
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 13 

 

 

 
 

© 2012 Hu and Wereley, licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Anelastic Behavior in Filled Elastomers Under 

Harmonic Loading Using Distributed  

Rate-Dependent Elasto-Slide Elements 

Wei Hu and Norman M. Wereley 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/2784 

1. Introduction 

Elastomeric materials are broadly used for stiffness and damping augmentation in various 

applications due to their simple design, low weight, and high reliability. However, filled 

elastomeric materials exhibit significant nonlinear behavior [1]. Such nonlinear 

characteristics include a) non-elliptical shear strain vs. stress hysteresis diagram under 

sinusoidal excitation, b) stiffness and damping dependent on amplitude, frequency, 

temperature and even preload, c) Mullins effect with reduction of stiffness at small strain 

following cyclic deformation at large strains, and d) low stress relaxation and creep rates. 

Specifically, the large reduction of damping with increasing amplitude of harmonic 

displacement excitation leads to excessive size and weight of dampers in order to 

accommodate all operating conditions. It was also found that highly damped elastomeric 

dampers demonstrated low loss factors at low amplitudes resulting in unacceptable limit 

cycle oscillations [2]. Therefore, a precise analytical model is necessary to describe the 

nonlinear behavior of an elastomer and to determine its dynamic characteristics.  

Some prior research introduced nonlinear terms into conventional Kelvin or Zener models. 

The complex modulus is usually used to characterize viscoelastic materials under harmonic 

excitation: the storage (or in-phase) modulus is a measure of the energy stored over a cycle 

or period of oscillation, and the loss (or quadrature) modulus is measure of the energy 

dissipated over a cycle. This model can be represented as a spring and a dashpot in parallel 

(Kelvin chain). However, the complex modulus is a linearization method in the frequency 

domain that represents the nonlinear hysteresis cycle as an equivalent ellipse, and is only 

applicable to steady harmonic forced response analysis. Some researchers have extended the 

basic Kelvin chain to complicated mechanism-based modeling approaches in order to 

explain the nonlinear behavior of elastomers. To display basic behavioral characteristics, 
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such as creep and relaxation, a viscoelastic solid can be represented as a spring in series with 

Kelvin elements (if one Kelvin element is used, then a Zener model results [3]). Gandhi and 

Chopra [4] developed a nonlinear viscoelastic solid model in which a nonlinear lead spring 

was used in series with a single linear Kelvin chain. Using this model, the variation of 

complex moduli with oscillation amplitude closely matched experimental data. Felker et al.. 

[5] further developed a nonlinear complex modulus model based on a single Kelvin chain, 

in which the spring force was a nonlinear function of the displacement, and the damping 

force was a nonlinear function of displacement and velocity. This model was used to 

describe the amplitude dependent moduli and to study dual frequency damper motions. 

The parameters in all of these models were identified using amplitude-dependent complex 

modulus data. As a result, the nonlinear hysteresis behavior of could not be captured using 

these models. 

Elastomeric materials typically demonstrate tribo-elastic behavior [1]. Physically, the 

amplitude dependent behavior exhibited by the elastomer is results from the interaction of 

the fillers with the rubber or elastomeric matrix materials [6]. Before large deformation of a 

filled elastomeric damper, an intact filler structure displays a large stiffness and low loss 

factor for small amplitudes. As the amplitude increases, the filler structure breaks resulting 

in a stiffness reduction. However, the breaking of filler structures, which is similar to 

friction, increases the loss factor. As amplitude increases further and the frictional effect is 

fully manifested, both stiffness and loss factor are further reduced, which are then 

maintained relatively constant by the remaining polymer chains. Motivated by the above 

physical mechanisms, a number of researchers have combined springs and frictional slides 

to represent the filler and rubber compound in filled rubbers or elastomers. 

In the model developed by Tarzanin et al. [7], the elastomeric behavior was represented by a 

nonlinear spring and a nonlinear Coulomb friction damper. This model was based on single 

frequency elastomer data and matched the value of energy dissipation per cycle. Panda et al. 

[2] replaced the Coulomb friction damping element with a variable friction damping 

element whose force was calculated based on the peak displacement of excitation when the 

velocity was zero. This model correlated well with the experimental hysteresis data, but the 

effectiveness of this model over a range of amplitudes and frequencies has not been 

demonstrated in the literature. As early as 1930, Timoshenko [8] suggested that general 

hysteretic systems consist of a large number of ideal elasto-plastic elements with different 

yield levels. Iwan [9, 10] further developed a distributed-element model to study the steady-

state dynamic response of a hysteretic system. Instead of specifying a distribution function 

numerically to agree with experimental data, a constant band-limited statistical function 

was used to define yield properties of the slide elements in this model. This model proved 

successful in predicting steady-state frequency response of a hysteretic system using a 

method of linearization. However, the excitation amplitude must be known as a priori while 

this model is applied in the analysis, which is only applicable in steady-state response 

prediction. The theory of triboelasticity [11] also stated that the behavior of a filled elastomer 

can be represented by a large or infinite number of alternate springs and frictional slides in 

series, and each slide has a constant yield force and each spring has a constant stiffness. 
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Coveney et al. [1] developed a three-parameters standard triboelastic solid (STS) model 

based on the theory of triboelasticity and further developed a four-parameters rate-

dependent triboelastic (RT) model. These models gave a satisfactory representation of the 

material behavior. However, because the yield force was fixed along different slides, these 

models showed less flexibility in representing the amplitude dependent behavior for 

different filled-level materials. 

