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1. Introduction 

Cell-surface transmembrane tyrosine kinase signalling receptors EGFR, HER3 and HER4 are 

activated by specific ligand binding, reference in [1] which, induces signalling through intra-

cellular domain kinase-dependant phosphorylation sites, see [2]. The intensity and 

specificity of the transmitted signal are modulated by homo and hetero-dimerization, 

allowing other family members to be recruited and thereby amplifying the signal [3]. HER2, 

which does not have a defined activating ligand, plays a key role in its capacity to amplify 

the signal [4] by being the preferred partner for hetero-dimerization. Both HER2 hetero and 

homo dimers maintain their intracellular kinase and phosphorylation sites in an activated 

state [3,5,6,]. HER2 hetero and homodimers both maintain their intracellular kinase and 

phosphorylation sites in an active state [5,6] Dimerization with HER2 increases receptor-

ligand affinity and receptor-ligand stability, further enhancing activation [4,7]. In vivo 

enzymatic processing releases the HER2 extra-cellular domain (95 kD), including the 

dimerization site [8] from the membrane, but the role this plays in signal modulation 

remains undefined [9]. HER2-dependant activation signals promote a highly 

phosphorylated tyrosine state in the intra-cellular domain, which is then recognized by a 

family of specific cytoplasmic signal transducers [10]. These signal transducers regulate cell 

proliferation, apoptosis and cell characteristics associated with the transformed state [1,2 

5,6]. Mitogen-activated protein kinases (MAPKs), and phosphatidylinositol 3-OH kinase 

(PI3K- AKT) pathways [11,12] have been particularly well studied as downstream signal 

pathways of HER2 leading to the concept of an oncogenic unit [13]. Accumulating 

experimental and clinical data link anti-HER2 treatment to inhibition of these downstream 

pathways suggesting that they are critical mediators of the activated HER2 state and cell 

survival [14]. However, whether the trastuzumab mediated inhibition of signalling is due to 

reduced HER2 phosphorylation/kinase activity, inhibition of HER2 dimerization, decreased 

HER2 levels, altered metabolic processing of HER2, binding dependant allosteric effects on 

HER2 or HER2-HER1/3/4 or a combination of these mechanisms is unknown.  
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In most cases, amplification of HER2 in breast cancer is associated with an amplicon 

comprising genes mapped to the 17q12-q21 region [15-18] that includes several genes 

involved with cell proliferation [16], transformation [17], adhesion [16] and chemotherapy 

sensitivity [18]. Clinically, the amplicon gene copy number is a parameter closely linked to 

trastuzumab and lapatinib efficacy [19,20].  

Experimental evidence now suggests that nuclear localization of growth factors and 

receptors is not uncommon and also occurs with members of the EGFR family [21]. More 

recently, specific products derived from the HER2 receptor have been shown to have 

independent gene regulatory effects by virtue of a nuclear localization motif encoded in the 

HER2 protein [21,22] and by alternate splicing of the HER2 mRNA [21]. For example, the 

nuclear localization sequence preferentially targets a HER2 derived peptide to bind to 

sequences, one of which is in the COX-2 promoter region, leading to up-regulation of COX-2 

expression [22]. Whether there are other HER2 derived peptides and the role they may play 

in the signalling cascade and whether any of the current anti-HER2 treatments modulate 

these factors remains is an area of current interest. 

The original anti-HER2 mouse monoclonal antibody, 4D5, was shown to inhibit HER2 

tyrosine phosphorylation [23] and breast cancer cell proliferation [23]. This antibody was 

humanized through genetic engineering to become trastuzumab [24,25]. A second antibody 

now in development (pertuzumab) binds to an extra-cellular HER2 epitope in close 

proximity to the dimerization site and has been shown to block dimerization [26-, 28]. A 

small molecule HER2/1 tyrosine kinase inhibitor, lapatinib has shown single agent activity 

in the clinic [20,29,30], providing further evidence that the disruption of the EGFR1/HER2 

activation pathway, specifically by blocking phosphorylation [29-32], leads to cell death.  

The focus of this investigation was to examine the effects of trastuzumab and lapatinib on 

breast cancer cell lines containing the HER2 amplicon under conditions of steady state anti-

HER2 growth inhibitory effects. The quantifiable end point was the inhibition of 

proliferation as determined by MTT and Tritiated thymidine incorporation. These assays 

were used as evidence that the trastuzumab or lapatinib treatments had interrupted 

signalling pathways. Using immune detection of three distinct HER2 protein sites, four 

distinct HER2 tyrosine phosphorylation (P-Tyr) sites, a threonine phosphorylation (P-Thr) 

site and actin, changes in these parameters were monitored during anti-HER2 treatment. 

