models into mixing rules. They attempt to expand their applicability 

to more complex systems, such as those containing highly polar components or molecules 

with significantly different sizes (e.g., polymer-solvent), without loosing versatility and 

simplicity. Recently, Ahlers and Gmehling [53] proposed the VTPR model (Volume 

Translated Peng-Robinson) which brings together the UNIFAC and Peng-Robinson 

equation with translated volume. In the VTPR model, the two Flory-Huggins (FH) type 

combinatorial terms [12], which come from the equation of state and from the UNIFAC 

model, as well as the Staverman-Guggenheim [54] contribution of the UNIFAC 

combinatorial term, were eliminated. Moreover, an empirical approach in VTPR 

incorporates different exponents in the combination rule for the crossed co-volume of the 

equation of state, depending on the system studied: for those without polymer, it was set to 

0.75, whereas for solvent-polymer systems, it was set to 0.5. This empirical approach, 

however, introduces some uncertainties. For example, it is not possible to set a single 

parameter for mixtures containing two solvents and a polymer. Furthermore, it is difficulty 

to choose two exponents for some systems containing a molecule similar to a polymer, for 

example, propane/hexacontane. 
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Voutsas et al. [55] proposed a new mixing rule, UMR (Universal Mixing Rule), for cubic 

equations of state applicable to symmetric and asymmetric systems. For the cohesion 

parameter of the cubic equation, this mixing rule includes the Stavermann-Guggenheim 

combinatorial term and the residual term of the original UNIFAC model. For the co-volume 

parameter in the cubic equation, a quadratic mixing rule in the composition is used. This 

rule has been applied to the t-PR (Translated Peng-Robinson) [56] equation [also known as 

the t-mPR (Translated and Modified Peng-Robinson) equation], which is a modification of 

the PR equation. Very satisfactory results were obtained using the original interaction 

parameters from the UNIFAC model inpredicting vapor-liquid and liquid-liquid equilibria 

at low and high pressures for several asymmetric systems including polymer mixtures. 

2.3. Modeling polymeric systems with equations of state embodying Gibbs free 

energy (GE) models 

Orbey and Sandler [57] applied the PRSV cubic EOS, along with the mixing rules proposed by 

Wong and Sandler [8], to correlate vapor-liquid equilibrium data for some polymer solutions. 

For pure solvents, they used the conventional method to determine the parameters of the 

equation of state from the critical properties and the acentric factor. For polymers, however, in 

order to determine these parameters, they chose an arbitrary value for the vapor pressure, 10-7 

MPa, and used experimental data of molten polymer densities. As expected, the parameters a 

and b are at least slightly dependent on the molecular weight. Orbey and Sandler [57] used the 

Flory-Huggins [12] expression to calculate the activity coefficient. 

Orbey et al. [57] used the SRK cubic equation [31], combined with the Flory-Huggins GE 

model in the Huron and Vidal [6] mixing rule, to correlate the vapor-liquid equilibrium of 

polymer-solvent mixtures. To extend the SRK equation for pure polymers, suitable critical 

constants were selected based on available information about long-chain hydrocarbons. For 

applications in mixtures, the single binary interaction parameter from the Flory-Huggins 

[12] model was obtained from activity coefficient data at infinite dilution, without using any 

experimental data for vapor-liquid equilibrium. The results showed that this approach, i.e. 

an equation of state coupled with mixing rules which incorporate GE, may represent the 

vapor-liquid equilibrium of the polymer-solvent with good accuracy. It was also observed 

that the binary interaction parameter from Flory-Huggins [12] is much less dependent on 

temperature and composition when the Flory-Huggins model is coupled with the SRK then 

when it is used directly in the activity coefficient model. 

An equation of state based on ASOG (Analytical Solution Of Groups), called PRASOG 

(Peng-Robinson-ASOG), was developed by Tochigi [58] to predict the vapor-liquid 

equilibrium of non-polymeric and polymeric solutions. It makes use of the zero-pressure GE 

mixing rule, hence is consistent with the second virial coefficient dependence, in order to 

compute the mixture parameters of the Peng-Robinson equation of state and it predicts GE 

by the ASOG method. To apply PRASOG to polymer solutions, the PRASOG-FV (PRASOG 

Free Volume) has been proposed calculating GE from ASOG-FV, and then the vapor-liquid 

equilibrium in polyisobutylene solutions is predicted. 
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Tochigi et al. [59] extended the application of PRASOG, presented by Tochigi [58] for other 

polymer solutions. Nine binary systems were investigated in a temperature range from 

298.15 K to 361.25 K, with six solvents (benzene, toluene, acetone, methyl ethyl ketone, ethyl 

acetate, propyl acetate) and four polymers (polystyrene, polyethylene oxide, polypropylene 

oxide, polyvinyl acetate). When using PRASOG-FV, the accuracy achieved was comparable 

to those of ASOG-PV and UNIFAC-FV. 

Kang et al. [60] performed a comparative study for polymers and associating systems using 

the Peng-Robinson equation with the Wong-Sandler mixing rule (PR-WS), SAFT equation 

and NLF-HB (Non-Random Lattice Fluid Theory with Hydrogen Bonding) equation. The 

comparison was based on the prediction accuracy of the bubble point pressure, the molar 

fraction in vapor phase and the activity of the component in the liquid phase. Several factors 

were considered for comparison: model evaluation through their modeling errors, 

characteristics of the estimated parameters and computational issues. In general, when 

using appropriate parameters, all models provided good results when far away from critical 

regions, except in the case of non-polar polymers dissolved in non-associating polar 

solvents. 

An evaluation of vapor-liquid equilibrium in polymer-solvent systems with cubic equation 

of state was performed by Louli and Tassios [61]. In this study the parameters a and b of PR 

equation were fitted from PVT (Pressure-Temperature-Volume) data of pure polymers, 

assuming that the ratio parameters/(molecular weight) are independent from the molecular 

weight. Several polymer-solvent systems were evaluated using three different mixing rules, 

all requiring only one adjustable parameter: vdW [34], ZM (Zhong and Masuoka) [11] and 

MHV1 [48]. The ZM rule gave the best results and the same performance was achieved 

when extrapolating predictions regarding temperature and molecular weight. 

Using the PRSV cubic equation of state, Haghtalab and Espanani [62] studied the vapor-liquid 

equilibrium in polymer binary solutions with different molecular weights and temperatures. 

The parameters of the cubic equation of state were calculated using the Wong-Sandler mixing 

rule [8] incorporating the FH-NRTL-NRF (Flory-Huggins Non-Random Two Liquid Non-

Random-Factor) excess Gibbs free energy model. The total vapor pressure of the polymer 

solutions was correlated using two adjustable energy parameters as functions of temperature 

with six constants for the entire temperature range. The modeling results showed very good 

agreement with the experimental data of several binary polymer solutions. 

Voutsas et al. [63] showed that the UMR rule with the binary interaction parameters of the 

original UNIFAC model, independent of temperature, leads to poor predictions of vapor-

liquid equilibrium at high temperatures and poor predictions for the heat of mixing. For this 

reason, Voutsas et al. [63] used the model proposed by Hansen et al. [64], which consider the 

binary interaction parameters temperature dependent, overcoming the drawbacks 

mentioned before. The performance of the new model was evaluated for the prediction of 

heat of mixing and also vapor-liquid, liquid-liquid and solid-gas equilibria in binary and 

multicomponent systems with different degrees of non-ideality and asymmetry, including 

polymer-solvent systems, showing good results. 
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The SRK and the Sanchez and Lacombe (SL) equations of state were applied by Costa et al. 

[65]-[66] to the flash simulation in a low-pressure separator (LPS) and also in a high-presure 

separator (HPS) in an industrial polyethylene facility (specifically, 8 low-density 

polyethylene resins and 25 linear low-density polyethylene resins were investigated). Three 

mixing rules were used in the SRK equation: van der Waals (vdW) one-fluid, Wong-Sandler 

and LCVM. The latter two mixing rules incorporate the Bogdanic and Vidal activity 

coefficient model [67]. All these models involve two adjustable parameters. The results for 

the LPS separator indicate that SL and SRK-vdW are the best models. The results for the 

HPS indicate that the SL is the best model. The SRK-LCVM and SRK-WS are unable to 

describe the HPS overhead composition. 

