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1. Introduction 

The ability of polymeric materials to sense and respond to external stimuli has great 

scientific and technological significance. It enables these materials to change their properties, 

such as shape, colour and electrical conductivity, as a result of pH, temperature, chemicals, 

light, or stimulation by an electric or magnetic field. Materials that respond dynamically to 

external stimuli are called intelligent or smart materials, and it is important that their 

response should be repeatable and controllable (Landlein, 2010). One of the most important 

classes of smart materials is shape memory polymers (SMPs), which can change their shape 

in a predetermined way upon the application of an external stimulus. The shape memory 

effect in polymers depends primarily on the existence of separated phases that are related to 

the coiled structure, crosslinks (covalent bonds), hydrogen or ionic bonding or physical 

intermolecular interactions of the polymer (Hu, 2007). Covalent crosslinks are formed 

during suitable crosslinking of the polymer, whereas physical crosslinks are obtained when 

the polymer morphology consists of segregated domains, such as crystalline and amorphous 

phases or hard and soft segments (Landlein, 2010) (e.g., linear block copolymers). In 

multiphase polymers, the hard segments act as the frozen phase, which is usually semi-

crystalline or physically crosslinked and provides stiffness and reinforcement to the material 

(Hu, 2007), while the soft segments are responsible for the thermo-elastic behaviour of 

polymers and act as the reversible phase. In this case, the shape memory effect is produced 

by the reversible phase transformation of the soft segments (Hu, 2007). Thermo-shrinkable 

polymers, which change their shape as the temperature changes, are a unique class of SMP 

materials with interesting properties and many potential applications. The shape transition 

temperature (Ttrans) for this type of SMP can be the melting point (Tm) or glass transition 

temperature (Tg) of the soft phase (Ratna & Karger-Kocsis, 2008). Melting points are 

preferred because the transition is sharper than the glass transition; therefore, the 

temperature of the shape recovery can be better determined. Heating the SMP above the Tm 

or Tg of the hard segment enables its processing. This original (permanent) shape can be  
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memorised by cooling the material below the Tm or Tg of the hard phase. Cooling the SMP 

below the Tm or Tg of the soft segment while the shape is deformed allows a temporary 

shape to be fixed. The permanent shape of the SMP is recovered by heating it above the Tm 

or Tg of the soft phase (Hu, 2007). Another way to fix the temporary shape of a SMP is to 

deform it at a temperature lower than the Tm or Tg of the soft phase, which causes stress and 

strain absorption by the soft segments. When the material is heated above the Tm or Tg of the 

soft segments, the stresses and strains are relieved, causing the material to return to its 

original shape (Leng & Du, 2010). The thermally induced shape memory effect in polymers 

is schematically presented in Figure 1. SMPs that use Tm as the shape transition temperature 

are represented by polymers such as polyurethanes, block copolymers of 

polyethyleneterephthalate and polyethyleneoxide, and copolymers consisting of 

polystyrene and poly(1,4-butadiene) (Wang et al., 1998). Tg is the shape transition 

temperature for thermoset SMPs; e.g., styrene-based resins (Ivens et al., 2011). SMPs can also 

be single phase materials with a certain number of crosslinks between their polymer chains. 

In this case, the crosslinks are the net points that enable fixing and storage of the permanent 

shape of the polymer, whereas the free polymer chains between the crosslinks act as 

switching segments that possess increased mobility above Tg (Ratna & Karger-Kocsis, 2008). 

Stretching the polymer chain segments in a certain direction reduces their entropy. At the 

same time, the net points deform elastically. The overall result of this process is an increase 

in the SMP enthalpy. The loss of polymer chain segment mobility in the switching segments 

stabilises the temporary shape of the SMP when the material is allowed to cool in the 

deformed state (Ivens et al., 2011). 

 

Figure 1. Thermally induced shape memory effect in polymers 

Recently, research activities related to the development of elastomeric composites that 

exhibit a thermally induced shape memory effect have intensified. Thermoplastic elastomers 

(TPEs) are an interesting class of materials. TPEs behave like cured elastomers at room 

temperature, and they can be processed as plastics at higher temperatures because of their 

special multiphase morphology. TPEs consist of plastic phases embedded in a continuous 

elastomer phase, and they form physical crosslinks. Among the TPEs, segmented 

polyurethane elastomers and ionomers or blends of elastomers with thermoplastic polymers 
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have many potential applications. In shape memory polyurethanes, the hard segment 

phases with the highest thermal transition temperatures (Tperm) acts as the physical crosslink 

points and control the permanent shape of the polymer. When the polymer is heated above 