The demonstration of the restricted tyrosine kinase inhibitory activity of lapatinib further 

validated the specificity of the anti-HER2 phospho-tyrosine/threonine (P-Tyr/ P-Thr) 

antibodies selected for this investigation.  

2. Materials and methods 

Breast cancer cell lines were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA) specifically for these experiments and maintained in RPMI 1640 with 50 

units penicillin/streptomycin, 2 mM glutamine, 7.5 % fetal bovine serum, and incubated at 

37º C in 5% CO2. The ATCC authenticates and tests cell lines provide for research as per 

their protocols. 
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Four drug treatments and a control, done in quadruplicate, were analyzed using Western 

blot techniques. Cell concentrations were adjusted to 375,000 cells/ml in complete media and 

1 ml was added to each well of a 12 well tissue culture plate. Cells were allowed to adhere to 

the plates for 24 hrs. Drugs or control solutions were added at a final concentration of 100 

microgram/ml trastuzumab, (Herceptin) or control rituximab (Rituxin), (Genentech, San 

Francisco, Ca). Preliminary dose finding experiments were carried out at 2-250 

micrograms/ml. 0.1% DMSO and 0.1%DMSO + 10 ƞM Lapatinib (Tykerb) ( GlaxoSmithKline 

Research Triangle Park, NC) was also tested following this same procedure .The cells were 

incubated at 37º C in 5% CO2 for 8 or 48 hrs. The cells were lysed with either 400 µl of SDS 

loading buffer (58 mM Tris 6.8, 1.6 % SDS, 6% glycerol, 0.83% BME, 0.002% bromphenol 

blue) or NP-40 (0.5% NP-40, 50 mM Tris 7.4, 120 mM NaCl, 2.5 mM EGTA). Additional cell 

growth inhibitory studies were carried out for incubations up to 9 days in 6-well plates, and 

cells were tested serially every other day by pulse Tritiated thymidine incorporation and 

MTT assays 

For Western blotting, samples were boiled in electrophoresis sample buffer containing 

0.0625M Tris-HCl (pH6.8), 10% glycerol, 2% SDS and 5% BME, for 10 minutes then 

separated on 12% SDS-PAGE gels (mini-protean, Bio-Rad, Richmond, CA) at 100 V until 

the dye front reached the bottom then transferred overnight (47 mA) to nitrocellulose 

membranes (Bio-Rad). Membranes were blocked with a 5% w/v solution of non-fat dry 

milk in TPBS for 2 hours at room temperature (RT). The blots were then probed with 

primary antibodies according to the respective titers provided by their manufacturers 

and the membranes were rocked for 2 hours at RT. The blots were washed 1X with TPBS 

and a 1:10,000 dilution of secondary antibody (either goat anti-rabbit alkaline 

phosphatase or goat anti mouse alkaline phosphatase (Sigma, ST Louis, MO) was added, 

and the blots rocked at RT for 1 hour. The blots were washed 3X with TPBS and the 

membrane developed in the alkaline phosphate substrate NBT/BCIP (Promega Corp., 

Madison, WI).  

Rabbit anti-P-Tyr 877, P-Tyr 1112, P-Tyr 1221/1222, P-Tyr 1248 P-Tyr 877, P-Tyr 1221/1222, 

and anti-amino acid peptide containing residue 1222, were purchased from Cell Signalling 

Technology, Inc,( Danvers, MA). Anti-P-Tyr 4G10, was purchased from Millipore, (Billerica, 

MA). Anti-extracellular HER2, Neu (9G6):sc-08, anti-HER2 P-Thr 686, p-Neu (7F8):sc81508, 

anti-HER2 P-Tyr 1112, p-Neu (19G5):sc-81528, anti-extracellular HER2, Neu(ER23):sc-74241, 

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-HER2 (AA 7570-

987) was purchased from ProMab Biotechnologies, Inc. (Albany, CA). All antibodies were 

used per the manufacturer’s recommendations. Membrane fractions were isolated using the 

Perfect-Focus Membrane Protein kit, (G Biosciences, Maryland Heights, MO), according to 

the manufacturer’s protocol. 

