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1. Introduction

Vehicle suspension systems are one of the most critical components of a vehicle and it have

been a hot research topic due to their importance in vehicle performance. These systems

are designed to provide comfort to the passengers to protect the chassis and the freigt [28].

However, ride comfort, road holding and suspension deflection are often conflicting and a

compromise of the requirements must be considered. Among the proposed solutions, active

suspension is an approach to improve ride comfort while keeping suspension stroke and tire

deflection within an acceptable level [11, 21].

In semiactive suspension, the value of the damper coefficient can be controlled and can show

reasonable performance as compared to that of an active suspension control. Besides, it

does not require external energy. For instance, in the work by [18] a semiactive suspension

control of a quarter-car model using a hybrid-fuzzy-logic-based controlled is developed and

implemented. [23] formulated a force-tracking PI controller for an MR-damper controlled

quarter-car system. The preliminary results showed that the proposed semiactive force

tracking PI control scheme could provide effective control of the sprung mass resonance as

well as the wheel-hop control. Furthermore, the proposed control yields lower magnitudes

of mass acceleration in the ride zone. [25] designed a semi active suspension system using

a magnetorhelogical damper. The control law was formulated following the sky-hook

technique in which the direction of the relative velocity between the sprung and unsprung

masses is compared to that of the velocity of the unsprung mass. Depending on this result,

an on-off action is performed. [8] designed a semiactive static output H∞ controller for a

quarter car system equipped with a magnetorheological damper. In this case, the control law

was formulated in order to regulate the vertical acceleration as a measure to keep passengers’

comfort within acceptable limits. They also added a constraint in order to keep the transfer

function form road disturbance to suspension deflection small enough to prevent excessive

suspension bottoming.

©2012 Zapateiro et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Backstepping is a recursive design for systems with nonlinearities not constrained by

linear bounds. The ease with which backstepping incorporated uncertainties and unknown

parameters contributed to its instant popularity and rapid acceptance. Applications of

this technique have been recently reported ranging from robotics to industry or aerospace

[6, 7, 15, 22, 24]. Backstepping control has also been explored in some works about suspension

systems. For example, [26] designed a semiactive backstepping control combined with neural

network (NN) techniques for a system with MR damper. In that work, the controller was

formulated for an experimental platform, whose MR damper was modeled by means of an

artificial neural network. The control input was updated with a backstepping controller. On

the other hand, [16] studied a hybrid control of active suspension systems for quarter-car

models with two-degrees-of-freedom. This hybrid control was implemented by controlling

the linear part with H∞ techniques and the nonlinear part with an adaptive controller based

on backstepping.

Some works on Quantitative Feedback Theory (QFT) applied to the control of suspension

systems can be found in the literature. For instance, [1] analyzed H∞ and QFT controllers

designed for an active suspension system in order to account for the structured and

unstructured uncertainties of the system. As a result, the vertical body acceleration in

QFT-controlled is lower than that of the H∞-controlled and its performance is superior. In

the presence of a hydraulic actuator, the QFT-controlled system performance degrades but

it is still comparable to that of the H∞-control. [28] addressed a study leading to compare

the performance of backstepping and QFT controllers in active and semiactive control of

suspension systems. In this case, the nonlinearities were treated as uncertainties in the model

so that the linear QFT could be applied to the control formulation. As a result, similar

performances between both classes of controllers were achieved.

In this chapter, we will analyze three model-free variable structure controllers for a class of

semiactive vehicle suspension systems equipped with MR dampers. The variable structure

control (VSC) is a control scheme which is well suited for nonlinear dynamic systems [12].

VSC was firstly studied in the early 1950’s for systems represented by single-input high-order

differential equations. A rise of interest became in the 1970’s because the robustness of

VSC were step by step recognized. This control method can make the system completely

insensitive to time-varying parameter uncertainties, multiple delayed state perturbations and

external disturbances [17]. Nowadays, research and development continue to apply VSC

control to a wide variety of engineering areas, such as aeronautics (guidance law of small

bodies [29]), electric and electronic engineering (speed control of an induction motor drive

[3]). By using this kind of controllers, it is possible to take the best out of several different

systems by switching from one to the other. The first strategy that we propose in this work, σ1,

is based on the difference between the body angular velocity and the wheel angular velocity.