Tperm, the physical crosslinks between the hard segments are destroyed. The molecular 

chains melt, and the polymer can be processed to a permanent shape like a thermoplastic 

material. When the shape memory polyurethane is cooled below Tperm and above Tg or Tm of 

its soft segments, the polymer becomes relatively soft, but it cannot flow because of the 

physical crosslinks. Consequently, it can be easily deformed to a temporary shape by 

stretching or compression. Reheating the polymer above Tg or Tm of its soft segments but 

below Tperm induces shape recovery (Hu, 2007). In the case of polyolefin/elastomer blends, 

the crosslinked elastomeric phase causes an enhancement of the blend shrinkability upon 

heating. Crosslinked points in the elastomer network are believed to serve as memory 

points, increasing the heat shrinkability (Patra & Das, 1997). Weiss et al. designed a new 

type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or 

their salts (Weiss et al., 2008). Nanophase separation of the ionomer was used to develop the 

permanent network, and the fatty acids or salts were used to produce a secondary network. 

The role of the ionomer was to provide a strong intermolecular bond between crystals of the 

fatty acids or salts and the polymer, acting as a physical crosslink below the fatty acids or 

salt Tm and allowing reshaping of the material above Tm. The polymer films were heated to 

100°C and stretched to 47% strain, then cooled to room temperature to fix an elongated 

temporary shape. When the samples were reheated to 100°C, the film recovered to the 

permanent shape with a length recovery of approximately 92%. A two-way temperature-

induced shape memory effect was observed for polymer laminates. SMP-laminated 

composites were prepared with SMP polyurethane films and elastic polymers films. Their 

two-way shape memory behaviour was produced by bending upon heating and reverse 

bending upon cooling. The shape memory mechanism was ascribed to the release of the 

elastic strain of the SMP layer upon heating and the recovery of the elastic strain induced by 

the bending force of the substrate layer upon cooling (Chen et al., 2008). Mishra et al. have 

studied the heat shrinkability behaviour of grafted low-density polyethylene/polyurethane 

elastomers. They have suggested that the interchain crosslinking between the grafted 

polyethylene and the elastomer improves their shrinkability (Mishra et al., 2004). 

Zhang et al. reported a novel type of shape memory polymer blend that consisted of two 

immiscible components, an elastomer and a switch polymer. The elastomer could be a 

rubber or thermoplastic elastomer, and the switch polymer could be an amorphous or 

crystalline polymer. Styrene–butadiene–styrene tri-block copolymer (SBS) was chosen as the 

elastomer, and poly(ε-caprolactone) (PCL) was used as the switch polymer (Zhang et al., 

2009). The SBS/PCL blends demonstrated good shape recovery performance, with a shape 

recovery ratio of approximately 100%. The shape memory effect was also observed in 

elastomer networks containing reversibly associating side-groups. The supramolecular 

shape-memory elastomer consisted of a lightly crosslinked polymer network that was 

covalently bonded to reversibly associating side-groups. These elastomers exhibited shape-

memory effects arising from reversible hydrogen bond association, and the shape memory 
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recovery rate was strongly dependent on the temperature. Hydrogen-bonding interactions 

could stabilise mechanically strained states in these elastomers, and the thermo-mechanical 

cycling produced a strain fixity of approximately 90% and a strain recovery of 

approximately 100% (Li et al., 2007).  

Thermal shrinkability was also reported for elastomer blends containing carboxylated groups, 

which could form ionic labile bonds during crosslinking, and low-density polyethylene 

(Mishra et al., 2000) or poly(ethylene-vinyl-acetate) (Raychowdhury et al., 2000).  

In our previous studies, we proved that the thermally induced shape memory effect was 

also exhibited by a carboxylated nitrile elastomer cured with zinc oxide because it contained 

labile ionic crosslinks, which were able to rearrange upon external deformation 

(Przybyszewska & Zaborski, 2009). 

In this work, the thermo-shrinkable properties of carboxylated acrylonitrile – butadiene 

elastomer (XNBR) and hydrogenated acrylonitrile – butadiene elastomer (HNBR) containing 

ionic crosslinks were studied. The XNBR was vulcanised with nanosized calcium, 

magnesium oxide or zinc oxide to ensure the formation of ionic crosslinks during 

vulcanisation. In the case of HNBR, nanosized calcium and magnesium oxides were coated 

with unsaturated carboxylic acids (itaconic, 2,4-pentadienoic, oleic, linoleic and linolenic 

acids) and applied as coagents in the peroxide vulcanisation of the elastomer. The 

application of these coagents led to formation of ionic crosslinks in the elastomer network. 