Human serum samples from patients and normal volunteers were collected under an 

Institutional Review Board approved research protocol and stored in our serum bank of de-

identified serum specimens, stored at -78 degrees Celsius. 
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3. Results 

3.1. Cell growth-inhibitory and viability assays 

To define the experimental time points where anti-HER2 therapy modulation of 

downstream signalling could be demonstrated, breast cancer cell lines were tested for 

trastuzumab/lapatinib growth inhibitory effects by Tritiated thymidine incorporation and 

MTT assays. Three HER2 amplicon-containing cell lines were examined, BT-474, SK-BR-3, 

MDA-MB-453, and amplicon (-) MCF7 served as a control [29,31]. Cells were treated in log 

phase growth under conditions where factors such as confluence inhibition were 

minimized. Antibody controls included isotype matched human/mouse IgG1 chimeric 

(rituximab) and fully humanized IgG1 antibody (bevacizumab). In addition, IgG1 

cetuximab, which blocks EGFR1 signalling, was used as an additional control; as in a 

separate set of experiments, we confirmed that bit did not induce a proliferation or 

inhibitory state in these cell lines, in agreement with reports by others, nor did we find any 

effect on HER2 tyrosine phosphorylation [29]. Trastuzumab was tested at a continuous cell 

exposure dose of 100 micrograms/ml with select experiments carried out at 2- 250 

micrograms/ml. Cell cultures were assayed at various time points up to 9 days of treatment. 

Results of cumulative and pulsed-chased Tritiated thymidine incorporation and MTT assays 

were in agreement, demonstrating a reproducible inhibitory effect of trastuzumab on cell 

growth and division. This is best demonstrated by the cell line BT-474. Cell lines SK-Br-3 

and MDA-MB-453 exhibited lesser effects and no effect was seen on HER2 amplicon 

negative control MCF7 cells. These results are consistent with previous reports [29,31]. The 

Tritiated thymidine incorporation experiments suggested that a trastuzumab-mediated 

continuous cell-growth inhibitory state is established throughout the incubation period by 

demonstrating reduced incorporation per cell at each time point tested in the trastuzumab 

treated cultures (Table 1). Significant cell death was not observed with trastuzumab up to 

the 9-day time point. Of note was that the maximum cell-growth inhibition by both MTT 

and Tritiated thymidine incorporation assays was observed at 5 micrograms/ml of 

trastuzumab, thus the assays described below were carried out at 20-50 times the active 

biological dose. The 100 micrograms/ml dose was selected as it most closely matches doses 

achieved in patients. 

Effective doses for lapatinib in the cell culture assays ranged from 1 nanogram/ml to 1 

microgram/ml. In contrast to results with trastuzumab, lapatinib induced significant cell 

death by day five (> 90%) under conditions of continued cell exposure at a constant drug 

dose of ≥10 nanograms. Lapatinib cell cultures beyond five days had no measurable MTT 

signal, lack of Tritiated thymidine incorporation (< 1% initial values) and few viable 

adherent cells by microscopic examination. Experiments with lapatinib included a dimethyl 

sulfoxide (DMSO) control, as it was the solvent used for this lipophilic drug. Control DMSO 

had a small effect on growth kinetics but no cell death was observed. In order to examine 

the comparative biologic/phosphorylation inhibition effects of these two agents, time points 

of 8 hours and 48 hours were selected for further analysis. The critical feature of these two 

time points is that cell viability appeared high in both trastuzumab and lapatinib cultures as 
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demonstrated by the MTT assay, Tritiated thymidine incorporation, protein levels of HER2 

and actin in cell cultures as assessed by Western blots, and the continued adherence of cells 

up to 48 hours as determined by microscopic examination. These experiments would 

therefore allow for the examination of molecular events prior to cell death, distinguishing 

between events that may be related to induction of cell death versus changes resulting from 

cell death. 

TRASTUZUMAB DAYS 1 3 5 7 9 

% 3H-thymidine 

incorporation 

Cell lines      

                                       BT474 76.3 81.5 76.7 68.5 66.2 

                                       SK-BR-3 84.4 80.2 80.4 77.6 65.1 

                                       MDA-MB-543 81.4 84.3 78.3 73.9 67.7 

                                       MCF-7 98.7 97.9 101.6 99.0 100.7 

       

% MTT       

                                       BT474 99.3 95.4 87.6 62.1 45.4 

                                       SK-BR-3 97.7 93.6 75.5 70.1 65.3 

                                       MDA-MB-543 99.7 97.3 90.3 82.1 71.2 

                                       MCF7 97.7 99.8 102.2 100.6 101.0 

       

LAPATINIB DAYS 1 3 5 7 9 

% 3H-thymidine 

incorporation 

Cell lines      

 BT474 80.3 77.2 6.6 1.1 ---- 

 SK-BR-3 84.7 82.1 8.8 ---- ---- 

 MDA-MB-543 88.7 82.0 8.4 ---- ---- 

 MCF-7 102.0 101.2 96.7 98.5 97.9 

       