Alternative elastomeric models were developed using internal variable or nonlinear integral 

equations. Strganac [12] used a stress shift function to formulate a nonlinear time domain 

model for elastomers, but the nonlinear integral formulation in the model was difficult to 

implement in traditional aeromechanical analysis. Lesieutre and Bianchini [13] developed 

the anelastic displacement field (ADF) method to describe the frequency-dependent 

behavior of viscoelastic materials. It was based on the notion of scalar internal variables or 

augmenting thermodynamic fields (ATF) [14] that described the interaction of the 

displacement field with irreversible processes occurring at the material level. In the ADF 

approach, the effects of the thermodynamic processes were focused on the displacement 

field, which consists of both elastic and anelastic fields. The anelastic part may be further 

subdivided to consider the effects of multiple relaxation processes. Although there is no 

explicit physical interpretation when multi-anelastic elements are involved, one single ADF 

model is mechanically analogous to the Zener model. In order to capture the characteristic 

nonlinear hysteretic behavior of elastomeric materials, Govindswamy et al. [15] developed a 

nonlinear ADF model, in which the linear ADF parameters were replaced with nonlinear 

terms. The model captured the variations of the complex modulus with amplitude, and 

performed as well in matching the strain vs. stress hysteresis cycle. Furthermore, other 

functional forms for the ADF parameters were introduced in order to improve hysteresis 

loop predictions. Brackbill et al. [16] improved the nonlinear ADF model by adding rate 

independent nonlinearity, in which friction-damping and linear-spring elements in parallel 

with the baseline nonlinear ADF model were used to provide additional amplitude 

dependent relaxation behavior. As many as sixteen parameters were used to construct the 

model. Although the complex moduli were fitted well in certain amplitude and frequency 

ranges, the performance of the model in predicting nonlinear hysteresis behavior could still 

be improved. Moreover, the process to determine model parameters was complicated by the 

fact that some parameters were chosen by empirical observation. In a recent study, 

Ramrakhyani et al. [17] developed an ADF based model containing nonlinear fractional 

derivatives and frictional elements. This model used eight parameters instead of sixteen 

parameters to capture the amplitude-dependent and mild frequency-dependent modulus. 

However, the prediction of hysteresis loops was not noticeably improved, and the 

determination of model parameters remains complicated. 

In this chapter, a hysteresis model is introduced to study the anelastic behavior of 

elastomers under harmonic excitation. Using this model, the behavior of the elastomer is 

analogous to the behavior of a nonlinear Kelvin element, in which the stiffness is a nonlinear 

monotonic function of displacement and the damping is a monotonic rate dependent 

hyperbolic tangent function. Although, the hysteresis model can capture the hysteresis 
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behavior of the elastomer, the use of simple nonlinear spring and damping elements are not 

sufficient because model parameters, at the very least, are amplitude dependent. Thus, a 

computationally efficient and precise model for the elastomer is developed from a profound 

understanding of the damping mechanism within the damping material. As mentioned 

before, the anelastic behavior demonstrated by the elastomer is mostly based on the 

interaction between fillers and rubber compound inside the filled elastomeric materials. 

Based on this physical mechanism, a non-uniform distribution of rate-dependent elasto-

slide elements is used to emulate filler structure behavior and a parallel linear spring (and 

linear viscous damping) is used to represent the remaining polymer stiffness (and 

damping). Extensive testing including single frequency and dual frequency testing is 

conducted for material characterization, identification of model parameters and validation 

of the model. It is shown that this material model can be used for damping element design 

and can be integrated into numerical analysis for dynamic systems. It is also shown that the 

non-uniform distributed rate-dependent elastomer model is applicable in complex loading 

conditions without any priori information, and the flexibility in determining model 

parameters provides a potential to improve the model and to apply the model for 

elastomers with different filler structures.  

2. Characterization of elastomers 

To characterize elastomeric materials under harmonic excitation, dynamic tests were 

conducted for two different elastomer configurations. The first elastomeric configuration 

was a double lap shear specimen as shown in Fig. 1a, or flat linear bearing, hereinafter 

called elastomeric specimen 1. The second elastomeric configuration was a linear concentric 

tubular bearing as shown in Fig. 1b, hereafter denoted the elastomer specimen 2. Both 

specimens were characterized under pure shear deformation. Testing was carried out with 

varying excitation amplitudes and frequencies, and all tests were conducted at room 

temperature: 25C. 

As shown in Fig. 1a, elastomer specimen 1 was a double lap shear speciment that is 

comprised of three parallel brass plates between which the elastomeric material is 

sandwiched symmetrically. To study the effect of preload on the behavior of the elastomer, 

elastomeric specimen testing was conducted with and wihtout preload. Preload was applied 

to the elastomeric specimen by compressing the double lap shear specimen 10% of the width 

of the specimen using a simple vise. The testing setup for the elastomer specimen 1 is shown 

in Fig. 2a. A 24.466 kN servo-hydraulic MTS test machine was used to characterize the 

specimen. Fixtures and grips were designed and machined to hold the specimen in place. A 

hydraulic power supply (HPS) unit supplied the servo fluid to the testing machine for 

power, and the specimen was loaded and tested on the load frame. An actuator provided 

the sinusoidal loading, and an LVDT sensor measured displacement while a load cell 

measured force. Single and dual frequency tests were conducted using this load frame. In 

the dual frequency test, an HP 8904A multi-function synthesizer was used to generate and 

sum the sinusoidal signals for both frequencies. The single frequency test was conducted 

with displacement control for excitation amplitude ranging from 0.25 mm to 5 mm, i.e. 2.5% 
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to 50% shear strain, in increments of 0.25 mm. The frequencies were chosen as 2.5 Hz, 5 Hz 

and 7.5 Hz. The dual frequency testing was carried out at a combination of 5 Hz and 7.5 Hz, 

and the amplitudes for 7.5 Hz were 0.5, 1.5, 2.5, 3.5, and 4.5 mm, respectively, while the 

amplitude for 5 Hz was maintained the same as for the single frequency tests.  

 

Figure 1. Elastomer Specimen (Unit: mm) 

An important effect of filler materials in the filled elastomeric specimen is stress-softening. If 

an elastomeric sample is stretched for the first time to 100% followed by a release in the 

strain and then stretched again to 200%, there is a softening in the strain of up to 100% after 

which it continues in a manner of following the first cycle. This stress softening effect was 

first discovered by Mullins and is called the ‘Mullins Effect’ [18]. To account for this 

phenomenon, the test samples were first cycled and loosened before the actual tests by 

exciting them at 1 Hz frequency and 5 mm for 300 cycles since 5 mm is the maximum 

amplitude during tests. Stress relaxation is also shown in the case of dynamic loading. As 

the material is subjected to cycling loading, energy dissipation in the material heats up the 

material and results in elevated temperature softening. Usually, material self-heating and 

(a) Specimen 1: Double Lap Shear 

(b) Specimen 2: Cylindrical Tubular Shear
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other unsteady effects require about 250 seconds to stabilize and reach a steady state. Hence, 

in order to ensure temperature stabilization and consistency of data, during a normal test, 

the elastomeric sample was typically excited at the test frequency and amplitude for 300 

seconds before collecting data. For simplification, the stress softening and relaxation effects 

were not considered in the modeling process such that the model parameters were 

independent of the loading level and temperature.  