Costa et al. [68] modeled the SLE in polyethylene and polypropylene solutions using SRK 

and PC-SAFT (Perturbed-Chain SAFT) equations of state. Two mixing rules were coupled 

with SRK: the Wong-Sandler rule and the LCVM rule, both considering the activity 

coefficient model from Bogdanic and Vidal [67]. The models were evaluated using SLE data 

at atmospheric and high pressure, obtained from literature. The binary interaction 

parameters of SRK and PC-SAFT equations of state were estimated to describe the 

experimental behavior of 20 different polymer-solvent systems at atmospheric pressure and 

31 other polymer-solvent systems at high pressure better. The SRK-LCVM model showed 

the best performance with the SLE atmospheric data, although when evaluating equations 

predictive ability, PC-SAFT showed advantages as it is not easy to generate a good 

correlation of the GE (SRK-LCVM) parameter with temperature, whereas the PC-SAFT 

parameter correlated very well with temperature for all the systems analyzed. In high 

pressure conditions, interaction parameter correlations as a function of molecular weight 

and polymer concentration were developed for PC-SAFT and SRK-LCVM (SRK-WS model 

was not appropriate for the high pressure calculations carried out). PC-SAFT provided the 

best performance with excellent results, showing suitable interpolating and extrapolating 

(predictive ability) features. 

3. Lattice models 

In the second group of models for calculating the equilibrium constant, it is assumed that 

the molecules have one or more segments, and that the partition function of the system 

can be obtained by counting the number of possible configurations when these segments 

are arranged in hypothetical cells that resemble the crystal lattice of a solid. The 

thermodynamic functions can be calculated using the formalism of statistical mechanics. 

These crystal lattices can be considered compressible or incompressible. Incompressible 

lattices are generally used to model liquids at low pressures, a condition in which the 

concept of activity coefficient is used. The most widely used activity coefficient models 

are based on this formalism, e.g. [12], [69]-[71]. For compressible lattices, equations of 

state based on lattice models result. An example of such models is the lattice fluid theory 

[13], [72]. 
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The lattice model, originally developed to describe the liquid phase, considers the liquid in a 

quasi-crystalline state, in which the molecules do not translate fully chaotically as in a gas, 

but each one tends to stay in a small region, a more or less fixed position in space, around 

which it vibrates back and forth. The quasi-crystalline picture of the liquid state supposes 

that the molecules are regularly arranged in space as in a lattice, and therefore models for 

liquid and liquid mixtures are called lattice models. Molecular considerations suggest that 

deviations from ideal behavior in liquid solutions are mainly due to the following effects: 

first, the attraction forces between unlike molecules are quantitatively different from those 

between alike molecules, giving rise to a nonzero enthalpy of mixing; second, if the 

molecules differ significantly in size or shape, the molecular arrangement in the mixture can 

be appreciably different from that for pure liquids, resulting in a non-ideal entropy of 

mixing; finally, in binary mixtures, if the attraction forces in one among the three possible 

interaction pairs are much stronger (or much weaker) than the other two pairs, there will be 

some preferred orientation of the molecules in the mixture what, in extreme cases, can lead 

to instability or incomplete miscibility [34]. 

The most simple lattice model considers a mixture of two liquids whose molecules are small, 

symmetrically spherical and similar in size (the ratio of their sizes is close to one). This 

model assumes that the molecules of each pure liquid are regularly arranged and 

equidistant from each other in the lattice. The molecular movement is limited to vibrations 

around equilibrium positions and is not affected by the mixing process. This model also 

assumes that for a fixed temperature the lattice spacing in both pure liquids and in the 

mixture are the same, regardless of composition (excess volume is null). The first step is to 

obtain an expression for the potential energy of a pure liquid or a mixture, assuming that the 

potential energy is pair-to-pair additive for every pair of molecules and that only the nearest 

neighbors are considered in this sum. This means that the potential energy of a large 

number of molecules in the lattice is given by the sum of the potential energy of all pairs of 

molecules situated immediately next to each other. Therefore, considering the excess 

volume and the excess entropy as null, the excess Gibbs free energy for the two-suffix 

Margules model can be obtained from the total potential energy in the lattice [34]. 

This lattice model is particularly useful for describing polymeric solutions in liquid solvents. 

Flory and Huggins [34] independently developed a theory for polymeric solutions which 

have formed the foundation of most subsequent developments in the last fifty years. In the 

Flory-Huggins [12] model the system polymer-solvent is modeled as a lattice structure, 

where each site is occupied by a molecule of solvent or a polymer segment. The 

combinatorial contributions to the thermodynamic mixing functions are calculated from the 

number of possible arrangements of the polymer molecules and solvent in the lattice. These 

combinatorial contributions correspond to the entropy of mixing. The combinatorial 

contributions of Flory-Huggins [12] model implicitly state that the mixing volume and the 

enthalpy of mixing are zero. The number of possible molecular arrangments leads to the 

well-known Flory-Huggins expression for the entropy of mixing [34]. The Flory-Huggins 

theory and its variations have been successful in correlating and/or predicting the UCST 

behaviour and loop phase behavior. Variations of this theory include making the interaction 
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parameter of the enthalpy of mixing dependent on composition and/or temperature. In this 

context, the works of Cheluget et al. [73] and Bae et al. [74] may be cited. The UCST behavior, 

i.e. transition from two-phase to one phase, takes place as a result of energetic effects. The 

loop behavior normally occurs when specific interactions such as hydrogen bonds take 

place. Compressibility of a polymeric solution is not the key issue therefore it can be 

modeled by an incompressible lattice theory. As mentioned above, however, polymeric 

solutions also exhibit LCST behavior which occurs when polymer and solvent molecules 

experience different volumetric expansions. For these systemsa theory that takes into 

account the effects of compressibility is required. Significant work has been done to extend 

the Flory-Huggins theory for such systems by the inclusion of vacant sites (holes) in the 

lattice, which may vary to enable compressible lattice representation. Within this approach 

the models of Kleintjens and Koningveld [14] and Panayiotou and Vera [15] may be cited 

but the Sanchez and Lacombe model [13] should be highlighted given its wide application 

in polymeric systems. 

3.1. Sanchez and Lacombe (SL) equation 

The lattice fluid theory for liquid and gaseous mixtures developed by Sanchez and Lacombe 

[13], [75] is formally similar to the Flory-Huggins theory. However, the essential and 

important difference is that the Sanchez and Lacombe theory introduces holes to account for 

variations in compressibility and density, i.e. the mixture density may vary by increasing 

the fraction of holes in the lattice. The Sanchez and Lacombe equation uses a random mixing 

expression for the attractive energy term. Random mixture means that the composition 

everywhere in the solution equals the total composition, i.e. there are no effects of local 

composition. The energy of the lattice depends only on nearest neighbors interactions. For a 

pure component the only non-zero interaction energy corresponds to mer-mer pair 

interaction. The interaction energies of types mer-hole and hole-hole are zero. The Sanchez 

and Lacombe equation assumes a random mixture of holes and mers. Therefore, the number 

of mer-mer nearest neighbors is proportional to the probability of finding two neighboring 

mers in the system. The Sanchez and Lacombe EOS [13] is given by: 
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and T is the absolute temperature, P is the pressure, ρ is the density, MW is the molecular 

weight, k is the Boltzmann constant, and r, ε*, and v* are pure component parameters 
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related to the corresponding scale factors T*, P* and ρ*, respectively. These scale factors are 

independent of the molecular size of the polymer. For mixtures, the model parameters 

become composition dependent through the following mixing rules: 
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where the segment fraction of component i, φi, is calculated as a function of the weight 

fraction wi, given by: 
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The cross parameters are: 
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where lij and kij are binary interaction parameters. 