% MTT       

 BT474 97.6 88.4 4.7 ---- ---- 

 SK-BR-3 99.9 96.8 14.3 ---- ---- 

 MDA-MB-543 100.5 97.9 13.6 ---- ---- 

 MCF-7 104.1 97.9 97.6 101.7 100.6 

       

Values are expressed as %-treated cells/controls for each time point. Data shown represents experiments carried out 

with trastuzumab 100 micrograms/ml and lapatinib 10 nanograms/ml While the MTT assay represents relative total 

viable cell counts of treated cells compared to controls, the 3H-thymidine counts/minute (cpm) were corrected for 

number of viable cells using the MTT assay data (cpm treated/cpm control/MTT treated/MTT control). The paired data 

sets were evaluated by Student’s t-test for significance and those values achieving statistical significance are bolded. ---

- indicates no measurable signal. 

Table 1. Relative growth inhibitory values 
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3.2. Western blot experiments 

3.2.1. HER2 protein levels 

Protein level changes for HER2 and actin, associated with trastuzumab or lapatinib 

treatment at two selected treatment time points (8 and 48 h) were analyzed by Western blot 

analysis. Three specific polyclonal antibody sera detecting HER2 were tested, one 

recognizing epitopes in the ectodomain (amino acid 182-373), and two detecting epitopes in 

the cytoplasmic domains (amino acids 750-987 and a determinant in proximity to the Tyr 

1222 amino acid). These experiments were carried out at least four times each and 

representative panels of a single experiment are shown in Figure 1. The three controls 

shown here were cells grown in media alone, cells grown in the presence of rituximab, and 

cells grown in DMSO. All controls gave very similar bands for the three anti-HER2 antibody 

sera. Small changes are inHER2 levels are first detected at 48 hours in cell line SK-Br-3 

treated with lapatinib, while actin levels remain unchanged at this time point. This finding is 

consistent in each of the four separate experiments and confirms the increase in cell surface 

HER2 levels associated with lapatinib treatment as previously reported for cell line SK-Br-3 

[31]. This time point is just prior to the onset of events associated with apoptosis and may 

represent a consequence of cellular pathway disruption, as increased HER2 mRNA levels 

were not observed. In separate experiments, cells grown in the presence of cetuximab or 

bevacizumab (not shown) resulted in western blots identical to controls indicating a lack of 

modulation of HER2 protein expression by anti-EGFR or VEGF therapy in these cell lines. 

These results are consistent with our previously reported analysis of EGFR, HER2, HER3 

and HER4 mRNA levels by gene expression mRNA array analysis of mRNA extracted from 

these breast cancer cell lines treated with trastuzumab compared to these controls [30]. 

These parallel experiments used extracts from these breast cancer cell lines treated with 

trastuzumab or cetuximab, or control antibodies, under these same defined conditions and 

time points. 

No difference in actin levels was noted in each set of these experiments. As the cell count 

number in the first 48 hours showed <10% difference, the amount of cell extract applied to 

the gel while corrected for cell number at each time point had very little variance. Thus, 

these results are consistent with those of the Tritiated thymidine and MTT assays indicating 

the minor growth inhibitory effects of these agents up to 48 hours. These finding also 

support the contention that biologic events occurring up to 48 hours of treatment precede 

cell death events and are possible activators of critical pathways leading to cell death.  

3.2.2. Tyrosine and threonine phosphorylation levels in the control cultures: 

Four site specific anti-P-Tyr antibodies (Tyr 877, 1112, 1222 and 1248) and one anti-P-Thr 

(Thr 686) were tested on cell extracts collected at specific timed intervals (Figure 1). The 

controls showed consistent pattern of staining at the two time points examined for each cell 

line, but different patterns of relative intensity for each tyrosine or threonine were observed 

for each cell line. These results suggest that each cell line has a distinct net P-Tyr signalling 

oncogenic unit, rather than a HER2 specific net down-stream signalling motif.  
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Figure 1. Shows Western blots bands of HER2, phosphorylated tyrosines/threonines, and actin from 

representative experiments of three cell lines growing in the presence of trastuzumab or lapatinib, or their 

controls, tested at 8 hours and 48 hours after drug administration. Primary antibodies were used at 1:5,000 

for anti-P-Tyr/Thr and anti-HER2 antibodies and 1:10,000 for anti-actin antibodies and secondary antibodies. 

Labelled lanes show trastuzumab-treated cells in lane 2 with its controls in lane 1 (media alone) and 3 (control 

antibody). Lane 5 shows lapatinib-treated cells and the control grown in lapatinib solvent, (DMSO) in lane 4. 