The second strategy, σ2, more complex, is based both on the difference between the body

angular velocity and the wheel angular velocity, and on the difference between the body

angular position and the wheel angular position. In this case, the resulting algorithm can

be viewed as the clipped control in [9], but with some differences. Finally, the last strategy

presented is based on a time variable depending on the absolute value of the difference

between the body angular velocity and the wheel angular velocity, and on the difference

between the body angular position and the wheel angular position. The study of the three

138 Advances on Analysis and Control of Vibrations – Theory and Applications



On Variable Structure Control Approaches to Semiactive Control of a Quarter Car System 3

variable structure controllers will be complemented with the comparison of a model-based

controller which has been successfully applied by the authors in other works: backstepping.

As it was mentioned earlier, backstepping is well suited to this kind of problems because it

can account for robustness and nonlinearities. It has been used by the authors to analyze this

particular problem [28] with interesting results.

The chapter is organized as follows. Section 2 presents the mathematical details of the system

to be controlled. In Section 3, the three variable structure controllers are developed. In Section

4, the backstepping control formulation details are outlined. Section 5 shows the numerical

results, and in Section 6, the conclusions are drawn.

2. Suspension system model

The suspension system can be modeled as a quarter car model, as shown in Figure 1. The

system can be viewed as a composition of two subsystems: the tyre subsystem and the

suspension subsystem. The tyre subsystem is represented by the wheel mass mu while the

suspension subsystem consists of a sprung mass, ms, that resembles the vehicle mass. This

way of seeing the system will be useful later on when designing the model-based semi active

controller. The compressibility of the wheel pneumatic is kt, while cs and ks are the damping

and stiffness of the uncontrolled suspension system. The quarter car model equations are

given by:

ms ẋ4 + cs(x4 − x2) + ksx3 − fmr = 0 (1)

mu ẋ2 − cs(x4 − x2)− ksx3 + ktx1 + fmr = 0 (2)

where:

• x1 is the tyre deflection

• x2 is the unsprung mass velocity

• x3 is the suspension deflection

• x4 is the sprung mass velocity.

Taking x1, x2, x3 and x4 as state variables allows us to formulate the following state-space

representation:

• Tyre subsystem:

ẋ1 = x2 − d

ẋ2 = −
kt

mu
x1 + ρu

(3)

• Suspension subsystem:

ẋ3 = −x2 + x4

ẋ4 = −u
(4)

where ρ = ms/mu, d is the velocity of the disturbance input and u is the acceleration input

due to the damping subsystem. The input u is given by:

139On Variable Structure Control Approaches to Semiactive Control of a Quarter Car System
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Figure 1. Quarter car suspension model

u =
1

ms
(ksx3 + cs(x4 − x2)− fmr) (5)

where fmr is the damping force generated by the semiactive device. In this study, we assume

that the semiactive device is magnetorheological (MR) damper. It is modeled according to the

following Bouc-Wen model [19]:

fmr = c0(v)z4 + k0(v)z3 + α(v)ζ (6)

ζ̇ = −δ|z4|ζ|ζ|
n−1 − βz4|ζ|

n + κz4 (7)

where ζ is an evolutionary variable that describes the hysteretic behavior of the damper, z4 is

the piston velocity, z3 is the piston deflection and v is a voltage input that controls the current

that generates the magnetic field; δ, β, κ and n are parameters that are chosen so to adjust

the hysteretic dynamics of the damper; c0(v) = c0a + c0bv represents the voltage-dependent

damping, k0(v) = k0a + k0bv represents the voltage-dependent stiffness and α(v) = αa + αbv

is a voltage-dependent scaling factor.

3. Variable structure controller formulation

Feedback control radically alters the dynamics of a system: it affects its natural frequencies, its

transient response as well as its stability. The MR damper of the quarter-car model considered

in this study is voltage-controlled, so the voltage (v) is updated by a feedback control loop.

It is well known that the force generated by the MR damper cannot be commanded; only the

voltage v applied to the current driver for the MR damper can be directly changed. One of the

first control approaches involving an MR damper was proposed by [9] and called it clipped

optimal control. In this approach, the command voltage takes one of two possible values: zero

or the maximum. This is chosen according to the following algorithm:

v = Vmax H{( fd − fmr) fmr} (8)

=
Vmax

2
[sgn [( fd − fmr) fmr] + 1] , (9)
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where Vmax is the maximum voltage to the current driver associated with saturation of the

magnetic field in the MR damper, H(·) is the Heaviside step function, fd is the desired control

force and fmr is the measured force of the MR damper.