Thus, the Sanchez and Lacombe equation obtains the PVT properties of pure component 

assuming that it is broken into parts or mers which are placed on a lattice and can interact 

with intermolecular potential. In order to calculate the density of the system correctly, an 

appropriate number of holes are also placed at specific sites in the lattice. In principle, this 

equation of state is appropriate to describe the thermodynamic properties of fluids in a wide 

range of conditions, from normal liquid or gaseous state to supercritical fluid at high 

temperatures and pressures. A real fluid is characterized by three molecular parameters or 

by three equation of state parameters, which must be known if the equation of state is to be 

used. In fact these parameters can be determined through any configurational 

thermodynamic property obtained experimentally. Vapor pressure data though, are 

particularly useful for solvents because they are readily available for a wide variety of 

fluids. For polymers, these characteristic parameters can be estimated by experimental data 

of the liquid density over a wide range of pressures and temperatures, using for example a 
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numerical procedure based on non-linear least squares. When few PVT data are available, 

the parameters can be estimated from experimental values of density, thermal expansion 

coefficient and compressibility factor at ambient temperature and pressure. 

Gauter and Heidemann [18] proposed a procedure to obtain parameters of the pure solvent 

from the critical temperature, critical pressure and acentric factor, as usually done with 

cubic equations of state. The polymer parameters were determined through PVT data 

regression. 

Gauter and Heidemann [76] suggested that the polymer's parameters can be adjusted to 

simultaneously reproduce cloud-point data of polymer-solvent equilibrium and PVT data. 

They managed to obtain parameters for the Sanchez and Lacombe equation for polyethylene 

that could be applied for different samples, regardless of molecular weight and molecular 

weight distribution. The degree of branching and/or the presence of comonomers may also 

influence the parameters of the polymer. 

3.2. Modeling polymeric systems using the Sanchez and Lacombe equation 

Although there are few references in the literature for vapor-liquid equilibrium (e.g. [3], 

[77]) and one using industrial plant data [65], a large number of SL EOS evaluations have 

been reported in the literature regarding liquid-liquid equilibrium. 

Kiran et al. [16] evaluated the efficiency of the Sanchez and Lacombe equation in predicting 

the high pressure phase behavior of varying molecular weight (16400, 108000 and 420000) 

polyethylene solutions in n-pentane and in binary solvents [(n-pentane)-(carbon dioxide)]. It 

was shown that concentration and pressure variations are correctly predicted if the 

characteristic temperature of the polymer is suitable adjusted using data from a sample with 

a specific molecular weight. The model also correctly predicts the behavior shift (solvent 

dependent) from LCST to UCST as the amount of carbon dioxide in solvent [(n-pentane)-

(carbon dioxide)] increases. 

Xiong and Kiran [78] modeled ternary systems of [polyethylene-(n-pentane)-(carbon 

dioxide)] using the Sanchez and Lacombe equation. Phase diagrams were generated for 

pressures up to 300 MPa and temperatures up to 460 K. The results show that the system 

can exhibit two or three phases depending on the pressure. At a given temperature, the 

three phase region disappears with increasing pressure. Depending on the pressure, the 

calculations also predict the displacements observed experimentally from LSCT to UCST, 

which are illustrated in ternary diagrams as displacements of the phase boundaries with 

temperature. It was shown that for polymer samples with high molecular weight, ternary 

calculations can be simplified by assuming that the polymer-poor phase is essentially free of 

polymer. Xiong and Kiran [79]-[80] investigated polyethylene binary systems with n-butane, 

n-pentane and CO2. 

Koak and Heidemann [17] studied the phase behavior of polymer-solvent systems under 

conditions close to the vapor pressure curve of the solvent where the vapor-liquid-liquid 
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equilibrium can occur. Experimental data of High Density Polyethylene (HDPE) in n-hexane 

were modeled using the following equations: Sanchez and Lacombe, Kleintjens and 

Koningsfeld [14] and the Perturbed Hard-Sphere-Chain (PHSC) [81]. The phenomena of 

interest include the LCST behavior and the liquid solvent, vapor solvent and polymer three-

phase equilibrium. All the three models examined provided a reasonable representation of 

the cloud-point for the system HDPE and n-hexane along the three-phase line in the 

conditions investigated. Phoenix and Heidemann [82] used the SL EOS to develop an 

algorithm to determine the cloud and shadow point curves of polydisperse polymer/solvent 

systems using continuous thermodynamics to represent the polymer. 

Wang et al. [83] compared the performance of the Group Contribution Lattice Fluid equation 

of state (GCLF) with the Sanchez and Lacombe equation for liquid-liquid equilibrium data 

in polymer-solvent systems. The authors showed that both equations of state are able to 

predict the UCST and LCST behaviors, simultaneous or otherwise, as well as the hourglass 

shape behavior in which there is no LCST or UCST. The systems studied were: (acetic acid)-

dodecane, polyisobutylene-(n-pentane), polyethylene-(n-hexane), polystyrene-(n-hexane), 

polyisobutylene-(n-pentane) and polystyrene-acetone. In all cases the GCLF equation 

performed better than the SL equation. The GCLF equation showed good sensitivity for the 

polymer molecular weight, but failed to correctly describe the sensitivity regarding the 

pressure. The best performance of the GCLF equation was attributed to the simultaneous 

use of the saturated steam and liquid properties in the regression of group parameters for 

the equation. 

The applicability of equations of state for the modeling and simulation of phase equilibria in 

polymer production processes is investigated by Orbey et al. [57]. A two-stage flash 

separation of unreacted ethylene from polyethylene, which mimics the separation process in 

the production of LDPE, is used as a prototype for the simulation, where three equations of 

state (SAFT, SL and SRK-MHV1-FH) are compared when correlating volumetric, 

calorimetric and vapor-liquid phase equilibrium properties for ethylene and LDPE. Each 

equation of state has some unique characteristics that influence the modeling results of the 

pure components as well as the mixtures. When extended to binary mixtures of ethylene 

with polyethylene, the results show that the three equations can satisfactorily fit the data, 

although the best results are obtained with the SRK equation. As expected, all models 

exhibit less satisfactory results when no binary parameter is fitted to the data. For SRK and 

SAFT equations, only one binary parameter significantly affected the model performance. 

On the other hand, the authors observed that in the SL equation the second binary 

interaction parameter can also make a significant difference. 

Koak et al. [84] studied the high pressure phase behavior of some industrially important 

polymer systems: polyethylene-ethylene and polybutene-(1-butene). New experimental data 

were presented for the system polybutene-(1-butene) in the pressure range from (9 to 17) 

MPa and in the temperature range from (405 to 447) K. The range of polymer concentration, 

expressed as polymer weight percent, ranged from 0.31 to 16.65. The system showed LCST 

behavior. Data from polybutene-(1-butene) and polyethylene-ethylene mixtures, presented 
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by de Loos et al. [85], were modeled using the SAFT and the SL equations. The phase 

equilibrium calculations were carried out for two scenarios: i) the polymer is considered 

monodisperse ii) the polymer polydispersity is taken into account, characterizing the 

polymer through pseudo-components. The polymer polydispersity has a significant effect 

on the phase behavior of the system under investigation. The results show that, although the 

model is suitable for polyethylene-ethylene, interaction parameters are required, which 

depend on the system and on the temperature. Additionally, polymer polydispersity has a 

significant effect on the phase behavior of the mixture, even for reasonably monodisperse 

samples. The modeling effort for the system polybutene-(1-butene) showed that, if the 

models are used in their standard forms, alternative strategies are needed to estimate the 

polymer parameters so that correlation and/or reasonable prediction of the phase behavior 

of the polymer solution can be obtained. 

In order to verify if a single set of parameters can be used to obtain useful correlations for 

different polyethylene resins with different solvents, Gauter and Heidemann [76] used the 

Sanchez and Lacombe equation to model the cloud point isotherms for two systems of 

ethylene and polyethylene and a system of polyethylene in n-hexane. The three 

polyethylene samples examined differ considerably in average molecular weight and 

polydispersity. The polymer parameters were obtained by adjusting volumetric data of pure 

polyethylene, using an additional volume displacement coefficient. The results showed that 

the cloud point behavior of the polymer-solvent equilibrium for a variety of polymers and 

solvents can be correlated with the same set of polymer parameters. The required 

interaction parameters are relatively small in magnitude. Unfortunately, the calculated 

results are extremely sensitive to these numbers, even to the third decimal place. In 

addition, the temperature dependence, although slight, is essential to obtain a reasonable 

data fit. 