 

Figure 2. Testing Setup 

As shown in Fig. 1b, elastomer specimen 2 was fabricated from two concentric cylindrical 

metal tubes, with an elastomeric layer sandwiched between the outer and inner tubes. The 

 

(a) Testing Setup for Specimen 1 

 

(b) Testing Setup for Specimen 2 
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volume enclosed by the inner tube forms a cylindrical inner chamber, and a threaded 

trapezoidal column is attached to one end of the inner tube. As shown in Fig. 2b, the 

specimen was installed in the MTS testing machine, the outer tube was attached to the load 

cell on the fixed end of the MTS machine, and the inner tube was connected to the actuator 

through an adapter. Thus, the axial translation of the actuator induced a relative translation 

between the inner tube and the outer tube which in turn led to a shear deformation of the 

elastomer along the tube length. The specimen was excited in displacement control by a 

sinusoidal signal, and the displacement and force were measured by the LVDT sensor and 

load cell of the MTS machine. The excitation amplitude ranged from 0.25 mm to 1 mm in 

increments of 0.25 mm (approximately 5% to 20% shear) at three different frequencies of 2.5, 

5.0, and 7.5 Hz, respectively. 

All test data were collected using a high sampling frequency (2048 Hz) such that most 

higher harmonic components in the measured nonlinear force were included. To reduce the 

noise of the sinusoidal displacement signal, a Fourier series was used to reconstruct the 

input displacement. The reconstructed displacement signal was then differentiated to obtain 

the velocity signal. The Fourier series expansion of the input displacement, x(t), is 
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In Eq. (1), x0=Xc,0. For single frequency data processing, any bias and higher harmonics were 

filtered, so that only the frequency of interest, , remained, that is 2.5, 5.0 and 7.5 Hz. For 

dual frequency testing, the general equation for the input dual displacement signal is 

written as: 

      1 1 2 2sin cosx t X t X t     (3) 

where 1 and 2 are correspnding frequencies of 5 and 7.5 Hz, and X1 and X2 are the 

amplitudes at each frequency. The signal is periodic with a frequency corresponding to the 

highest common factor of both harmonics, i.e., 2.5 Hz. The displacement signal was filtered 

using 2.5 Hz as the base frequency. The first three harmonics were needed to reconstruct the 

dual frequency displacement signal in order to capture 1 and Ω2. Due to the nonlinearity of 

elastomers, the higher harmonics of the measured force were not filtered. 

A typical approach used for characterizing elastomer behavior is the complex stiffness. The 

linearized complex stiffness, K*, is composed of an in-phase or storage stiffness, K, and a 

quadrature or loss stiffness, K, as follows: 
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 *K K jK    (4) 

Therefore, the elastomer force can be written as the summation of an in-phase spring force 

and a quadrature damping force, and the elastomer force can be approximated by the first 

Fourier sine and cosine components at the charterized frequencies, i.e. 2.5, 5.0 and 7.5 Hz: 

 
     
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 (5) 

where Fc and Fs are the first harmonic Fourier coefficients of the measured force. The storage 

stiffness, K, and the loss stiffness, K, are determined using the following equations: 
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where, Xc and Xs are the first harmonic Fourier coefficients of x(t). The loss factor, , is also 

used to measure the relative levels of the loss stiffness to the storage stiffness. The ratio is 

written as: 

 
K

K


 


 (7) 

Typical linear characterization results for elastomeric specimen 1 in the absence of preload 

are shown in Fig. 3. These plots indicate that the linearized storage and loss stiffness of the 

specimen are highly amplitude dependent at low amplitudes. For smaller amplitudes, the 

rate of change of the storage stiffness and the loss stiffness is much greater than one for 

larger amplitudes. However, the complex stiffness does not change substantially over the 

narrow frequency range tested. The loss factor, , is also strongly dependent on amplitude. 

The maximum value of the loss factor is as high as 1.025 for this filled elastomer. This 

elastomeric material performs most effectively as a damping material within the amplitude 

range of 0.76 - 1.27 mm 7.5% to 12.5% shear strain), in which the loss factor, >1. Similar 

results were exhibited by the elastomer under preload. In general, the linearized behavior of 

the elastomeric specimen is highly amplitude dependent and weakly frequency dependent 

in this frequency range. 

The measured complex modulus and loss factor of the elastomer specimen 2 are shown in 

Fig. 4. Both in-phase (storage) and quadrature (loss) stiffness demonstrate moderate 

amplitude dependence and weak frequency dependence. In contrast to the characteristics of 

the elastomeric specimen 1, the in-phase stiffness of specimen 2 is much greater than its 

quadrature stiffness, and both in-phase and quadrature stiffness vary with the displacement 

amplitude at a similar rate. Thus, the loss factor of the specimen is quite low (around 0.25 to 

0.3) and almost constant over the range of amplitude and frequency tested. 
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Figure 3. Linear Characterization of Specimen 1 

 

Figure 4. Linear Characterization of Specimen 2 

The single frequency linear characterization can capture the general trends of the in-phase 

and quadrature stiffness for a filled elastomer. However, this linear analysis cannot be used 

to accurately reconstruct the nonlinear hysteresis behavior exhibited by the elastomer [19]. 