Blots show the p185 band with secondary reagent as shown, and actin is presented as proof of viability and 

equivalent cell number applied to each lane. These gels demonstrate the contrast in phosphorylated tyrosines 

detected comparing lapatinib to trastuzumab and confirm the TKI activity of lapatinib. At 8 hours, lapatinib 

almost completely blocked tyrosine phosphorylation with virtually no discernible difference in the in the 

HER2 protein levels. The 48 hour time point was selected as it represented the last time point tested prior to 

lapatinib-induced cell death, which was almost complete by day 6. 

Compared to the media controls, the DMSO controls did not differ in phosphorylation 

levels of these specific P-Tyr or P-Thr. While the intensity of the bands were similar for each 

cell line at each of the two time points, exceptions were noted for Tyr 877 and cell lines BT-

474 and MDA MD 453, where phosphorylation is clearly increased from the 8 hour to the 48 

hour time point. Similarly, P-Tyr 1222 also demonstrated increased intensity from 8 to 48 

hours in cell line MDA-MB-453. Whether these findings suggest that the cells are not 

completely recruited into log phase growth at the 8-hour time point or cell-cell contact plays 

a role is unclear. The actin and HER2 bands strongly suggest equivalence of cell number 

applied to each lane at each of these time points. 
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3.2.3. Tyrosine and threonine phosphorylation levels in trastuzumab and lapatinib treated 

cells 

No discernable change in phosphorylation of the P-Tyr or P-Thr was detected for 

trastuzumab-treated cells despite ongoing inhibition of cell growth at these time points. The 

unexpected lack of trastuzumab inhibition of tyrosine phosphorylation prompted 

experiments that replaced fetal calf serum (FCS) with human serum to determine if a 

component of FCS was responsible for inhibiting the full trastuzumab activity. Cells grown 

in media with 10% human serum from breast cancer patients or normal females, pre or 

postmenopausal, or male serum did not affect these findings (data not shown). Doses of 

trastuzumab up to 250 micrograms/ml did also did not change the patterns of 

phosphorylation. In contrast to the results demonstrating constant HER2 protein steady 

state levels, P-Tyr levels in lapatinib treated cells are markedly reduced (Tyr 1248) or absent 

(Tyr 687, 1116 and 1223), consistent with its role as a HER2 tyrosine kinase inhibitor (Figure 

1). In addition, the P-Thr level is not affected by lapatinib exposure, demonstrating the 

tyrosine backbone specificity of lapatinib. As the lapatinib Western blots demonstrate, HER2 

and actin protein levels are maintained through 48 hours, these results strongly suggests 

that changes in detected phosphorylation levels are due to kinase inhibition rather than the 

substantial in HER2 protein or cell death. We suggest that these early findings are related to 

the lapatinib mechanism of cell death that is apparent 2-3 days later. 

3.3. MRNA expression patterns in trastuzumab treated breast cancer cells  

3.3.1. Detection of a small molecular weight HER2-like product 

Cell fractionation experiments were carried out to determine whether HER2 derived 

products with nuclear localization motifs could be identified by Western Blot analysis and 

to determine if trastuzumab or lapatinib altered their molecular processing mechanism. 

Differential generation of enzymatically derived nuclear localizing products could be 

responsible for trastuzumab mediated trans-membrane growth inhibitory effects. The 

results indicate that these techniques were not sensitive enough to detect, or were not of the 

correct immune-specificity to detect HER2 derived product in concentrates of nuclear or 

cytoplasmic cell fractions (data not shown). 

However, using the anti-HER2 external domain antibody (AA 182-373), we detected a small 

molecular weight (20 kD) external domain-like HER2-derived product associated with the 

cell (Figure 2). This peptide segment is too far from the hydrophobic transmembrane 

segment to contain a transmembrane anchoring component to explain its association with 

the cell pellet, as it is too small (approximately 180 amino-acids in length) to extend from 

position 373 to the transmembrane domain. This peptide was not detected in supernatant or 

concentrates of supernatants. Cells exposed to acid conditions (pH 4.0, 0.5 M acetate, 0.15 N 

NaCl) to elute this 20 kD segment from the cell surface demonstrated that the 20 kD peptide 

could not be eluted under these conditions and was still found associated and concentrated 
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in the cell pellet fraction (figure 2). Because concentrates of cytoplasmic fractions and 

nuclear fractions did not demonstrate the presence of this 20 kD peptide segment, a Triton 

X-114 fraction of the cell membrane was assayed and found to have high levels of this 

product (Figure 2). These results suggest that this product is derived from the extra-cellular 

domain of HER2 by enzymatic processing and binds avidly to a cell membrane-anchored 

determinant or is internalized into a sub-membrane compartment, co-purifying with the 

membrane fraction, or that it is a membrane protein cross reactive with antibody to 

extracellular domain (AA 183-373). The significance of this finding is that this peptide 

appears to be inhibited by lapatinib treatment while the intact HER2 levels remain constant 

and expression of this protein is unaffected by trastuzumab treatments (Figure 2). Thus, this 

small molecular weight product may be related to the unphosphorylated state of HER2. 