Trumpi et al. [86] measured cloud point data for a binary system of monodisperse LDPE and 

ethylene. The cloud points were measured between (395 and 440) K and pressures up to 175 

MPa. The experimental data were modeled with the SL equation. The LDPE parameters 

were obtained from a sequence of non-linear regression analysis based on experimental data 

for both cloud point and PVT data for polyethylene melt. The results show that the SL 

equation fits the experimental data well for a wide range of temperatures, pressures and 

compositions. For diluted mass fractions, on the other hand, the data fit is less accurate. The 

experimental uncertainty in this region is higher than for polymer-rich mixtures, however, it 

is smaller than the deviations between model prediction and experimental data. The 

difference in cloud point pressures between calculated and experimental data increases at 

the lowest polymer mass fractions. 

Krenz et al. [19] used the technique described by Trumpi et al. [86] to adjust the SL 

parameters to fit both polyethylene-solvent cloud points and polyethylene density data. The 

molar mass distribution of the various polyethylene samples were represented by a number 

of pseudocomponents ranging from 7 to 16. When correlating the cloud points of 

polyethylene in a variety of solvents, it seemed that there was a unique set of polyethylene 
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parameters that would work for all mixtures. The polyethylene energy parameters, εi, could 

also be adjusted to fit the critical point of a polyethylene-solvent mixture and still provide an 

accurate representation of the cloud points. The polyethylene parameters, derived from 

fitting the critical point of the mixture, were more consistent than those found from the 

cloud points alone [87]. 

The effect of using different molar mass distributions to represent the same polymer on the 

HDPE-ethylene cloud points, was examined by Krenz et al. [88]. The HDPE parameters were 

taken from Krenz et al. [19]. Log-normal and gamma distributions approximated by nine 

pseudocomponents were used to match the reported average molar masses. The amount of 

branching was not known for these HDPE samples but it was believed to be reflected in the 

different HDPE-ethylene binary interaction parameters [87]. 

Cloud points for three hydrogenated PolyButaDiene (hPBD)-(n-hexane) mixtures were 

calculated using the SL equation by Schnell et al. [89] and compared to experimental 

measurements. The SL parameters were directly regressed from pure component PVT data 

and the hPBD samples were assumed to be monodisperse. The cloud point calculations are 

predictive because no BIP was used. 

Correlation and prediction of miscibility involving binary blends of a variety of 

homopolymers [polypropylene, polybutadiene, polyisoprene, poly(methyl methacrylate), 

polystyrene, among others] were investigated by Voutsas et al. [90] considering three 

models: EFV-UNIFAC [91], PR and SL. The performances were evaluated in terms of i) 

liquid-liquid equilibrium correlation in polymer blends ii) prediction of the effect of 

polymer molecular weight by using interaction parameters obtained from a pair of 

molecular weights iii) prediction of the effect of the system pressure on miscibility using 

interaction parameters obtained from miscibility data at low pressures. All the experimental 

data used correspond to those of monodisperse polymers. Satisfactory correlation results 

were obtained with all models but their quality depended on whether the interaction 

parameters were temperature dependent or not. A satisfactory prediction of the effect of 

polymer molecular weight on the blend was obtained only with the EFV-UNIFAC model 

and the SL equation. The SL model showed the best performance and also successfully 

predicted the effect of pressure on the solution critical temperature, albeit with a poorer 

prediction of the composition at this temperature. 

Chen et al. [92] set out to measure important phase equilibria for the industrial production of 

LLDPE (Linear LDPE) using metallocene catalyst technology. The phase equilibria for (n-

hexane)-polyethylene and ethylene-(n-hexane)-polyethylene mixtures were measured from 

(373.2 to 473.2) K at pressures up to 20 MPa. Approximate monodisperse polymers and their 

mixtures were used to investigate the effect of polymer molecular weight on phase behavior. 

All the systems exhibit liquid-liquid equilibrium with UCST. The SL equation was used to 

correlate the phase behavior of these systems, and the effect of adding supercritical ethylene 

provided quantitative agreement with experimental equilibrium data. The Hosemann-

Schramek function [33] provided a suitable characterization of the molecular weight 

distribution used in some calculations. 
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Nagy et al. [93] measured cloud point, bubble point and liquid-liquid-vapor bubble point 

data for binary LLDPE-(n-hexane) and ternary LLDPE-(n-hexane)-ethylene systems. 

Experimental data were collected in the temperature range of (400 to 500) K at pressures 

up to 14 MPa. Experimental data of LLDPE-ethylene and LLDPE-hexane were modeled 

with a modified SL equation [94]. The LLDPE parameters were obtained by performing a 

sequence of non-linear regression analyses from PVT data of molten polyethylene and 

experimental cloud point data of the LLDPE-(n-hexane) and LLDPE-(ethylene) systems. 

From this information and from the adjustment of the SL equation for (n-hexane)-ethylene 

data, the phase behavior of the ternary system LLDPE-(n-hexane)-ethylene could be 

predicted. Using this procedure, the effect of the ethylene concentration on the cloud 

point pressure is slightly overestimated. Therefore, the BIP of the pair LLDPE-ethylene 

was fitted to the cloud point data of the LLDPE-hexane-ethylene triplet. The SL equation 

provided a good description of the cloud point curve and an almost quantitative 

prediction of the ternary bubble point and phase-boundary curves of the vapor-liquid-

liquid equilibrium. 

One or more polyethylene samples with varying molecular configurations can be mixed to 

produce a blend with different physical characteristics. Krenz and Heidemann [95] used the 

MSL (Modified Sanchez Lacombe) equation [96] to calculate the cloud points of a blend of two 

polydisperse LLDPE resins in a hydrocarbon solvent. The MSL equation is a lattice equation 

that can be used to calculate polydisperse polymer solutions. The considered polyethylene 

resins were hPBD type. The cloud points were compared with experimental data available for 

the systems (hPBD-1)-(hPBD-2)-(n-hexane) and (hPBD-3)-(hPBD-4)-(n-pentane). The four 

hPBD samples have different molecular weight distributions, although the other properties of 

the mixture are unknown (degree, type and frequency of branching in the polyethylene 

molecule). The temperature dependent BIP for LLDPE-hydrocarbon were previously fitted to 

binary mixture cloud points. 

Kanellopoulos et al. [97] used the SL equation to calculate the solubility of α-olefins in 

polyolefins over a wide range of temperatures and pressures. The characteristic parameters 

of the pure components (T*, P*, ρ*) were estimated using a dynamic molecular procedure: 

using commercial software, each selected species (i.e. penetrating molecules and the 

polymer chain) had its molecular architecture firstly built and its geometry optimized by 

minimizing the system energy. For all the binary systems investigated, just a single BIP 

between the penetrating molecules and the polymer chains was estimated. The binary 

parameter value depends on the penetrating molecule, the comonomer, the polymer 

crystallinity, as well as the selected experimental conditions (temperature and pressure). The 

calculated theoretical solubility showed excellent agreement with the experimental 

measurements and demonstrated the ability of the SL equation to predict the solubility of 

olefins in semicrystalline α-polyolefins. 

Nagy et al. [98] measured equilibrium data at high pressure for the LLDPE-isohexane system 

which exhibits LCST behavior. The following measurements were performed with weight 

fractions of polymers ranging from 0 to 0.25, at temperatures of (380-500) K and a pressure 
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of 12 MPa: cloud point data, bubble points and three-phase liquid-liquid-vapor bubble 

points. The data were modeled using the Sanchez and Lacombe equation. 

4. Perturbation theory 

Equations of state based on molecular structures not only provide a useful thermodynamic 

basis for deriving chemical potentials or fugacities (necessary for phase equilibrium 

simulation) but they can also help separate and quantify the effects of molecular structure 

and interactions on global properties and phase behavior. Examples of these effects are the 

molecular size and shape (e.g. chain length and chain branch), energy of association (e.g. 

hydrogen bonding), average field energy (e.g. dispersion and induction). Ideally, a single 

equation of state should incorporate all these effects [26]. 

Much progress has been made in the development of molecular theories of associative 

solutions and those containing macromolecules. The essence of this progress is the use of 

statistical mechanics methods, such as perturbation theory, to correlate the molecular 

properties with the macroscopic properties of the system under study. In perturbation 

models, a simple system is initially used as reference, which should characterize the 

essential aspects of the system and it is usually obtained using a theory with well-defined 

assumptions. The difference between the actual and ideal system (i.e. the reference system) 

is then computed using some correction terms, called perturbation terms, which are often 

based on semi-empirical models. The complexity and magnitude of these perturbations 

depend on the degree of accuracy with which the reference term, representing the ideal 

system, can be specified. 