Heat-shrinkable polymers are widely used in packaging and in the cable industry; therefore, 

the shrinkability of XNBR and HNBR vulcanisates is technologically important.  

2. Experimental section 

2.1. Materials 

Carboxylated nitrile elastomer XNBR (Krynac X7.50) containing 27 wt % acrylonitrile and 

6.7 wt % carboxylic groups was obtained from Bayer C.O. The Mooney viscosity was 

(ML1+4 (100oC):47). Nanosized calcium oxide CaO (Aldrich), magnesium oxide MgO 

(Nanostructured & Amorphous Materials Inc., Houston, USA) and zinc oxide ZnO 

(Nanostructured & Amorphous Materials Inc., Houston, USA) were used as crosslinking 

agents. Hydrogenated acrylonitrile-butadiene elastomer HNBR (Therban 3407) containing 

34 wt % acrylonitrile and 0.9 wt % of residual double bonds after hydrogenation was 

obtained from Bayer C.O. The Mooney viscosity was (ML1+4 (100oC):70). It was vulcanised 

with dicumyl peroxide DCP (Aldrich). Nanosized calcium oxide (Aldrich), magnesium 

oxide (Nanostructured & Amorphous Materials Inc., Houston, USA), itaconic acid IA 

(Fluka), 2-4-pentadienoic acid (Aldrich), oleic acid, linoleic acid and linolenic acid (Aldrich) 

were applied as coagents. 

2.2. Preparation of coagents 

The nanosized metal oxides were mixed with a solution of modifying agent (unsaturated 

carboxylic acid) in acetone for 30 minutes during ultrasonic treatment (BANDELIN DT 255) 
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at a frequency of 35 kHz. The mixture was left for 24 hours. Then, the solvent (acetone) was 

evaporated using a vacuum evaporator at 50oC. The coagents obtained were dried in a 

vacuum drier at 70oC for 96 hours. 

2.3. Preparation and characterisation of rubber compounds 

Rubber compounds with the formulations given in Table 1 were prepared using a 

laboratory two-roll mill. The samples were cured at 160oC until they developed a 90% 

increase in torque, as measured by an oscillating disc rheometer.  

The crosslink densities (νT) of the vulcanisates were determined by their equilibrium swelling 

in toluene, based on the Flory-Rehner equation (Flory & Rehner, 1943). The Huggins 

parameter of the XNBR-solvent interaction (χ) was calculated from the equation χ = 0.487 + 

0.228Vr (Equation 1) (Przybyszewska & Zaborski, 2008), where Vr is the volume fraction of 

elastomer in the swollen gel, and χ = 0.501 + 0.273Vr for HNBR-solvent interaction (Equation 2) 

(Przybyszewska & Zaborski, 2009). To determine the content of ionic crosslinks in the 

elastomer network, samples were swollen in toluene in a dessicator with saturated ammonia 

vapour (25% aqueous solution). The ionic crosslink content (Δν) was calculated from Equation 

3, where νA is the crosslink density determined for samples treated with ammonia vapour. 

 100%T A

T

 





    (3) 

The tensile properties of the vulcanisates were determined according to ISO-37 with a 

ZWICK 1435 universal machine.  

 

XNBR HNBR 

Elastomer 100 Elastomer 100 

Nanosized 

metal oxide 
4 

DCP 2 

Coagent 7 

Table 1. Composition of the XNBR and HNBR-based rubber compounds [phr] 

2.4. Dynamic-mechanical analysis 

Dynamic - mechanical measurements were carried out in the tension mode using a 

DMA/SDTA861e analyser (Mettler Toledo). Measurements of the dynamic moduli were 

performed over the temperature range (-60 - 120oC) for XNBR and (-80 - 100oC) for HNBR 

with a heating rate of 2oC/min, a frequency of 1 Hz and a strain amplitude of 4 µm. The 

temperature of the elastomer glass transition was determined from the maximum of 

tanδ = f(T), where tanδ is the loss factor and T is the measurement temperature. 