Therefore, nonlinear modeling methods are requried to accurately describe the material 

behavior of elastomers, and two modeling methods are decribed in the following sections 

3. Nonlinear hysteresis model 

3.1. Modeling approach 

The mechanical properties of a linear viscoelastic material are represented by a Kelvin 

model, which consists of a spring and dashpot in parallel. The spring and damping 

coefficients are constants, and the Kelvin model is equivalent to a complex modulus 

approach. Although the Kelvin model cannot describe the relaxation process after a constant 

strain is applied to a material specimen, it can successfully characterize stiffness and 

damping during steady-state harmonic excitation. Therefore, it is the simplest approach to 

describe the nonlinear behavior of elastomeric materials based on a Kelvin model. 
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As mentioned before, when a linear viscous material is subjected to sinusoidal loading, the 

stiffness force is an in-phase force with a constant stiffness, and the damping force with a 

constant damping is a quadrature force. For an elastomeric specimen, both stiffness and 

damping are not constant. To extract the stiffness force, Fs, and damping force, Fd, from the 

experimental force data, F, the displacement phase angle, (t), at arbitrary time t should be 

known firstly from the reconstructed displacement signal. A single frequency sinusoidal 

displacement can be written as: 

     2 2 sinc sx t X X t    (8) 

where 
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From a given start time, t0, when (t0)=2k+/2, k=0,1,.., one cycle of the force data is used to 

determine the stiffness force. Since the stiffness force has the same phase angle as (t) and 

the damping force is /2 ahead of (t), the stiffness force, Fs, in one cycle can be obtained as: 
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Similarly, from a different start point (t0’)=2k, k=0,1,…, the damping force, Fd, is obtained 

as follows: 
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The identified nonlinear stiffness and damping forces are shown in Fig. 5. In Figure 5a and 

b, the experimental force-displacement and force-velocity hysteresis cycles are plotted using 

dotted lines for a sinusoidal displacement excitation at 5Hz and 1.5mm amplitude. The 

stiffness force, Fs, and the damping force, Fd, are denoted as solid lines in the force-

displacement plane and the force-velocity plane, respectively. Clearly, the stiffness force is a 

nonlinear monotonic function of displacement, and the damping force is a nonlinear 

monotonic function of velocity. Then, in order to establish a nonlinear Kelvin model, 

effective functional forms must be found to represent both the nonlinear stiffness and 

damping forces, respectively.  
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In Fig. 5a, it is shown that the stiffness force, Fs, is almost linear but increases with increasing 

displacement. By observing different stiffness lines at different displacement amplitudes, it 

is noted that the nonlinear behavior of stiffness always occurs while the velocity is close to 

zero. It implies that the nonlinearity of the stiffness is due to velocity but not displacement. 

Therefore, the nonlinear stiffness model is given by: 

 
1.5ˆ exps kF K K x x

         
  (12) 

where, K is the linear stiffness, K is the nonlinear stiffness increment, and k is used to 

describe the nonlinear stiffness slope. These parameters can be determined by a nonlinear 

curve-fitting algorithm, in which an objective function, Js, is minimized as follows: 
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where, n is the number of data points. 

As shown in Fig. 5b, the shape of the nonlinear damping force, Fd, is reminiscent of a friction 

damping. This implies that filled elastomeric materials exhibit anelasticity instead of 

viscoelasticity. In some references, an inverse hyperbolic tangent [20] or exponential [21] 

functional approximation has been suggested to describe the tribo-elastic behavior in filled 

elastomers. In our model, a hyperbolic tangent function is used due to its simplicity and 

computational efficiency, so that the analytical friction damping force is assumed to behave 

as: 

  ˆ tanhd yF F x    (14) 

where, Fy and  represent the yield force and yield parameter respectively. Similarly, the 

nonlinear damping parameters also can be determined by minimizing the objective 

function, Jd, as follows: 
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The total predicted force due to the displacement excitation is the summation of the stiffness 

model and damping model as follows: 

 ˆ ˆ ˆ
d sF F F   (16) 

The reconstructed force is shown as the solid line in the Fig. 5c, and the analytical force-

displacement hysteresis matches the experimental data very well. Moreover, using the 

identified friction function, a force-displacement hysteresis due to friction damping is 

reconstructed. It is known that energy dissipation due to the damping is proportional to the 

enclosed area inside the damping force-displacement hysteresis loop. The area enclosed by 
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the total force-displacement hysteresis loop is equal to the area enclosed by the damping 

hysteresis. This proves that the nonlinear damping function precisely describes the energy 

dissipation while the elastomer specimen is under sinusoidal loading. 

 

Figure 5. Hysteresis Used for Decoupling of Stiffness and Damping  

Briefly, this nonlinear Kelvin model is based on a hysteresis modeling approach developed 

from damper modeling efforts. Since the nonlinear hysteresis loops of an elastomeric 

damper are described by a nonlinear monotonic stiffness and a nonlinear monotonic 

damping function respectively, the model parameters can be determined separately and 

efficiently. The modeling results can precisely capture the force-displacement time history 

data of the elastomer. Meanwhile, the introduction of the friction damping physically 

emphasizes the anelasticity of elastomeric materials. Since the hysteresis cycles for different 

amplitudes and frequencies are different, it is helpful to study the model parameter 

variations and get insight into the nonlinear behavior of elastomers by characterizing the 

different hysteresis cycles. 

 

(a)     (b) 

 
 

(c) 
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3.2. Modeling results 

The model characterization was obtained based on three sets of force-displacement time 

history data of the elastomer specimen 1 at three different frequencies, i.e. 2.5Hz, 5Hz and 

7.5Hz. For every frequency, there were twenty displacement amplitudes ranging from 

0.25mm to 5mm. After the model parameters were determined, the output force was 

predicted using known displacement input data, and then the force-displacement hysteresis 

was reconstructed. In Fig. 6, the reconstructed hysteresis curves and test data are shown for 

different amplitudes (0.5mm, 1.5mm, 2.5mm, and 3.5mm) at 5Hz frequency with zero 

preloading. It can be seen that at low amplitudes, the experimental hysteresis plots are 

nearly elliptical in shape, while for higher amplitudes there is a deviation from this elliptical 

behavior. However, compared to the elastomer hysteresis models developed by Krishnan 

[22] and Snyder [23], the current nonlinear model more accurately captures nonlinear force-

displacement time histories under sinusoidal loading. 

 

Figure 6. Modeling Results of Hysteresis Model 

Furthermore, model parameter variation as a function of the amplitude at different 

frequencies was studied. As shown in in Fig. 7a, all three nonlinear stiffness parameters are 

amplitude dependent. However, the linear stiffness, K, and the nonlinear stiffness 

increment, K, maintain nearly the same value at different frequencies, but the nonlinear 

stiffness slope, k, decreases as the frequency increases. Similarly, the identified damping 

parameters are shown in Fig. 7b. The yield force, Fy, for amplitudes above 1.5mm is nearly 

constant with both amplitude and frequency. At low amplitudes (<1.5mm), the optimized 

yield force shows large deviations since the damping is almost linear at small amplitude 

excitations and the model is insensitive to Fy. The yield parameter, , shows strong 

amplitude and frequency dependent characteristics. 