With this method, Beret and Prausnitz [99] used the results of Carnahan and Starling [100] for 

hard spheres, which can be characterized by square well potential to describe the reference 

state, and proposed the so-called Perturbed Hard-Chain Theory (PHCT). A further refinement, 

the Perturbed Asinotropic Chain Theory (PACT), was made by Vilmalchand and Donohue 

[101] and Vilmalchand et al. [102]. The PACT equation of state takes into account the effects of 

different molecular sizes, shape and intermolecular forces, including anisotropic dipole and 

quadrupole forces. The calculations from Vimalchand et al. [102] show that the explicit 

inclusion of multipolar forces can predict the properties of highly non-ideal mixtures with 

reasonable accuracy, without the use of binary interaction parameters. However, for pure 

fluids, the prediction behavior of the PACT equation of state is similar to other comparable 

equations of state. Kim et al. [103] developed a Simplified version of the PHCT equation 

(SPHCT), replacing the attractive term of the PHCT equation with a simpler theoretical 

expression. This simpler equation has been used in a large number of applications, including 

mixtures of molecules which greatly differ in size. Ikonomou and Donohue [104] derived the 

Associated PACT equation (APACT). This equation takes into account isotropic repulsive and 

attractive interactions, anisotropic interactions due to the dipole and quadrupole moments of 

molecules and hydrogen bonding, and it can predict the thermodynamic properties of 

associative pure components as well as associative multicomponent mixtures. 
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4.1. SAFT equation 

More recently, a new model in the family of perturbation models was developed by 

Chapman et al. [24]-[25] and by Huang and Radoz [26]. This model is known as SAFT 

(Statistical Associating Fluid Theory) and is based on the TPT (Thermodynamic 

Perturbation Theory) work from Wertheim who presented a series of papers [20]-[23] in 

which a coherent statistical mechnical theory of associating fluids was proposed, expanding 

the Helmholtz free energy in a series of integrals of molecular distribution function and 

potential association. Here molecules are treated as different species according to the 

number of bonded associating sites, and separate singlet densities are defined for each 

possible bonding state of a molecule. Chapman et al. [24]-[25] derived the expression for the 

Helmholtz free energy of this new reference fluid and compared the results to Monte-Carlo 

based simulations, obtaining satisfactory results. Huang and Radoz applied the SAFT theory 

to a number of real pure compounds in 1990 (also known as CK-SAFT, because they applied 

a different dispersion term proposed by Chen and Kreglewski [5]) [26] and proposed an 

extension to mixtures in 1991 [27], concluding that the equation is suitable for most of the 

components/systems investigated. 

The essence of the SAFT equation is to use a reference system which incorporates the chain 

length (molecular size and shape) and the molecular association, rather than the reference fluid 

with hard (rigid) spheres, which is much simpler. It is expected that the effects due to other 

types of intermolecular forces (dispersion, induction, among others) are weaker, and therefore, 

considered through a perturbation term. Thus, it is expected that this theory is able to describe 

most real fluids, including polymers and polar fluids. In the SAFT model, the molecules are 

interpreted as a mixture of spherical segments of equal size, interacting according to a square-

well potential. In addition, two types of bonds between these spheres can occur: covalent bonds 

to form chains and association bonds for specific interactions [26], [25]. 

When developing the equation of state, it is assumed that the molecules are formed from 

segments of rigid spheres, according to the diagram in Figure 2. Initially, the fluid is 

composed only of rigid spheres of equal size, and only the effect of rigid spheres are 

considered. The reference fluid consists of rigid spheres forming chains (tetramers) via 

covalent bonds. Hydrogen bonds between terminal sites of different chains result in 

oligomer chains. The last step takes into account weak dispersion forces. 

The equation is derived in terms of the residual Helmholtz free energy resa : 

 
       

 
  

, , ,res total ideala T a T a T

R T R T R T
 (20) 

where T is the temperature and   is the density of the system. The residual Helmholtz free 

energy ares is expressed with regard to the Helmholtz free energy of an ideal gas aideal at the 

same T and  . If the Helmholtz free energy of a fluid is known, all other properties such as 

pressure, chemical potential, among others, can be calculated using basic thermodynamic 

equations. 
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Figure 2. Illustrative Picture of Molecule Formation in the Theory Underlying the SAFT Model [105]. 

Formation of rigid spheres (ahs) and chains (achain), as well as association (aassoc) and dispersion 

(attraction, adisp) interactions, all contribute to the residual Helmholtz free energy: 
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For a pure fluid, the formation of one mol of each chain, consisting of m segments, requires 

m moles of hard sphere. For the hard-sphere term ahs, the Carnahan-Starling [100] expression 

is used. The parameters of the pure components used to calculate achain are identical to those 

used to calculate ahs. No additional parameter is required to take into account connectivity. 

For the dispersion term adisp, Chapman et al. [24]-[25] used the expression originally 

proposed by Cotterman et al. [106] while Huang and Radosz [26] used a polynomial 

expression based on molecular dynamic simulation with square-well fluid. The contribution 

due to chain formation achain is given by Wertheim's association theory [20]-[23] where the 

association bonds are replaced by chain formation covalent bonds, as well as the association 

term aassoc. The number of association sites in a single molecule is unlimited, however, it 

must be specified. Wertheim's contribution terms (chain and association) are essentially 

unchanged in the several versions of SAFT. 

4.2. PC-SAFT equation 

Gross and Sadowski [28]-[29] developed a modification to the SAFT equation referred to as 

PC-SAFT (Perturbed-Chain SAFT). In the structure of the PC-SAFT equation, molecules are 

assumed to be chains of spherical segments, freely linked and exhibiting attraction forces 

among them. The repulsive interactions are described by an expression of rigid chain (hard 

sphere + chain) developed by Chapman et al. [107], which is the same as used in the SAFT 

equation of state. The attraction interactions are in turn divided into dispersion interactions 

and a contribution due to association. Figure 2 illustrates the formation of a molecule 

according to the PC-SAFT theory. Earlier versions of SAFT assume that the dispersive 

interactions of molecule chains are the same as those of spherical molecules. Further 
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investigation, however, demonstrates that equations of state may be improved when the 

dependence on chain length is considered in the dispersive interactions. A new version, 

which explicitly takes into account this dependence, has been developed, leading to the PC-

SAFT equation. The dispersion term was obtained by extending Barker and Henderson's 

[108] theory for chain molecules. This theory considers that a chain segment is connected to 

neighboring segments. It also considers the effect of the nearest neighbor segments in 

segment interactions. 

When the systems under investigation do not contain associative fluids, the term that takes 

into account such interactions can be ignored. 

In the literature, pure component parameters for various substances can be found, either 

small molecules or macromolecules. The model is already available in commercial 

software. 

4.3. Other modifications of the SAFT equation 

Although the PC-SAFT equation provides excellent results when simulating polymeric 

systems, a brief survey of other modifications involving the original form of the SAFT 

equation is given in this section. Four comprehensive reviews of the development and 

application of the various types of SAFT have appeared recently [1], [2], [105], [109]. 

Instead of using the hard sphere fluid as reference, Blas and Veja [110] used the Lennard-

Jones fluid, leading to the soft-SAFT equation. The chain and association terms remained 

similar to those in the original SAFT formulation. The soft-SAFT equation was successfully 

applied to pure n-alkanes, 1-alkenes, 1-alcohols and binary and ternary mixtures of n-

alkanes including the critical region. In the case of mixtures, two binary parameters should 

be used even for mixtures of n-alkanes. 

Another version of the SAFT equation is the SAFT-VR (SAFT Variable Range) equation 

[111]-[114]. The differences between SAFT-VR and PC-SAFT arise from the specific 

treatment of the attractive interactions between segments and the choice of the reference 

fluid. The SAFT-VR takes as reference the hard-sphere fluid, while PC-SAFT takes the hard-

sphere-chain fluid. The SAFT-VR equation describes a fluid of associating molecules with 

the chain segments interacting through attractive forces of variable range (VR). In SAFT-VR 

a reference system with interacting monomers is used to build the molecule. 