4. Discussion 

HER2 transmembrane activation signals promote a high level of selected intracellular 

domain P-Tyr sites, which are then recognized by specific cytoplasmic signal transducer 

molecules [10]. Thus, HER2 acts as an oncogenic unit transmitting cell survival, growth, and 

cell proliferation signals to critical intracellular pathways such as Mitogen-activated protein 

kinases (MAPKs), AKT and phoshatidylinositol 3-OH kinase (PI3K) pathways[11,12,29]. 

Here, we show that the relative level of specific P-Tyr is different for each HER2 amplicon-

positive cell line examined, and thus, each oncogenic unit may be distinct in each tumour 

[13]r. Linkage of anti-HER2 treatment to the inhibition of these downstream pathways is 

well established, suggesting that these specific P-Tyr are critical mediators of the 

downstream signalling effects of the activated HER2 state and cell survival [7,10-12,29,30]. 

The molecular mechanism by which trastuzumab, a humanized IgG1, modulates the 

intracellular tyrosine kinase site from its extra-cellular binding site has remained 

unanswered. For example, cetuximab binds to, or near, the ligand binding site of EGFR thus 

acting as an antagonist [1,2,30-32]. Defining the molecular mechanism by which 

trastuzumab mediates its anti-HER2 effects could reveal a general non-ligand site-specific 

strategy for development of receptor inhibitory monoclonal antibodies in other receptor 

kinase systems. 

The primary focus of this investigation was to determine the key molecular mechanism(s) 

governing trastuzumab’s transmembrane modulation of downstream effects. Here, we show 

that trastuzumab binding does not appear to alter the net steady state levels of p185 HER2 

protein as detected by all three of the anti-HER2 antibodies tested. Previous gene mRNA 

expression array findings demonstrate that no significant change in mRNA levels for HER2 

or the other members of the ERBb family were induced by trastuzumab binding [33]. Taken 

together, these results strongly argue against an antibody-dependent alteration in natural 

turnover rate or internalization kinetics of HER2 [34]. We conclude that in the absence of 

demonstrable modulation of HER2 membrane mass on the cell surface, HER2 protein 

synthesis, and thus, alteration of kinetics of internalization or HER2 metabolism, net 
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membrane HER2 levels could not be implicated as a mechanism to down-regulate HER2 

signalling. Despite these observations for HER2, our gene mRNA expression array data did 

suggest numerous intracellular pathway modulations mediated by trastuzumab binding to 

the target cells examined here [33]. These findings confirm transmembrane signal 

transduction modulation directed and specific to trastuzumab binding [33-35]. For example, 

we found that, the ubiquitin pathway is up-regulated upon trastuzumab binding to HER2 

[35], as has been reported by others through ligase activity at tyrosine 1112 [35,36]. 

Trastuzumab has not been definitively shown to retain the tyrosine kinase inhibitory 

activity of the parent 4D5 mouse monoclonal antibody [23]. Here we show that the level of 

HER2-P-Tyr/Thr corrected to cell number, actin levels, and the steady-state levels of intact 

extractable HER2, is not altered by exposure to trastuzumab. The finding that both P-Tyr 

levels and HER2 levels in each of these assays reveal no change further supports the 

conclusions derived from the gene mRNA expression array data [33]. Thus, examination of 

HER2 steady-state protein levels and key phosphorylation sites [10] did not reveal the 

molecular perturbation responsible for well-documented trastuzumab inhibition of cell 

proliferation and downstream pathways. 

In contrast to trastuzumab, lapatinib treatment almost completely abrogates the HER2-P-Tyr 

as a signalling element while leaving HER2 protein levels unchanged. Thus, lapatinib acts 

through the blockage of tyrosine phosphorylation rather than the modulation of 

internalization or metabolism of the HER2 protein. We further show a sequential 

relationship between lapatinib-induced blockage of HER2-P-Tyr (8 and 48 hours) and 

induction of cell death at day 5-6 of drug exposure. At this late time point, MTT, Tritiated 

thymidine, actin levels and microscopy all support a lapatinib induction of cell lyses.  