2.5. Shrinkability measurements 

To measure the shrinkability of the XNBR and HNBR vulcanisates, the samples were 

stretched above their Tg at a temperature of 100oC until they reached an elongation of 200% 
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and left in the stretched form for 48 h. They were then stabilised in the stretched form for 4 h 

at (-7°C). Finally, the stretched samples were allowed to shrink above the ionic transition 

temperature at 70°C for 48 h. The length of the samples at each state of study was measured 

using the digital callipers (Preisser) with the measurement error 1 mm. The lengthwise 

shrinkage was calculated according to Equation 4, in which Sh is the percentage of 

shrinkability, Lstr is the length of the sample after stretching, and Lshr is the length of the 

shrunk sample. The maximum shrinkage, Shmax, was calculated from the length of the sample 

before stretching according to Equation 5, in which L0 is the original length of the sample 

before stretching. The physical properties of the vulcanisates were studied before and after 

the thermal treatment. 

 % 100str shr
h

str

L L

LS


      (4) 

 0
max

% 100str
h

str

L L

LS


                         (5) 

The continuous increase in temperature causes the recovery of the stretched sample 

deformation, which reflects the memory effect of the vulcanisate. The percentage recovery R 

is the ratio of the lengthwise shrinkage to the maximum shrinkage (Equation 6) (Khonakdar 

et al., 2007). 

 
max

% 100h

h

R S
S

   (6) 

2.6. Scanning Electron Microscopy (SEM) 

The morphology of the metal oxide particles and their dispersion in the elastomer matrix 

were estimated using scanning electron microscopy with a LEO 1530 SEM. The vulcanisates 

were broken down in liquid nitrogen, and the surfaces of the vulcanisate fractures were 

examined. Prior to the measurements, the samples were coated with carbon. 

3. Results and discussion 

3.1. Thermo-shrinkable XNBR vulcanisates 

3.1.1. Crosslink density and ionic crosslink content of XNBR vulcanisates 

The carboxylated nitrile elastomer XNBR reacts with metal oxides to form carboxylic salts, 

which behave as ionic crosslinks. These salts are able to associate, forming multiplets and 

clusters. This association is caused by the electrostatic interactions between multiplets, and 

it is impaired by the retractive elastic forces of the backbone chains. The restricted elastomer 

chain mobility in the proximity of the ionic clusters produces a hard phase surrounded with 

the soft elastomer matrix (Mishra et al., 2000). The biphasic structure of the XNBR 
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crosslinked with metal oxide and the presence of labile ionic crosslinks provide possible 

routes to obtain thermo-shrinkable composites.  

Because the ionic crosslinks play a crucial role in the return of the sample to the original 

shape and serve as memory points, the crosslink density and ionic crosslinks content in the 

elastomer network were determined in the first stage of the study. These results are 

presented in Figs. 2 and 3. 

The nanosized calcium, magnesium and zinc oxides exhibited high crosslinking activity in 

XNBR. Their application led to the formation of ionic crosslinks in the elastomer network. 

The content of ionic crosslinks was in the range of 55% to 76%. Nanosized zinc oxide, for 

which the highest vulcanisate crosslink density and ionic crosslink content was observed 

(approximately 76%), appeared to be the most active, whereas the lowest activity was 

exhibited by CaO (with an ionic crosslink content of approximately 55%). Therefore, it could 

be supposed that the highest shape recovery would be obtained for vulcanisates crosslinked 

with nanosized ZnO. 

 

 
 

Figure 2. Crosslink density of XNBR vulcanisates 

The stretched samples were allowed to shrink above the ionic transition temperature at 70°C 

to initiate their return to the original shape. The influence of this thermal treatment on the 

ionic crosslink content and crosslink density of the vulcanisates was studied. From the data 

presented in Fig. 3, it follows that heating the samples to 70°C caused decomposition of the 

ionic crosslinks. The number of ionic crosslinks in the elastomer network was reduced by 

21-34% compared to the vulcanisates before thermal treatment. The greatest number of ionic 

crosslinks was decomposed in the case of vulcanisates containing nanosized ZnO. 
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Figure 3. Ionic crosslink content in XNBR vulcanisates 

3.1.2. Thermo-shrinkability of XNBR vulcanisates 

Having determined the number of ionic crosslinks in the elastomer network and confirmed 

that these crosslinks could decompose during thermal treatment, we then examined the 

thermo-shrinkability of the vulcanisates. In Fig. 4, the percentage of thermo-shrinkability 

and the percentage shape recovery of the vulcanisates are presented. 