The Simplified PC-SAFT (sPC-SAFT) equation [30], [114], [115] is not in fact a new equation 

of state, rather it is a simplified version of the original PC-SAFT regarding mixing rules. 

Therefore, the parameters of the pure components of the original and simplified PC-SAFT 

are the same. The sPC-SAFT equation assumes that all segments in the mixture have the 

same average diameter which provides a volume fraction of the mixture which is identical 

to the actual mixture. This simplified version is simpler to implement and improves 

computational performance compared to the original PC-SAFT with negligible differences 

in accuracy. 
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4.4. Polymeric systems modeling using the SAFT equation and its modifications 

This section presents a brief review of studies that used the SAFT equations of state and its 

modifications for the modeling of polymeric systems. A crucial aspect for the success of 

modeling with SAFT and PC-SAFT equations is the correct selection of the parameters of the 

pure components. In general, the estimation of these parameters may not be easy for 

macromolecular compounds [116]. Moreover, the fit to experimental data through the 

estimation of binary interaction parameter kij is another important point for successful 

modeling. In this sense some works in which the SAFT and PC-SAFT equations are used for 

polymer solutions will be discussed, highlighting the results achieved. 

From the work of Chapman et al. [24]-[25] and Huang and Radosz [26] several applications 

of the SAFT model can be found in the literature. Table 1 presents a summary of some 

applications of the SAFT model for systems consisting of homopolymers and copolymers. A 

more detailed review of the application of SAFT model to polymeric systems can be found 

in [116] and [2]. 

Chen et al. [117]-[118] studied different phase transitions, from liquid to liquid-vapor (L to 

LV) and liquid to liquid-liquid (L to LL) in binary, ternary and quaternary systems 

containing the solvents ethylene, propylene, 1 -butene, 1-hexene, n-hexane and 

methylcyclopentane, and Poly(Ethylene-co-Propylene) (PEP). SAFT modeling was used for 

PEP of varying molecular weights at low and moderate pressures [(0-500) bar]. The BIP set 

was defined as an exponential function of the polymer molecular weight and adjusted by 

three parameters. 

Xiong and Kiran [80] compared the performance of SAFT with SL to model cloud point 

curves in polyethylene systems with n-butane and n-pentane. The pure component 

parameters were taken from literature [26] and the BIP were assumed to be equal to zero. 

For all temperature-pressure-composition ranges, the SAFT model was superior to SL. 

The approach used by Han et al. [119] was to measure the cloud point and  

the coexistence pressures in propylene and ethylene solutions of alternating PEP of  

well-controlled polydispersity directly, from monodisperse to broadly polydisperse. 

These experimental data were modeled using the SAFT equation. More specifically they 

fited the cloud point pressure for monodisperse PEP and used the model for predicting 

the cloud point and coexistence pressure of bimodal polydisperse PEP, without any 

refitting. 

Pan and Radosz [120] used the SAFT equation for copolymers to describe the fluid-liquid 

and solid-liquid transitions in solutions of polyethylene and poly(ethylene-co-olefin-1) in 

propane as well as the fluid-liquid transition in solutions of polystyrene in n-hexane. The 

parameters of the pure solutes were estimated based solely on the molecular weight and on 

the structure. Copolymer SAFT EOS has been also used to model SLE in systems containing 

polyethylene, m-xylene and amyl acetate [121]. 
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Polymer Solvent Reference 

Poly(ethylene-glycol) (PEG) Propane, nitrogen, CO2 [125] 

PolyEthylene (PE) 

Ethylene 
[33], [84], [126], 

[127], [128] 

Propane (also SLE) [120], [129] 

n-butane, n-pentane [80], [130] 

Toluene [126] 

Isobutane [129] 

CO2 [126], [129] 

1-hexene [127] 

Cyclohexane [122] 

Hexane, heptane, octane [123] 

SLE in amyl acetate and m-xylene [121] 

PolyPropylene (PP) 1-butene, n-butane, propane, propylene [116] 

PolyButylene (PB) 1-butene [84] 

PolyStyrene (PS) 

Cyclohexane, metylcyclohexane, 

ethylbenzene, chlorobenzene, CO2 
[126] 

Propane [131] 

Cyclohexane [122] 

Cyclohexane, CO2 [132], [133] 

Polyisobutylene (PIB) 
Ethane, ethylene, propane, propylene, 

dimethyl ether 
[134]-[136] 

PolyCarbonate (PC) 

n-alkane (C8-C12), alcohol (C3-C10), 

benzene, toluene, o, m, p-xylene, 

ethylbenzene 

[137] 

Poly(ethylene-co-vinyl-acetate) 

(EVA) 
vinyl acetate, ethylene, alkanes 

[127], [138], 

[139] 

Poly(vinyl-acetate) (PVA) Benzene, Vinyl acetate [132] 

Poly(ethylene-co-olefin) 

Ethylene, propilene, propane (also 

SLE), 1-butene, 1-hexene, n-alkane (C6-

C8) 

[120], [127], 

[140] 

Poly-methyl methacrylate 

(PMMA) 
CO2–methyl methacrylate [141] 

Poly(Ethylene-co-Propylene) 

(PEP) 

Ethylene, ethane, propylene, 1-butene, 

and 1-hexene, methylcyclopentane 

[33], [117], 

[118], [119], 

[142] 

Poly(1,1-

dihydroperfluorooctylacrylate) 

(poly(FOA)) 

CO2 [143] 

Table 1. Polymeric Systems Modeled with SAFT Equation 
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Dariva [116] applied the SAFT equation of state to model PolyPropylene (PP)-solvent 

systems at low and moderate pressures. Two non-metallocene polypropylenes 

(molecular weights: 476745 and 244625 g/mol; and polydispersities: 4.4 and 5.0) and a 

metallocene polypropylene (molecular weight: 197150 g/mol; and polydispersity: 2.9) 

were used. As solvents, propylene, n-propane, 1-butene and n-butane were used. The 

author modeled transitions L to LV, L to LL and LL to LLV using the SAFT model with 

and without fitting the BIP. A large amount of experimental data for these systems can 

be found in this work. 

Horst et al. [122] studied the influence of supercritical gases in the phase behavior of the 

systems polystyrene-cyclohexane-gas and polyethylene-cyclohexane-gas, modeling the 

experimental data with the SAFT equation of state. As supercritical gases, the authors used 

ethane, propane and nitrogen. The experimental data were collected at moderate pressures, 

and the binary interaction parameters used for the adjustment were defined as quadratic 

functions of temperature. Good results were obtained in the modeling, although a larger 

model mismatch in regions of higher polymer concentration can be obseved. 

Jog et al. [123] used the SAFT equation to model the liquid-liquid equilibrium of LLDPE 

with hexane, octane and heptanes [124]. The effects of temperature, pressure, polymer 

concentration and molecular weight on the phase separation were successfully evaluated. 

The effect of polydispersity on cloud point was also considered. Although the SAFT 

predictions are sensitive to the binary interaction parameters, a constant value for the binary 

parameters was considered to model the cloud point in varying conditions (temperature, 

pressure and polymer concentration) and varying solvents. The SAFT equation showed a 

good predictive capacity for this system. 

Besides the works already mentioned, the SAFT equation of state has also been applied in 

more recent works as a “reference” model, its performance being compared to PC-SAFT 

model, as will be shown below. After the work of Gross and Sadowski [28]-[29], some 

applications of the PC-SAFT model may be found in literature. Table 2 presents a summary 

of some of the applications of the PC-SAFT model for systems consisting of homopolymers 

and copolymers. A more detailed review of the application of PC-SAFT model to polymeric 

systems can be found in [2]. 