Some interesting characteristics are noted in Fig. 8a, in which the stiffness is shown as a 

function of velocity amplitude. The nonlinear stiffness slope parameters of all three 

frequencies follow exactly the same curve, which is inversely proportional to the velocity 

amplitude. This implies that the nonlinear stiffness slope, k, only depends on the velocity 

amplitude. Similarly, as shown in Fig. 8b, the nonlinear damping yield parameter, , is also 
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dependent on the acceleration amplitude. Both characteristics make this nonlinear model 

nearly independent of frequency and thus useful to predict dual frequency response. 

 

Figure 7. Hysteresis Model Parameters as a Function of Amplitude and Frequency 

 

Figure 8. Hysteresis Model Parameters as a Function of Velocity and Acceleration Amplitude 

To capture the behavior of the elastomer under dual frequency excitation, the elastomer 

model parameters were determined without frequency information because the excitation 

amplitude was known a priori. Specifically, both the linear stiffness and stiffness increment 

are inversely proportional to the displacement amplitude, and the nonlinear slope can be 

interpolated using the known velocity amplitude. Meanwhile, for nonlinear damping, the 

yield force is almost a constant and the yield parameter can be determined using the 

acceleration amplitude. As a result, the nonlinear dual frequency behavior of the elastomer 

could be predicted. In Fig. 9, the dual frequency displacement excitation was a summation 

of two single frequency inputs, i.e., 5 Hz and 7.5 Hz, and the reconstructed hysteresis cycles 

 

(a) Stiffness Parameters    (b) Damping Parameters 

 

(a) Stiffness Slope VS Velocity Amplitude  (b) Yield Parameter VS Acceleration Amplitude 
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using the hysteresis model are compared to experimental data. It is shown that the 

modeling results can accurately capture the hysteresis behavior exhibited by the elastomer. 

 

Figure 9. Dual Frequency Modeling Results Using Hysteresis Model 

As shown in the nonlinear hysteresis modeling effort, the nonlinear forced response of 

elastomers under harmonic excitation consists of uncoupled nonlinear stiffness force and 

nonlinear damping force. Thus, this model is mechanically analogous to a nonlinear Kelvin 

model where the stiffness is a nonlinear monotonic function of displacement and the 

damping is a monotonic rate dependent friction function. Since it accurately describes the 

characteristics of the hysteresis loops, this model can predict steady state or harmonic forced 

response very well. However, since the model parameters are still amplitude dependent, 

this model cannot be easily used to describe the transient or stress relaxation behavior of the 

elastomer. 

4. Distributed rate-dependent elasto-slide model 

4.1. Model development 

The distributed rate-dependent elasto-slide model is shown in Fig. 10, in which a series of 

elasto-slide elements is combined in parallel with a constant linear spring. The model can be 

applied either in force-displacement relations or in stress-strain relations, but only the force-

displacement formulation will be used in this study. Each elasto-slide element consists of a 

leading spring with stiffness k/N in series with a slide which has a yield force fi*, where N is 

the total number of elements. The yield force for each element is different, and the stiffness 

for each leading spring is assumed to be a constant. The ideal model assumes that the yield 

force is a Coulomb force, which is a constant as the slide moves at any speed. However, the 

rate-dependent elasto-slide model represents real friction behavior by representing the yield 

force of the slide as a function of the slide velocity. This function will be discussed later. For 

simplicity, the description of the model starts from using an ideal slide (which has an ideal 

 

(a) 2.5 mm at 5 Hz, 0.5 mm at 7.5 Hz   (b) 2.5 mm at 5 Hz, 1.5 mm at 7.5 Hz 
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Coulomb force), and then the behavior of the model will be studied when the ideal slide is 

replaced by a rate-dependent slide. 

 

Figure 10. Distributed Elasto-Slide Model 

First, we will apply a displacement, x, to the ideal elasto-slide element, which assumes a 

constant Coulomb force. At the beginning, the displacement is small such that the 

consequent leading spring force is smaller than the yield force, so that only the spring is 

deformed. After the spring force reaches the yield force, the slide yields and a motion is 

induced, and the resisting force of the element remains constant with the same value as the 

yield force. Since each elasto-slide element in the model is assumed to have a different yield 

force level, this model presents gradual stiffness reduction as amplitude increases until such 

a condition as all elements have yielded. At that time, only the parallel spring, k0, remains to 

represent the polymer stiffness of the elastomer. Since the elastomer is a continuum, the 

total number of elements, N, approaches infinity, and, in the limit, the discrete yield force 

for a single slide is replaced with a distributed density within a certain yield force range. 

Alternatively, a mathematically equivalent model is shown in Fig. 11, in which fe represents 

the total resisting force of the elasto-slide elements. 

 

Figure 11. Mathematically Equivalent Elasto-Slide Model 
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Figure 12. Effectiveness of Elasto-Slide Model  

The following simulation using the model will show that the existence of the filler structures 

inside the elastomer can lead to hysteretic behaviors when the damper is cycled between 

fixed deflection limits. Analytically, a distribution function of the yield force is denoted as 

(f*) such that the density of the slides with yield force f* is expressed as (f*)df*. Using the 

ideal slide assumption, the slide behaves as a Coulomb friction element. Thus, upon initial 

loading, the leading spring at a certain yield element stretches with the displacement x until 

the spring force reaches the maximum slide yield force, that is: 
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where, k is the stiffness of the leading spring. If the direction of loading is reversed, the 

force-deflection relation is more complicated. Including the yielded and non-yielded 

elements, the force-deflection relation becomes: 
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where A is the maximum deflection of the elastomer. An expression similar to Eq. 18 is 

obtained when the loading reaches the minimum deflection and is reversed again. This 

process continues until the loading is terminated. Clearly, at each time, only some of the 

elasto-slide elements have yielded. The total resisting force can be obtained by integrating 

all of the elasto-slide forces along the yield distribution region and by adding the spring 

force due to the residual polymer stiffness. Using Eq. 17 and adding the effect of the 

polymer stiffness, k0, the initial loading force is given as 
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    * * * * *
00

d d , 0
kx

kx
f f f f kx f f k x x


         (19) 

Similarly, the resisting force due to the reversed loading is obtained by integrating Eq. 18: 
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Thus, while an elastomer is under a sinusoidal displacement loading, a theoretical force-

deflection hysteresis cycle is shown as dashed line in Fig. 12, where A is 2.5 mm and 

frequency is 2.5 Hz. Compared to the experimental hysteresis shown as dotted line, the 

model prediction gives a good match to the experimental result. 