The inhibition of cell growth was used to define the conditions of ongoing drug-induced 

biological effects. The cell growth experiments described here are in agreement with similar 

reports by others [24,31]. Trastuzumab induced slower growth but did not suppress net 

increases in cell numbers over time. This in vitro effect of trastuzumab parallels the clinical 

observation that a prolonged stable disease is a common outcome of treatment [37].  

Treatment of amplicon-positive breast cancer cells with cetuximab confirms reports by 

others that anti-EGFR therapy does not inhibit proliferation, induce cell death, nor inhibit 

HER2 phosphorylation in these cell lines [31]. Furthermore, we did not find that 

combinations of cetuximab and trastuzumab augment inhibition of cell growth or promote 

apoptotic events [31]. Cell growth inhibition and phosphorylation experiments with 

cetuximab have not been in agreement with results of similar investigations using small 

molecules with EGFR tyrosine kinase inhibitory activity (TKI) [38,39]. However, drugs 

such as gefitinib, which are believed to be relatively specific for EGFR, are also found to 

block HER2 phosphorylation at higher doses [38], complicating the interpretation of its 

mechanism of action [38]. Whether there is an independent anti-EGFR activity cross-

inhibiting HER2 phosphorylation (cross-talk) or whether this observation is a consequence 

of the direct anti-HER2-phosphorylation activity of gefitinib is unclear. Results of these in 
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vitro experiments may mislead investigators into attributing findings to cross-talk between 

receptor pathways rather than cross-reactivity of the reagent tested. We may over estimate 

biologic activity when reagents are used at too high of a concentration or too long of an 

exposure. Results of these experiments may mislead investigators into attributing findings 

to cross-talk between receptor pathways rather than the cross reactivity of the reagent 

tested. Thus, we conclude that results of experiments testing cetuximab’s biologic effects 

more closely represent, and are more specific to, the pure anti-EGFR blockade. We clearly 

show here, in agreement with previous reports by others that pure anti-EGFR1 inhibition 

of signalling does not result in cell death or modulation of HER2 phosphorylation levels 

[29].  

These observations suggest that the anti-EGFR1 tyrosine kinase effects of lapatinib are not 

contributing to its anti-HER2 effects. Thus, the results of the panel of anti-HER2-P-Tyr-

antibodies demonstrating almost complete abrogation of HER2 phosphorylation by 

lapatinib and its associated delayed cell cytotoxicity (day 5-6) establishes a specific and 

unique link between HER2 tyrosine phosphorylation and cell survival. Importantly, these 

results also suggest that additional signalling through HER3 and HER4 may not be critical 

for apoptosis [40], except as it may ultimately be mediated through HER2 tyrosine kinase 

inhibition (reduction in hetero-dimerization) [40]. Thus, blocking dimerization by itself, 

which is unlikely to affect steric change in the intracellular domain, will not induce a 

modulation of P-Tyr levels. Taken together, these data suggest that testing the effect of a 

specific and robust HER2 tyrosine kinase inhibitory reagent is warranted.  

In the clinic, where the anti-EGFR toxicity of lapatinib is dose limiting (diarrhea and skin 

rash) and prohibits dose escalation, the testing of a small molecule TKI manifesting pure 

HER2 kinase inhibition would be of great interest. Recently a pan ErbB TKI was tested and 

shown to be dose limited by the EGFR-mediated bowel toxicity, further supporting the 

conclusions presented here [41]. A pure anti-HER2 agent would be even more compelling if 

one could demonstrate upon dose escalation increased tumor cytotoxicity and a lack of 

other intervening non-HER2 related dose-limiting toxicities. Close examination of many of 

the TKIs demonstrate widespread promiscuity with many unexpected cross-reactivities [42]. 

In general, clinical success of a widely reactive kinase inhibitor is not informative as an 

identifier of the key pathway(s) responsible for mediating anti-tumor effects and often leads 

to “assumed” mechanisms of activity. 

Using the four anti-P-Tyr sera, we could not find any diminution in the phosphorylation 

levels as assayed by Western blots, in cells treated up to nine days in the presence of 

trastuzumab. In addition, the anti-phospho-threonine reagent was used as a negative 

control, and was found not to be blocked by lapatinib demonstrating the specificity of the 

drug and the kinase activity. Thus, we propose that the kinase inhibition that was originally 

described by the mouse antibody 4D5 [23] has been lost in the humanization process [25]. 