Tumakaka et al. [144] used the PC-SAFT equation to model cloud point curves for polymeric 

systems consisting of polyolefins, using ethane, ethene, propane, propylene, n-butane, 1-

butene and CO2 as solvent. Here, the good results obtained for modeling the systems LDPE-

solvents and HDPE-ethylene at high pressures should be highlighted. As well as modeling 

systems consisting of polyolefins, polyethylene copolymers and PVA (polyvinyl acetate 

vinyl) systems were also modeled. Good results were obtained when representating a 

system consisting of polypropylene with moderate polydispersity (MW/MN = 2.2), 

assuming that the polypropylene was monodisperse. The monodisperse assumption was 

also considered for the LDPE-solvent system, whereas for the HDPE-ethylene system the 

polyethylene was modeled using pseudocomponents. 
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Polymer Solvent Reference 

Polyethylene (PE) 

Ethylene, ethane, propylene, propane, butane, 1-

butene, hexane 

[73], [152], [153], 

[154], [155], [159], 

[161] 

n-heptane [162] 

Toluene [126] 

CO2 [126] 

Cyclohexane, 1-octene [155] 

SLE in n-alkanes and in m-xylene [158] 

SLE with a variety of solvents [68] 

Polypropylene (PP) 

Propane, n-pentane, CO2 [126], [151], [163] 

SLE with a variety of solvents [68] 

Diisopropyl ketone [147] 

Polystyrene (PS) 

Cyclohexane, CO2, metylcyclohexane, 

ethylbenzene, chlorobenzene 
[126], [162] 

Ethylbenzene, butyl acetate [147] 

Polyamide (PA) Caprolactam, water [150] 

Poly(methyl acrylate) (PMA) 2-octanone [146], [164] 

Poly(ethylene-co-methacrylic acid) 

(EMA or PE-co-MA) 

Ethylene, propylene, butane, 1-butene [146], [160] 

Propylene, butane [148] 

Poly(ethylene-co-acrylic acid) (EAA or 

PE-co-AA) 
Ethylene [160] 

Poly(ethylene-co-vinyl-acetate) (EVA) 
Cyclopentane [146] 

Ethylene [148] 

Poly(ethylene)-co-olefine 
Ethylene, propylene, propane, 1-butene,  

1-hexene, n-alkane (C6-C8) 
[144], [146], [163] 

Poly(vinyl-acetate) (PVA) 

Methyl ethyl ketone, propyl acetate, 1-

propylamine, 2-propylamine, 2-methyl-1-

propanol, 2-propanol 

[147] 

Polyolefins and PVA 
Ethane, ethene, propane, propylene, n-butane, 1-

butene, CO2 
[144] 

PE, PP, PB, PIB, PS 
Ethylene, n-butane, 1-butene, n-pentane, 

cyclohexane 
[145] 

Biopolymers: poly(d,l-lactide) (PLA), 

poly(butylene succinate) (PBS) and 

poly(butylenes succinate-co-adipate) 

(PBSA) 

Cloro difluorometane, CO2, dimetil ether, 

difluiorometane, trifluorometane, 

tetrafluorometane 

[165] 

Polycarbonate (PC) CO2, cyclohexene oxide [166] 

Poly(dimethylsiloxane) (PDMS) Pentane [167] 

PMMA, poly(butyl methacrylate) (PBMA), 

PVA, PS, PP, Polybutadiene (BR), PIB, 

PMA, poly(ethyl acrylate) (PEA), 

poly(butyl acrylate) (PBA), 

Polyphthalamide (PPA) 

CCl4, CH2Cl2, methyl acetate, methyl ethyl 

ketone, 1-propanol, 4-heptanone, chlorobutane, 

octane, cyclohexane, benzene, toluene, 

ethybenzene, xilene, acetone, diethylketone 

[156] 

PDMS, PE, PS, PBMA, PIB, PB, 

poly(alpha-methylstyrene) (P-MS), 

PMMA, PVA 

Benzene, toluene, alkane (C5-C8), cyclohexane, 

methylcyclohexane, 1-propanol, 2-propanol, 1-

butanol, 2-butanol, 2-methyl-1-propanol, methyl 

acetate, prothyl acetate, methyl ethyl ether, 

acetone, propylamine, isopropylamine 

[157] 

Table 2. Polymeric Systems Modeled with PC-SAFT Equation 
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Gross and Sadowski [145] used the fractionation of LDPE in three pseudocomponents to 

represent the cloud point curves for the ethylene-LDPE system (MW/MN = 8.56). The pure 

component parameters for ethylene and polyethylene and one binary interaction parameter 

kij (interaction ethylene-LDPE) were estimated from the simultaneous regression of polymer 

density data and a single cloud point curve, requiring the optimization of four parameters 

(m, σ, ε/k, kij). Additionally, the modeling of other polymeric systems in varying equilibrium 

conditions was carried out for a wide range of temperatures [(75-197) °C], pressures [(0-

2000) bar] and weight compositions [(0-100)%]. Polymeric systems consisting of LDPE, 

HDPE, PP, polybutene, polyisobutene and polystyrene were evaluated. As solvents, 

ethylene, n-butane, 1-butene, n-pentane and cyclohexane were used. Comparisons of results 

obtained from SAFT and PC-SAFT models corroborate that PC-SAFT shows the best 

performance. 

Gross and Sadowski [145] proposed changes to the PC-SAFT equation, adding two more 

parameters concerning the association term. Simulations of liquid-liquid and vapor-liquid 

equilibrium of systems consisting of simple molecules were compared with the SAFT 

model. Slightly better results were observed for the PC-SAFT equation. The pure component 

parameters were obtained from the simultaneous regression of vapor pressure and liquid 

phase density data. Thus, a total of five parameters were optimized for each component i: 

segment diameter (σi), segment number (mi), segment energy (εi/k), association energy 

(εAiBi/k) and effective association volume (kAiBi). The BIP kij parameter for each system was 

optimized later. 

Cheluget et al. [73] applied the PC-SAFT equation of state to model a flash separation 

system of an industrial LLDPE plant. The system under study consisted of ethylene, 1-

butene, cyclohexane and polymer at 267 °C and 33 bar. The PC-SAFT parameters used in 

this study were estimated from binary system liquid-liquid and vapor-liquid equilibrium 

data obtained from literature. The authors did not re-estimate the binary interaction 

parameters to fit the model to the industrial data, to compare the predicted (using 

interaction parameters from literature) and industrial data. The lack of parameter re-

estimation is the most likely cause of the significant deviations between experimental and 

predicted values. 

Gross et al. [146] extended the PC-SAFT model [28]-[29] for copolymers. The authors 

modeled phase equilibrium for ethylene copolymer systems with random alternating chains 

in a wide range of compositions (including homopolymer) and with molecular weights 

ranging between 709 and 242000 g/mol. The studied polymers were composed of repeating 

apolar [poly([ethylene oxide]-co-propylene) and poly([ethylene oxide]-co-[butene-1])] and 

polar [poly([ethylene oxide]-co-[vinyl acetate]) and poly(ethylene-co-[methyl acrylate])] 

units. Additionally, the authors reported binary interaction parameters of phase equilibrium 

for systems consisting of homopolymers, whose repeating units are present in the 

copolymers, and varying solvents, and some of these interaction parameters also considered 

the composition of the copolymer. The BIP were estimated from equilibrium data of binary 

polymer-solvent systems. 
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Kouskoumvekaki et al. [147] implemented a simplified version of the PC-SAFT equation of 

state, developed by von Solms et al. [30] with little repercussion for polymeric systems made 

up of a variety of solvents, including polar, apolar and associative compounds. Pure 

component parameters were estimated from vapor pressure and liquid phase density data. 

The simplified model showed similar results to those obtained by the original PC-SAFT 

equation, thus presenting some advantages due to its simplicity and lower computational cost. 

In the work of Tumakaka and Sadowski [148], the PC-SAFT equation was applied to pure 

polar compounds as well as to the vapor-liquid and liquid-liquid equilibrium of binary 

mixtures containing polar compounds, with low molecular weight, and polar copolymers. 

As the original PC-SAFT is unable to describe polar systems, the authors used an extended 

version of the equation for polar systems. The dipolar interactions, which contribute 

significantly to the total intermolecular forces, are explicitly explained in molecular theory 

[149]. Due to the inclusion of a term of polar interactions in the molecular theory, it was also 

necessary to include a pure component parameter in the term. When dealing with mixture 

modeling, the authors defined the binary interaction parameter either as an independent 

term or as a function of the comonomer molar fraction. 