The vulcanisates of XNBR crosslinked with nanosized calcium, magnesium and zinc oxides 

exhibited heat shrinkability. The greatest shrinkage upon heating (50%) was achieved for 

vulcanisates containing ZnO nanoparticles. The lower shrinkability of the vulcanisates with 

calcium and magnesium oxides (42% and 41%, respectively) was produced by the lower 

crosslink density and ionic crosslink content in their elastomer networks. Because the 

crosslinked points in the elastomer network serve as shape memory sites, a greater crosslink 

density improves the shrinkability of the XNBR. The vulcanisates demonstrated good shape 

recovery performance. The percentage shape recovery was in the range of 90-100% (Fig. 4). 

The highest percentage recovery was observed for vulcanisates containing ZnO, which had 

the greatest ionic crosslink content. The stretched XNBR samples shrunk upon heating 

above the temperature of the ionic transition because of the occurrence of ionic clusters in 

the elastomer network, which could rearrange or decompose. The results described in the 

previous section confirm that the decomposition of the ionic crosslinks is one of the reasons 

for the heat shrinkability of the XNBR vulcanisates containing nanosized CaO, MgO and 

ZnO. 
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Figure 4. Percentage thermo-shrinkability and shape recovery of XNBR vulcanisates 

3.1.3. Dynamic mechanical properties of XNBR vulcanisates 

Dynamic - mechanical analysis was performed to confirm the biphasic structure of XNBR 

crosslinked with nanosized metal oxides, as well as the existence of ionic clusters in the 

elastomer network. The values of the glass transition temperature (Tg) are given in Table 2. 

The loss factor, tanδ, is presented in Fig. 5 as a function of temperature for the vulcanisates 

before thermal treatment.  

 

Figure 5. Tan δ versus temperature for XNBR vulcanisates before thermal treatment 
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The results of the DMA analysis confirm the biphasic structure of the XNBR crosslinked 

with nanosized CaO, MgO and ZnO. The existence of two phase transitions was observed. 

The first transition is the glass transition of the XNBR at low temperatures, the maximum of 

which represents Tg. The determined glass transition temperatures for the vulcanisates with 

MgO and ZnO were approximately (-11.1oC) and (-10.5oC), respectively, whereas the Tg 

value was (-13.0oC) for the vulcanisate with CaO nanoparticles.  The CaO vulcanisate most 

likely exhibits the lowest Tg because it contains the lowest crosslink density of the 

vulcanisates. The second peak, which is fuzzy and has a low-intensity, was observed in the 

temperature range of (50-100oC). This peak corresponds to the ionic transition at high 

temperature that is caused by the occurrence of a hard phase arising from ionic associations 

(ionic clusters or aggregates). These transitions were observed for all XNBR vulcanisates. 

Therefore, the existence of a biphasic structure in XNBR crosslinked with metal oxides was 

confirmed. 

 

Vulcanisate Tg before thermal treatment, oC Tg after thermal shrinking, oC 

CaO -13.0 -15.0 

MgO -11.1 -13.5 

ZnO -10.5 -16.0 

Table 2. Glass transition temperature of XNBR vulcanisates 

 

Figure 6. Tan δ versus temperature for XNBR vulcanisates after thermal shrinking 

DMA measurements were also performed for the vulcanisates after the thermal shrinking 

process. These results are presented in Fig. 6. Heating the samples to the ionic transition 

temperature decreased the glass transition temperatures of the vulcanisates.  This reduction 

was most likely caused by the decomposition of the ionic crosslinks, leading to a reduction 

of the crosslink density of the vulcanisates. The highest decrease in the Tg value was 
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observed for the vulcanisate containing nanosized ZnO, for which the greatest amount of 

ionic crosslinks decomposed during the thermal treatment. The second fuzzy peak 

corresponding to the ionic transition disappeared, which suggests that the return of the 

vulcanisates to their original shape was caused by the decomposition of ionic crosslinks, 

along with changes in or the disappearance of the biphasic structure of the crosslinked 

elastomer. 

3.1.4. Mechanical properties of XNBR vulcanisates 

The mechanical properties of the vulcanisates (especially their tensile strength) are 

technologically important. Therefore, the effect of the thermal shrinking process on the 

tensile strength and elongation at break of the vulcanisates was studied. These results are 

presented in Table 3. 