The distributed elasto-slide model resembles the physical mechanism of an elastomer, so it 

can account for the nonlinear characteristics of the behavior demonstrated by the elastomer 

under a cyclic loading either in single frequency or multi frequencies. However, using the 

ideal slide with a Coulomb force, the maximum and minimum displacement of the 

excitation must be known for response calculation, which makes it impossible for the model 

to describe elastomer behavior under complex loading conditions. The ideal elasto-slide is 

also incapable of modeling frequency dependent properties and non-hysteretic behavior in 

the time domain such as stress relaxation or creep. 

Actually, the Coulomb slide is only an idealized friction model. The practical friction 

behavior includes a preyield slip and a postyield steady resistance leading to a rate 

dependent damping effect [21, 24]. Thus, a rate-dependent elasto-slide model is introduced 

to improve the modeling performance. In the rate-dependent elasto-slide model, the 

Coulomb slide is replaced with a non-Coulombic friction function and the coupling between 

a slide and a leading spring is described by an internal displacement denoted as x0 such that 

the slide force at a certain yield region is written as 

  
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* * * 0d d
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r

x
f f f f
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 
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where p is a positive odd integer and vr is a characteristic reference velocity. Coupled with 

the lead spring k(f*)df*, the internal displacement x0 at certain yield region is obtained using 

the function: 
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By integration over the whole yield force region, the total force due to the elasto-slide 

element is obtained as: 
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    * *
00

def k x x f f


    (23) 

Adding the spring force due to the polymer stiffness, the damper force due to any deflection 

loading, x, is determined as: 

    * *
0 0 00

def f k x k x x f f k x


       (24) 

This relation can be shown in Fig. 11. Eq. 22 is a typical well-posed initial-value problem, 

and numerical solution for this differential equation can be obtained given an initial 

condition. The simplest way to guarantee a stable solution for such a stiff initial-value 

problems is to adopt a predictor-corrector approach with the corrector iterated to 

convergence (PECE) [25]. In this approach, the numerical algorithm is based on the Adams-

Bashforth four-step method as the predictor step and one iteration of the Adams-Moulton 

three-step method as the corrector step, with the starting values obtained from a fourth-

order Runge-Kutta method. In accordance with the ratio of the yield force and the stiffness, 

k/f*, and an appropriate choice of p, the Adams-Bashforth-Moulton method gives relatively 

stable and fast convergence of a solution within a limited number time steps. 

For an elastomer under a sinusoidal displacement excitation, the steady-state response 

predicted by the rate-dependent elasto-slide model is shown as the solid line in Fig. 12. The 

predicted hysteresis cycle correlates much better with the experimental data, especially at 

turning points of the loading deflection. It should be noted that there is no requirement for 

excitation amplitude information in this modeling process. Thus, the distributed rate-

dependent elasto-slide model can predict time domain forced response of an elastomer 

under a sinusoidal displacement excitation. 

In order to apply the elastomer model to a dynamic system, a numerical method using 

MATLAB ODE algorithm was also evaluated. For a dynamic system with a governing 

equation: 

    ,dMx Cx Kx F x x F t       (25) 

where, M, C, and K are mass matrix, equivalent damping matrix, and stiffness matrix, 

respectively, Fd is used to describe the force due to an elastomer, and F is a loading vector 

applied to the system. The size of the matrix depends on the degree of freedom of the 

system. For simplicity, only a 1-DOF system is considered now. In the distributed rate-

dependent elasto-slide damper model, there are theoretically an infinite number of internal 

variables, x0. However, the distributed yield stress usually falls within a limited range. 

Therefore, according to the form of a distribution function, the continuous yield force 

distribution area can be uniformly decomposed into n discrete elements from minimum to 

maximum yield force and each element has a yield force range, f*. At each yield stress 

range, fi*, the corresponding distribution is equal to the area of that element, ( fi*)f*. Each 

element has an internal variable denoted as x0i, i=1,…,n, and each x0i satisfies the Eq. 22. 

Thus, the elastomer force Fd can be described as: 
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Rewriting Eq. 25 using a first order form and combining Eq. 22 and 26, the state equation of 

the system is expressed as 
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This is a (n+2)th order state function. Using the ODE23 algorithm in MATLAB, the forced 

response or the transient response due to initial displacement and velocity can be solved 

numerically. For the system with more degrees of freedom, the state function can easily 

accommodate these additions by using additional number of states. 

4.2. Model parameters determination 

As seen in the construction of the model, the major parameters to be determined are the 

leading spring, k, and yield force distribution function, (f*), for the distributed elasto-slide 

element, and the parallel spring, k0, for the remaining polymer stiffness. In the absence of the 

knowledge of the elastomer structure, the selection of these parameters is only based on 

experimental data in this stage. One possible selection of methods would be to make use of 

an experimentally determined initial loading curve. 

The definition of the distribution function implies that (f*) has to obey the following three 

constraints: 
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From the initial loading curve Eq. 19, yields  
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Then 
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Thus, the distribution function would be related to the curvature of the initial loading curve 

by the following formula 
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d

f
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k x
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Determination of the distribution function relies on the identification of the initial loading 

curve from the experimental data. 

In the view of the distributed elasto-slide model using an ideal Coulomb slide, the initial 

loading curve is independent of loading rate such that the maximum force in the initial 

loading curve responds to the maximum displacement in cyclic loading as seen in Eq. 19. As 

a result, an initial loading curve can be obtained using a series of experimental hysteresis 

loops at different amplitudes. An example of the initial loading curve is shown in Fig. 13, 

the initial loading curve at three different frequencies are obtained from hysteresis cycles of 

the elastomeric specimen by identifying the force at corresponding maximum 

displacements. The analytical initial loading curve is determined by considering the 

influence of the rate-dependent slide. This curve appears elasto-plastic behavior, which is 

described as: 

  0
0

1
1 k xf e k x   


 (32) 

Notably, 0 is a distribution constant and an index of the post yield force level, and k and k0 

are the stiffness of the leading spring and the remaining polymer stiffness respectively. 