The sPC-SAFT equation (Simplified PC-SAFT equation) was applied by Kouskoumvekaki et 

al. [150] to the vapor-liquid equilibrium of binary and ternary systems of polyamide-6 with 

several solvents (water, caprolactam, ethyl benzene and toluene). Binary interaction 

parameters between polyamide-6, caprolactam and water were estimated using 

experimental data of the binary mixtures. The estimated parameters were used to predict 

and correlate the ternary mixture of polyamide-6, caprolactam and water. When optimizing 

the pure parameters of polyamide-6, the corresponding values of caprolactam were 

considered as initial estimates, and just the segment diameter needed to be adjusted using 

experimental data of liquid volume. The results showed that the sPC-SAFT equation is a 

versatile tool for modeling multi-component systems containing polyamide. 

Arce and Aznar [151] modeled the systems PP-(n-pentane) and PP-(n-pentano)-CO2 using 

the PC-SAFT equation of state. In this work resins of low molecular weight (MW = 50400 

and 95400) at moderate pressure (below 350 bar) were considered. The PC-SAFT, Sanchez-

Lacombe and Peng-Robinson models were used to predict the cloud point pressures from 

experimental data on each system. Although all the models were able to describe the 

system, the PC-SAFT equation showed superior performance. For all the models, the 

authors used the temperature dependent BIP. 

Spyriouni and Economou [152] evaluated the performance of SAFT and PC-SAFT equations 

of state to describe the phase behavior of mixtures containing polydisperse polymers and 

copolymers at high pressure. Although there are several studies showing the application of 

both equations in modeling the phase behavior of polymer systems, the major contribution 

of this work was to compare the performance of both models for a wide variety of 

homopolymers and copolymers. The authors concluded that both models show a similar 

performance in modeling the equilibrium, however, from the data presented, the PC-SAFT 

model shows superior results for most systems. 
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Pedrosa et al. [153] presented phase equilibrium calculations for polyethylene solutions with 

varying solvents using two different versions of the SAFT equation: PC-SAFT and the soft-

SAFT. The soft-SAFT equation uses the spherical fluid of Lennard-Jones as a reference, 

including attractive and repulsive interactions, while the reference term in the PC-SAFT 

equation is the rigid sphere chain. The studies carried out by Pedrosa et al. [153], which also 

dealt with vapor-liquid equilibrium, showed that results with soft-SAFT equation are 

slightly more accurate than those obtained with PC-SAFT in some cases. 

Buchelli et al. [154] investigated the performance of the PC-SAFT equation of state for 

modeling the HPS and LPS units downstream from a low-density polyethylene tubular 

reactor. Plant data were used to validate the equilibrium stage model prediction for the two 

gas-liquid flash separators, however, the pure component parameters and BIP of this model 

were obtained exclusively from experimental data published in the literature. The authors 

achieved good agreement between the model and LPS plant data, although the predicted 

solubility was not in agreement with plant-measured values for the HPS. 

Guerrieri [155] investigated the behavior of polymeric systems in two industrial 

polyethylene plants, a LDPE plant and a HDPE/LLDPE plant, using the PC-SAFT equation. 

The liquid-liquid equilibrium at high pressure, observed in the reactor, and the vapor-liquid 

equilibrium, observed in the low-pressure separator, were investigated in the LDPE plant. 

For this study, 8 commercial resins were considered. In the HDPE/LLDPE plant, the vapor-

liquid equilibrium in the intermediate pressure separator was investigated. Here, 25 

commercial resins were investigated. The experimental data were taken from measurements 

and mass/energy balances available in both plants, and the modeling of binary and 

multicomponent systems consisting of ethylene, ethane, propylene, propane, 1-butene, 

cyclohexane, 1-octene and polymer was carried out. 

Tihic et al. [156]-[157] developed a group contribution method to be used in PC-SAFT 

equation to predict their pure parameters. If pure polymer parameters in SAFT-type 

equations are obtained only from density data, poor predictions of phase equilibrium may 

result. Therefore, the group contribution method for parameter estimation was developed 

through the adjustment of vapor pressure and density data based on a database of 400 

components of low molecular weight. The data required to calculate the phase equilibrium 

for polymers using this contribution method are the polymer molecular structure in terms of 

functional groups and a single interaction parameter for accurate mixture calculations. 

Understanding the phase behavior of polymer solutions is of great theoretical and practical 

importance. Some work has also been done on the development of algorithms for real-time 

prediction of SLE in solution polymerization of polyethylene based on PC-SAFT EOS and to 

study the effects of monomer and polymer polydispersity in solution polymerization 

processes [158]. Costa et al. [68] also modeled the SLE in polyolefins (polyethylene and 

polypropylene) solutions using PC-SAFT EOS for a variety of different polymer-solvent 

systems at atmospheric and high pressure with very good results. Pressure versus 

temperature (P-T) isopleths can be used to determine the number of phases present at a 

given T, P, and overall mixture composition. The PC-SAFT EOS was applied by Costa et al. 
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[159] to simulate the curves that describe the borderlines between several distinct regions 

depicted in P-T isopleths for polyethylene solutions. A new strategy was used and the 

simulation results show good agreement with experimental cloud point isopleths data from 

the literature. In order to track the operational performance of industrial reaction systems 

safely, a strategy to calculate the distance between a given operational point (specified 

through a given pressure and a given temperature) and the corresponding point in the 

interface, for a fixed molecular weight and a fixed polymer fraction weight, has been 

developed which could also be extended for real-time prediction applications. 

Kleiner et al. [160] extended the association term of the PC-SAFT EOS to account for the 

polydispersity of the copolymer samples. This EOS was used to model cloud-point 

curves of the systems poly(ethene-co-acrylic acid)-ethene and poly(ethene-co-

methacrylic acid)-ethene. Both copolymer composition and molecular weight 

distribution were varied. To account for polydispersity the concept of 

pseudocomponents has been applied and they were generated such as to match the 

molecular weight distribution. An algorithm has been developed for calculating phase 

equilibria of polydisperse associating copolymer-solvent systems. The PC-SAFT 

approach turns out to be capable of adequately modeling and even predicting the phase 

behavior of the polydisperse polymeric systems by using two pseudocomponents for 

each copolymer, but no additional adjustable parameters. 

Phase-dependent BIP were computed by Costa et al. [161] with PC-SAFT EOS by correlating 

the flash results for both high and low pressure separators (HPS and LPS) for the 

industrially significant mixture ethylene-ethane-propane-propylene-LDPE. HPS and LPS 

data were correlated for five of eight LDPE resins. A pressure, composition and molar mass 

dependent binary interaction parameter model was proposed for both the vapour and liquid 

phase. The resulting model was able to provide a good representation of the experimental 

data. The polydispersity and branching of the LDPE resins, as well as the temperature, were 

lumped into the BIP. Clearly, the proposed phase-dependent BIP model provides a good 

representation of the phase behaviour in two industrial separators for very complex 

polydisperse mixtures. 

5. Conclusions 

This chapter has presented a review of equation of state models for polymers, 

demonstrating their increasing evolution in performance for describing phase equilibria in 

polymer systems. The development of EOS for polymers remains a very active area of 

research and it is difficult to recommend a specific EOS [2]. 

In general the equations of state using GE models are unable to describe high-pressure phase 

equilibria with the desired quality [65], thus have a more restricted application. On the other 

hand, their equations and mixing rules are simple, which facilitates their convergence and 

the obtaining of terms required for the calculation of other thermodynamic properties, e.g. 

mixture specific heat. 
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Regardless of the model used, the calculation of the parameters of the pure components for 

polymers is a major challenge. When using an equation of state, the need for other 

applications besides the description of phase equilibria and PVT data, such as the 

calculation of Joule-Thompson coefficient and general energy balances should be borne in 

mind. Despite its importance, little research has been done in this respect with polymer 

systems. Note that the simpler the equation and its mixing rule, the easier it will be to obtain 

these properties and other important thermodynamic properties. 

Although the PC-SAFT equation seems to show certain superiority in performance when 

compared to other models, no agreement was observed in the reviewed literature on which 

concept and/or thermodynamic model structure is better. Thus the choice of the model 

remains dependent on the system and its conditions. Although many studies address 

polymeric systems with a high concentration of polymers in a wide range of molecular 

weights, very few studies can be found that model oligomers (low molecular weight 

polymers), despite being a relevant problem as in many cases the quality of its 

measurement/prediction is critical for the proper functioning of important process 

equipment. 
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