 

Vulcanisate TS0, MPa TSshr, MPa EB0, % EBshr, % 

CaO 17.6 12.0 803 734 

MgO 37.0 34.4 704 544 

ZnO 28.1 20.7 634 525 

Table 3. Tensile strength and elongation at break of XNBR vulcanisates before thermal treatment (TS0, 

EB0) and after thermal shrinking (TSshr, EBshr) 

Regarding the properties of the vulcanisates before the thermal treatment, the greatest 

tensile strength was exhibited by the vulcanisate with nanosized MgO, whereas the lowest 

was produced by CaO. One possible reason for the different activities of the metal oxides is 

their tendency to agglomerate in the elastomers (see Fig. 7).  

The CaO nanoparticles were poorly dispersed in the elastomer matrix (Fig. 7a). They created 

microsized agglomerates with complex structures, which displayed poor adhesion to the 

elastomer. These agglomerates acted as centres for stress concentration in the vulcanisates 

during the deformation and initiate breakage of the sample under external stress. As a 

result, the tensile strength of the vulcanisates decreased. The ZnO nanoparticles also created 

microsized agglomerates that were smaller than the CaO particles and surrounded by an 

elastomer film (Fig. 7c).  The wetting of the ZnO agglomerates with the elastomer probably 

produced the better mechanical properties of the ZnO vulcanisates, despite the 

heterogeneous dispersion of the nanoparticles. The MgO nanoparticles revealed the weakest 

ability to agglomerate in the XNBR, creating clusters of approximately 3 µm in size that 

were tightly bound to the elastomer matrix (Fig. 7b). The highest tensile strength was 

observed for the vulcanisate with MgO. The elongation at break was the lowest for the 

vulcanisate containing ZnO nanoparticles, and this result was correlated with the crosslink 

density of the examined vulcanisates.  

The stretching of the samples at high temperature, their stabilisation in the stretched state 

and the shrinkage above the ionic transition temperature reduced the tensile strength and 

elongation at break of the vulcanisates by decomposing the ionic crosslinks and reducing 

the crosslink density of the vulcanisates. However, these mechanical properties remained  
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              a) XNBR/CaO       b) XNBR/MgO 

 
c) XNBR/ZnO 

Figure 7. SEM images of XNBR vulcanisates 

satisfactory, especially in the case of the vulcanisates containing MgO and ZnO (TSshr, EBshr 

in Table 3).  

3.2. Thermo-shrinkable HNBR vulcanisates 

3.2.1. Crosslink density and ionic crosslink content for HNBR vulcanisates 

Studies performed on the XNBR elastomer crosslinked with nanosized metal oxides 

confirmed the existence of a biphasic structure and the presence of ionic crosslinks in the 

elastomer network, which are able to rearrange or decompose upon heating to produce 

thermo-shrinkable vulcanisates. Therefore, to obtain thermo-shrinkable vulcanisates from 

the HNBR elastomer, multifunctional crosslinking coagents based on nanosized calcium and 

magnesium oxides were used in combination with unsaturated carboxylic acids (UCAs). 

UCAs containing easily abstractable hydrogen atoms and readily accessible double bonds 

were grafted onto the powder surface during the modification process. Because of their 

multifunctionality, this type of coagent based on zinc oxide was proven to be able to react 
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directly with the elastomer and form effective covalent bonds. Moreover, they can form 

ionic crosslinks that increase the vulcanisate crosslink density and improve tensile strength 

(Przybyszewska & Zaborski, 2009). Because the presence of ionic crosslinks is crucial for the 

thermo-shrinkability of vulcanisates, the effect of these coagents on the crosslink density of 

the vulcanisates and their ionic crosslink content was studied. These results are given in 

Figs. 8 and 9.  

The application of coagents based on nanosized CaO and MgO grafted with UCA caused 

the formation of ionic crosslinks in the elastomer network. The greatest content of ionic 

crosslinks was obtained for vulcanisates containing nanosized CaO in combination with 

oleic and linoleic acid, as well as for MgO with itaconic and linoleic acid. The results of these 

studies confirmed that these coagents contributed to the increased vulcanisation efficiency. 

The ionic crosslink content should affect the thermo-shrinkability of the vulcanisates 

considerably. The crosslinked points in the elastomer network are believed to serve as 

memory points, enhancing the heat shrinkability. 

To confirm that the decomposition and/or rearrangement of the ionic crosslink aggregates is 

one of the causes of heat shrinkability in the examined HNBR vulcanisates, the crosslink 

density and ionic crosslink content were determined for the vulcanisates after thermal 

shrinking and compared with the values of the vulcanisates before thermal treatment. 