Summation of the leading spring and the polymer stiffness is just the slope of the force-

displacement curve when x0. This is conceivable since there only exists the influence of 

the springs while all slide elements are not yielded. Substituting Eq. 32 into Eq. 31, yields a 

very simple distribution function as: 

   *
0*

0
ff e    (33) 

The distribution area for the elastomeric specimen is shown as the shaded area in Fig. 14. It 

is easily shown that the distribution function satisfies all the properties of Eq. 28. 

As the distribution function is determined, for the distributed elasto-slide model using the 

Coulomb slide, the steady-state forced response of the elastomer under cyclic loading will 

be predicted as follows: 
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where xmax and xmin are the maximum and minimum amplitude of the cyclic loading, 

respectively. 

 

Figure 13. Initial Loading Curve  

 

Figure 14. Yield Distribution 
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For the rate-dependent elasto-slide model, the reference velocity vr and the exponent p need 

to be determined. The choice of vr was based on steady state force-velocity curves in which 

the boundary between the pre-yield and post-yield region was approximated. Analytically, 

p should be as large as possible such that the post-yield force rapidly transitions to a 

constant value, which is similar to friction behavior. However, large values of p result in a 

stiffer system. Thus, p was chosen by a tradeoff between both factors. For the elastomer 

specimen 1, the determined model parameters are shown in Table 1, in which the 

elastomeric specimen has two preload conditions. Notably, the distribution constant 0 at 

10% preload is lower than that without preload. This implies that the yield force level can be 

increased with the normal force in the preload condition. Similarly, the preload force also 

can increase the stiffness. As a result, the addition of a preload perpendicular to the loading 

axis tends to increase the equivalent stiffness and damping over the entire amplitude range. 

This effect is due to the compressive preload increasing the friction response of the filler in 

the elastomer, and is not reflected in the distributed elasto-slide model. Thus, the model 

parameters are different for different preload conditions. For the elastomer specimen 2, the 

determined model parameters are shown in Table 2. Notably, the elastomer specimen 2 is 

much stiffer than the elastomer specimen 1 since the stiffness of the leading spring and 

remaining spring is much higher. Thus, the loss factor of the elastomer specimen 2 appears 

much lower than the elastomer specimen 1 though the yield force level of the specimen 2 is 

higher than the specimen 1. 

Parameter No Preload 10% Preload 

0 (1/N) 0.0068 0.0053 

k (N/mm) 505 739 

k0 (N/mm) 44.4 64.9 

vr (mm/s) 50 50 

p 7 7 

Table 1.  Model Parameters for Elastomer Specimen 1 

 

Parameter No Preload 

0 (1/N) 0.0015 

k (N/mm) 6436 

k0 (N/mm) 2915 

vr (mm/s) 15 

p 7 

Table 2. Model Parameters for Elastomer Specimen 2 
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4.3. Modeling results and validation 

As stated before, the distributed rate-dependent elasto-slide model is reminiscent of the 

behavior of filler structures in the elastomer such that it can predict the forced harmonic 

response of an elastomer in the time domain. In this section, single frequency and dual 

frequency steady-state hysteresis data are used to validate the model. To assess the model’s 

capability in describing elastomer behavior under complex loading conditions, the response 

under dual frequency loading with slowly varying amplitude is also correlated with model 

predictions. 

For the elastomer specimen 1, three sets of single frequency hysteresis cycle data were used 

to assess model fidelity. Each set of data was obtained by measuring the forced response 

while the elastomeric specimen was under sinusoidal displacement excitation at 2.5 Hz, 5.0 

Hz and 7.5 Hz, respectively. At each frequency, the displacement amplitude was chosen as 1 

mm, 2 mm, 3 mm and 4 mm. In Fig. 15, the experimental data at three frequencies are 

shown compared to the modeling results. Generally, the modeling results correlate quite 

well with the experimental results while the displacement amplitude is in the moderate 

amplitude range, i.e. 2<x<5 mm. In the small amplitude range, i.e. x<2 mm, the analytical 

model under-predicts the area enclosed by the hysteresis cycle. The reason for that is partly 

because the lower yield region for the elasto-slide element was replaced with a non-zero 

constant yield force for numerical consideration and the influence of this approximation was 

amplified at small deflection loading. 

The complex modulus determined by the analytical model is also compared to the 

experimental result. As shown in solid lines in Fig. 16, the predicted storage and loss 

stiffnesses using the model have the same amplitude dependent trend as the experimental 

result. The experimental moduli are well matched with the analytical moduli at moderate 

amplitude range except that the moduli over small amplitude range are under-predicted 

especially for loss stiffness. Model predictions are also compared to the experimental data 

for the loss factor. The predicted loss factor represent common features of the elastomeric 

response. Clearly, at small amplitude, most of the filler structures, or corresponding elasto-

slide elements, have not yielded, so that the loss factor is small. As the amplitude increases, 

breaking filler structures or yielding of slides leads to a rise in the loss factor. After all of the 

slide elements have yielded, the loss factor decreases again. In Fig. 16, it also shows that 

both experimental and predicted moduli are weakly dependent on frequency. This 

phenomenon is consistent with the tribo-elastic mechanism of elastomeric materials [11]. 

Similar single frequency modeling results for the elastomer specimen 2 are shown in Fig. 17 

as force-displacement diagrams for different amplitudes at 2.5 Hz (Fig. 17a), 5 Hz (Fig. 17b) 

and 7.5 Hz (Fig. 17c), respectively. Clearly, the analytical model captures the amplitude and 

frequency dependent behavior of the elastomer specimen 2.  

In some applications, the elastomer would experience multi-frequency excitation. Under 

such a circumstance, the potential loss of damping at the lower frequency due to limitation 

of stroke is well known [5], so it is important to predict the response of the elastomer under 
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dual frequency excitation. Experimental dual frequency force-displacement data of the 

elastomer specimen 1 were used to evaluate the adaptability of the model under complex 

loading conditions. 