The abundance of well-documented evidence that inhibition of specific downstream 

pathways is a consequence of trastuzumab-cell binding remains unexplained. 
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Figure 2. Demonstrates a series of experiments evaluating a 20 kD protein detected by anti-HER2 

extracellular domain (AA 182-373) anti-sera at 48 hours. Lanes 1-5 demonstrate the full Western blot gel 

of  BT-474 (48 hours, from Figure 1) showing two bands: the p185 HER2 protein and the 20 kD protein 

(arrow on left) lanes 1-4. Note that this protein in not detected in lane 5 which represents lapatinib-

treated cells, while the p185 HER2 is mildly reduced in lane 5.  Lanes 1- 14 show the corresponding actin 

control confirming that equal numbers of cell were applied to lanes 1-5.  Exposing BT-475to  cells to  an 

acid wash of pH 4.0 does not elute the protein as lane 7 is the acid wash and the cell pellet that remains 

is shown in lane 6, has both p185 and the 20 kD protein. Using the Triton X Perfect Focus Membrane 

Protein kit methodology shows a clearer picture of localization of the 20 kD band with membrane HER2 

protein and the 20 kD band (arrow) both in lane 8 (membrane protein concentrate) and corresponding 

cell pellet, run in lane 9, is negative.  
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One hypothesis to be considered is that the trastuzumab effect is a weaker version of what is 

seen with lapatinib and while we cannot demonstrate a small loss of P-Tyr activity in 

culture, more sensitive techniques might be informative. Alternatively, trastuzumab 

inhibition may be allosteric or conformational in nature and at the level of the cytoplasmic 

signal transducers [10] ability to detect the phosphate moieties in the context of an altered 

peptide conformation [43]. One may further speculate that due to the unique binding 

epitope of trastuzumab, which is in extra-cellular proximal domain, trans-membrane 

tertiary structural changes may be induced. Cross-linking HER2 (dimers) at the extracellular 

proximal domain may disrupt the P-Tyr access to cytoplasmic signal transducers by 

physical constraints. This hypothesis would suggest that other membrane receptor systems 

could also be modulated in a similar fashion.  

Our results demonstrate the presence of a small 20 kD protein concentrated in the extracted 

membrane fraction which is immunologically similar to an extra-cellular segment of HER2 

protein. This may provide further evidence of specific enzymatic digestion of HER2 into 

novel biologic agents [44,45]. The low molecular weight of this identified fragment and its 

association with the membrane fraction raises the possibility that it may function as a ligand 

for another, as yet unidentified, receptor. Thus, we hypothesize that HER2 may not be a 

classical receptor as has been suspected by the lack of a ligand binding moiety but rather a 

pre-ligand entity which requires regulated and specific digestion to be activated. The 

differential expression of this moiety with lapatinib in contrast to trastuzumab treatment, 

demonstrates the complexity of this system and the difficulty in attributing a single 

molecular mechanism in transmembrane signal transduction. 

These observations are not informative regarding the precise cytotoxic mechanism of 

trastuzumab activity in the clinic. Models based on preclinical animal studies favor immune 

mechanisms as key in mediating tumor shrinkage [46]. Studies of patients treated in the neo-

adjuvant setting also support these findings [43]. However the clinical effects of 

trastuzumab could be divided into two distinct effects, a growth inhibitory effect as seen in 

vitro and which manifests clinically as long term stable disease and a cytotoxic effect as one 

might expect from immune mediated cell lysis which results in rapid tumor shrinkage in the 

clinic, especially as seen in neo-adjuvant studies [47].  

In addition to these hypotheses, there is evidence that HER2 induced downstream effects 

actually amplify pro-inflammatory factors such as COX-2 [22] creating a micro-environment 

for promoting immune cell mediated tumor cell killing. These data are in agreement with 

modulation of a prostaglandin pathway identified by gene mRNA expression array 

experiments [33] in trastuzumab treated cells. Thus downstream events induced by HER2 or 

regulated by trastuzumab binding, may promote the immune mediated killing of tumor 

cells by trastuzumab. These findings provide a strong rational for combining other anti-

breast cancer cell antibodies with trastuzumab therapy. Furthermore the additional anti-

tumor efficacy observed with combinations of trastuzumab and chemotherapy could also be 

attributable to the known effects of certain chemotherapeutic agents, which render tumor 
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cells more sensitive to immune attack [48]. If this is the case, research should be focused on 

mechanisms by which chemotherapy may damage tumor cells sufficiently to allow more 

efficient killing by immune mechanisms rather than focus on apoptotic pathways that 

enhance chemotherapy cytotoxic effects. 
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