The data presented in Figs. 8 and 9 suggest that the ionic crosslinks that decomposed during 

the shrinking of vulcanisates at 70oC allowed the samples to return to their original shape. 

As a result of the ionic crosslink decomposition, the crosslink density of the vulcanisates 

decreased. The most considerable reduction of the ionic crosslink number after shrinkage 

above the ionic transition temperature was observed for the vulcanisates containing CaO-

OA, CaO-LA, MgO-IA and MgO-OA as coagents, which were characterised by the highest 

ionic crosslink content before the heat treatment. These vulcanisates may be expected to 

show the greatest thermal shrinkage and shape recovery. 

 

Figure 8. Crosslink density of HNBR vulcanisates 
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Figure 9. Ionic crosslink content of HNBR vulcanisates 

3.2.2. Thermo-shrinkability of HNBR vulcanisates 

As mentioned before, the shrinkage of polymer is caused by an internal rearrangement of 

the structural elements within the stretched sample (Mishra et al., 2000). In contrast to the 

covalent crosslinks formed during conventional vulcanisation with peroxides, ionic 

crosslinks are multifunctional and labile. Ionic crosslinks group together, forming clusters 

that are immersed in the elastomer matrix. Moreover, ionic clusters can rearrange in the 

elastomer matrix upon external deformation or temperature change. 

 

Figure 10. Percentage thermo-shrinkability of HNBR vulcanisates 
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The crosslinked samples were heated and stretched at 100oC (a temperature above the glass 

transition temperature). Cooling these samples in this stretched state stabilised the 

temporary shape. Finally, the stretched samples were allowed to shrink above the ionic 

transition temperature at 70°C. The heat shrinkability values and percentage recovery of the 

HNBR samples containing 7 phr of the coagents are presented in Figs. 10 and 11. 

The vulcanisates of the HNBR elastomers crosslinked in the presence of coagents based on 

nanosized CaO and MgO in combination with unsaturated carboxylic acids exhibited heat 

shrinkability. The greatest shrinkage upon heating (approximately 35%) was achieved for 

vulcanisates containing the CaO-OA, CaO-LA and MgO-IA coagents (Fig. 10). The lower 

shrinkability of the vulcanisates with other coagents is a result of the lower crosslink density 

and ionic crosslink number in their elastomer networks (see Figs. 8 and 9). Because the 

crosslinked points in the elastomer network serve as shape memory sites, a higher crosslink 

density improves the shrinkability of the vulcanisate. 

The HNBR-based vulcanisates demonstrated good shape recovery performance, with a 

shape recovery percentage in the range of 91-100% (Fig. 11). The greatest percentage 

recovery was obtained for the vulcanisates with the highest ionic crosslink content. 

Moreover, the most considerable reduction of the ionic crosslink number during the 

thermal shrinking process was observed for these vulcanisates. This result confirms the 

assumption that the decomposition of ionic crosslinks is the most important reason for the 

shrinkability and shape recovery of HNBR vulcanisates. It can be concluded that the ionic 

crosslinks formed in the elastomer by the coagents serve as memory points in the 

elastomer network. 

 

 

Figure 11. Percentage recovery of HNBR vulcanisates 
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3.2.3. Dynamic mechanical properties of HNBR vulcanisates 

Dynamic - mechanical analysis was performed to confirm the existence of ionic clusters in 

the elastomer network. The loss factor (tanδ) of the HNBR vulcanisates with coagents is 

presented as a function of temperature in Figs. 12 and 13 as an example. The values of the 

glass transition temperature (Tg) are given in Table 4. 

 

Figure 12. Tan δ versus temperature for HNBR vulcanisates before thermal treatment 

 

Figure 13. Tan δ versus temperature for HNBR vulcanisates after thermal shrinking 
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Vulcanisate Tg before thermal treatment, oC Tg after thermal shrinking, oC 

CaO-IA -21.2 -22.5 

CaO-PDA -20.7 -21.3 

CaO-OA -20.4 -22.7 

CaO-LA -19.1 -22.0 

CaO-LNA -19.6 -20.8 

MgO-IA -19.4 -22.9 

MgO-PDA -20.3 -21.5 

MgO-OA -20.6 -23.1 

MgO-LA -17.8 -20.4 

MgO-LNA -19.3 -21.0 

Table 4. Glass transition temperature of HNBR vulcanisates 

The DMA analysis revealed the biphasic structure of the HNBR crosslinked in the presence 

of coagents based on nanosized CaO and MgO grafted with UCA. Two phase transitions 

were observed. The glass transition of the HNBR, which occurs at Tg, was observed in the 

range from (-21.2oC) to (-19.1oC) for vulcanisates with CaO and from (-20,6oC) to (-17.8oC) for 

vulcanisates containing MgO. The determined Tg values were correlated with the crosslink 

density of the vulcanisates. A fuzzy low-intensity peak was observed in the temperature 

range of (40-100oC) (corresponding to the ionic transition) because of the occurrence of a 

hard phase arising from the existence of the ionic aggregates. 