 

Figure 15. Single Frequency Modeling Results for Specimen 1 

 

(a) 2.5 Hz 

 

(b) 5 Hz 

 



 
Advanced Elastomers – Technology, Properties and Applications 

 

332 

 

Figure 16. Complex Modulus for Specimen 1 

 

(a) In-phase Stiffness 

 

(b) Quadrature Stiffness 

 

(c) Loss Factor 
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Figure 17. Single Frequency Modeling Results for Specimen 2 

 

(a) 2.5 Hz 

 

(b) 5 Hz 

 

c) 7.5 Hz 
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The dual frequency test data were obtained while the amplitudes at both 5 and 7.5 Hz 

frequencies were held constant. For each test condition, the amplitude for 5 Hz and 7.5 Hz 

frequencies ranged from 0.25 mm to 5 mm, and the sum of both amplitudes must not exceed 

5 mm, which corresponds to the maximum allowable strain of 50%. The modeling result at 

each dual frequency loading condition was correlated with the corresponding experimental 

result. Some of these dual frequency modeling results are presented in Fig. 18 and 19. The 

figures are grouped according to the 7.5 frequency amplitude. Fig. 18 shows the modeling 

results for 2.5 mm amplitude at 7.5 Hz and at four different amplitudes at 5 Hz. As the 

displacement amplitude at 7.5 Hz is 2.5mm, the experimental dual frequency behavior can 

be matched quite well with the modeling results. Comparatively, Fig. 19 shows the 

modeling results for 0.5 mm amplitude at 7.5 Hz and at four different amplitudes at 5 Hz. 

Notably, the model under-predicts the forced response as the total amplitude at 5 Hz and 

7.5 Hz is below 2.5 mm since the high yield force region in Fig. 14 is not well described by 

the numerical algorithm of the model. In general, the distributed rate-dependent elasto-slide 

model performs well in the moderate amplitude range except it over-predicts the inner loop 

in some cases. The model also should be improved to predict the response over the small 

amplitude range. 

 

Figure 18. Dual Frequency Modeling Results for Specimen 1 
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Figure 19.  Dual Frequency Modeling Results for Specimen 1 

The behavior of the elastomer under a dual frequency excitation with a slowly-varying 

amplitude modulated periodic loading can also be predicted using the analytical model. For 

simplicity, the analytical and experimental simulation results are only shown for one 

scenario, in which the amplitude for 7.5 Hz is 1.5 mm and the amplitude for 5 Hz is 

assumed to be as below: 

    5 1.5 1 0.2sin 0.2 mmHzA t      (35) 

The predicted forced response data shown in Fig. 20a and 20b compared well to the 

experimental results for two different time scales. Similarly, the modeling force-

displacement hysteresis cycle is also matched well with the experimental data as shown in 

Fig. 20c. The predicted damper response due to the slowly varying displacement excitation 

exhibits the same varying trend as the observed elastomer behavior, and also the force value 
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is tracked quite well. Clearly, the proposed elastomeric model performs fairly well in 

predicting dual frequency response, and especially the distributed elasto-slide model can 

predict the behavior of the elastomer under slowly-varying amplitude modulated periodic 

loadings. 

 

Figure 20. Modeling Results for Dual Frequency with Slowly Varying Amplitude 

5. Summary 

Modeling methods for describing elastomeric material behavior were investigated. Most 

prior models introduced nonlinear terms into the conventional Kelvin model or Zener 

model. Because filled elastomers are anelastic materials, a friction mechanism damping 

element proves useful to model rate-independent damping. Nonlinearity in tested 

 

 

(a) Force Response (0-9 s)  (b) Force Response (7-9 s) 

 

 

(c) Force-Displacement Hysteresis 
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elastomeric materials manifested in two ways. First, the forced response of an elastomer 

subjected to harmonic displacements was nonlinear (non-elliptical), which meant that the 

response could not be predicted by linear differential or integral equation. Second, the 

stiffness and damping of elastomers varied as a function of amplitude and frequency. While 

some models capture the amplitude dependent complex moduli very well using constant 

parameters, such models cannot predict stress-strain or force-displacement hysteresis 

accurately. On the other hand, most hysteresis models can predict non-elliptical hysteresis 

quite well, but their parameters are usually amplitude and frequency dependent. The 

methods require amplitude and frequency as prior information when these models are 

implemented. 

A nonlinear hysteresis model was developed to characterize the nonlinear behavior of the 

elastomer under a cyclic loading. This model is mechanically analogous to a nonlinear 

Kelvin model where the stiffness is a nonlinear monotonic function of displacement and the 

damping is a monotonic rate dependent friction function. Since it accurately describes the 

characteristics of the hysteresis loops, this model can predict steady state or harmonic forced 

response very well. However, the model parameters are still amplitude dependent. A 

challenge still remained to describe transient or stress relaxation behavior using this type of 

mechanisms-based model. 

Therefore, a distributed rate-dependent elasto-slide elastomeric model was used to 

describe the amplitude dependent characteristics of an elastomer. This physically 

motivated damper model resembles the behavior of filler structures in the elastomer 

under cyclic loading. A method to determine the model parameters was presented. It was 

found that a unique exponential function could be used to describe the yield force 

distribution for elastomers. Numerical algorithms were developed for model applications. 

Dynamic test were conducted on a double lap shear elastomeric specimen and a linear 

concentric tubular elastomeric specimen, respectively, and the measured data were used 

to evaluate the modeling method. The fidelity of the model was verified by the good 

correlation between predicted single and dual frequency force-displacement hysteresis 

and the experimental results except that the damping at lower amplitude range cannot be 

fully predicted by the model. Since the proposed model is a time domain model, the 

adaptability of the model in predicting damper response under a slowly varying 

displacement excitation was evaluated. The predicted force response of the elastomeric 

specimen under this slowly varying displacement excitation correlated quite well with the 

corresponding experimental data. 

In conclusion, the distributed rate-dependent elasto-slide elastomeric damper model is a 

time-domain modeling approach to capture nonlinear behavior of the elastomer. The 

damper model, formulated as a state space model has the advantage that it could easily be 

implemented into dynamic system models. Because the model is physically motivated, the 

flexibility in determining the distribution function provides means to improve the model 

performance especially over the low amplitude range. Although only a one-dimensional 
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elastomeric model is described in this paper, the distributed elasto-slide model can also be 

extended into a three-dimensional form such that it can be implemented easily into a finite 

element analysis for a complex elastomeric damper configuration. 
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