Heating to the ionic transition temperature decreased the glass transition temperature of the 

vulcanisates by decomposing ionic crosslinks, reducing the crosslink density of the 

vulcanisates. The greatest decrease of the Tg value occurred in the case of the vulcanisates 

for which the greatest number of ionic crosslinks decomposed during heating (CaO-OA, 

CaO-LA, MgO-IA, MgO-OA). The fuzzy peak corresponding to the ionic transition 

disappeared; consequently, it can be concluded that the shape recovery of the HNBR 

vulcanisates was caused by the decomposition of the ionic crosslinks and changes in the 

biphasic structure of the crosslinked elastomer, similarly to XNBR. 

3.2.4. Mechanical properties of HNBR vulcanisates 

Having established the ability of the HNBR vulcanisates to shrink upon exposure to the 

ionic degradation temperature and return to their original shape, we then examined their 

mechanical properties.  

It is known that the formation of coagent bridges, which are labile ionic crosslinks inside the 

elastomer network formed during vulcanisation, improved the tensile properties of the 

vulcanisates (Przybyszewska & Zaborski 2008, 2009). However, it is reasonable to investigate 

the effect of the heat treatment of the vulcanisates on their mechanical properties. 

As could be supposed, the thermal treatment of the vulcanisates during their shrinkage 

deteriorated their tensile strength as a result of the decomposition of their ionic crosslinks. 
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Their tensile strength was reduced by 5% to 30% in comparison with that of the vulcanisates 

before thermal treatment (Fig. 14). The vulcanisates subjected to shrinking at elevated 

temperature also exhibited a lower elongation at break (Fig. 15). 

 

Figure 14. Tensile strength of HNBR vulcanisates 

 

Figure 15. Elongation at break of HNBR vulcanisates 

4. Conclusions 

The thermo-shrinkable properties of carboxylated (XNBR) and hydrogenated (HNBR) 

acrylonitrile butadiene elastomer were studied. XNBR was crosslinked with nanosized 

calcium, magnesium and zinc oxide to ensure the formation of ionic crosslinks in the 

elastomer matrix, which can serve as memory points and enhance its heat shrinkability. 

Similarly, HNBR was crosslinked in the presence of coagents based on nanosized calcium 
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and magnesium oxides grafted with unsaturated carboxylic acids to achieve ionic crosslinks. 

The examined samples were allowed to shrink at a temperature above the ionic transition 

temperature. The XNBR vulcanisates revealed thermo-shrinkability in the range of 41% for 

MgO to 50% for ZnO, whereas the percentage of shape recovery was in the range of 90-

100%. Good shape recovery performance was also observed for the HNBR vulcanisates. The 

greatest shrinkage upon heating (approximately 35%) was achieved for the vulcanisates 

containing CaO-OA, CaO-LA and MgO-IA coagents. The percentage of shape recovery of 

these vulcanisates was in the range of 91-100%. 

The thermo-shrinkability value and shape recovery ratio were strongly correlated with the 

ionic crosslink content of the elastomer network, and the number of ionic crosslinks was 

reduced by heating the samples above their ionic transition temperature. Greater ionic 

crosslink contents and their more significant decomposition corresponded to vulcanisates 

with greater thermo-shrinkability. DMA measurements confirmed the presence of ionic 

crosslinks and the existence of a biphasic structure in both the XNBR and HNBR elastomers. 

A fuzzy low-intensity peak was observed in the (tan δ) curve, in the temperature range of 

(50-100oC), which corresponds to the ionic transition that occurs at high temperatures as a 

result of the occurrence of a hard phase arising from ionic aggregates. This peak 

disappeared when the samples were heated above their ionic transition temperature. 

Therefore, it could be concluded that the thermo-shrinkability of the XNBR and HNBR 

vulcanisates and their shape recovery was a result of the decomposition of ionic crosslinks 

and changes in or the disappearance of the biphasic structure of the crosslinked elastomer. 
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