The sign part of equation (9) can be transformed in the following way:

sgn [( fd − fmr) fmr] =

{

1, ( fd − fmr) fmr > 0

−1, ( fd − fmr) fmr < 0

=

{

1, [( fd − fmr) > 0 and fmr > 0] or [( fd − fmr) < 0 and fmr < 0]
−1, [( fd − fmr) > 0 and fmr < 0] or [( fd − fmr) < 0 and fmr > 0]

=

{

1, [ fd > fmr and fmr > 0] or [ fd < fmr and fmr < 0]
−1, [ fd > fmr and fmr < 0] or [ fd < fmr and fmr > 0]

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, fd > fmr and fmr > 0

1, fd < fmr and fmr < 0

−1, fd > fmr and fmr < 0

−1, fd < fmr and fmr > 0

Finally, the full expression in equation (9) can be rewritten as a piecewise function in the

following way:

Vmax

2
[sgn [( fd − fmr) fmr] + 1] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Vmax, fd > fmr and fmr > 0

Vmax, fd < fmr and fmr < 0

0, fd > fmr and fmr < 0

0, fd < fmr and fmr > 0

This algorithm for selecting the command signal is graphically represented in Figure 2. More

precisely, the shadowed area in Figure 2 is the area where fd > fmr and fmr > 0, or fd < fmr

and fmr < 0. Note that in that particular work, they used the voltage as the control signal

because that is the way that current driver can be controlled.

fd

fMR

v = 0

v = 0

v = 0

v = 0

v = Vmax

v = Vmax

Figure 2. Graphical representation of the algorithm in equation (8) for selecting the command signal.

141On Variable Structure Control Approaches to Semiactive Control of a Quarter Car System



6 Will-be-set-by-IN-TECH

In this paper we consider the same idea of changing the voltage. This control signal is

computed according to the following control strategies, computed as a function of the sprung

mass velocity (x4), the unsprung mass velocity (x2), and the suspension deflection (x3):

σ1 : v(x2, x4) =
Vmax

2
[sgn(x4 − x2) + 1] (10)

σ2 : v(x2, x3, x4) =
Vmax

2
[sgn (sgn(x4 − x2) + x3) + 1] (11)

σ3 : v(x2, x4) =
Vmax

2
[sgn(r) + 1],

dr

dt
= −100r|x4 − x2| − 10(x4 − x2) (12)

Variable structure controllers (VSC) are a very large class of robust controllers [10]. The

distinctive feature of VSC is that the structure of the system is intentionally changed according

to an assigned law. This can be obtained by switching on or cutting off feedback loops,

scheduling gains and so forth. By using VSC, it is possible to take the best out of several

different systems (more precisely structures), by switching from one to the other. The control

law defines various regions in the phase space and the controller switches between a structure

and another at the boundary between two different regions according to the control law.

The three strategies presented in this section can be viewed as variable structure controllers,

since the value of the control signal is set to be zero or one, as can be seen in the following

transformations:

σ1 : v(x2, x4) =
Vmax

2
[sgn(x4 − x2) + 1] (13)

=

{

0, if ∆ω < 0,

Vmax, if ∆ω ≥ 0
(14)

σ2 : v(x2, x3, x4) =
Vmax

2
[sgn (sgn(x4 − x2) + x3) + 1] (15)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, if ∆ω < 0, x3 < 1 (region IV),

0, if ∆ω > 0, x3 < −1 (region I),

Vmax, if ∆ω < 0, x3 ≥ 1 (region II),

Vmax, if ∆ω ≥ 0, x3 ≥ −1 (region III)

(16)

σ3 : v(x2, x4) =
Vmax

2
[sgn(r) + 1] (17)

=

{

0, if r < 0,

Vmax, if r ≥ 0
,

dr

dt
= −100r|x4 − x2| − 10(x4 − x2) (18)

where ∆ω = x4 − x2. In Figure 3 we hace depicted the graphical representation of the strategy

σ2 for selecting the command signal.
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∆α

∆ω

I

II

III

IV

1

– 1

v = 0

v = 0

v = 5

v = 5

Figure 3. Graphical representation of the strategy σ2 for selecting the command signal.

Semi-active control have two essential characteristics. The first is that the these devices offer

the adaptability of active control devices without requiring the associated large power sources.

The second is that the device cannot inject energy into the system; hence semi-active control

devices do not have the potential to destabilize (in the bounded input–bounded output sense)

the system [20]. As a consequence, the stability of the closed-loop system is guaranteed.

4. Backstepping controller formulation

In this section we present the formulation of a model-based controller. The objective, as

explained in the Introduction, is to make a comparison between this model-based controller

and the VSC controllers. We will appeal to the backstepping technique that has been

developed in previous works for this kind of systems.The objective is to design an adaptive

backstepping controller to regulate the suspension deflection with the aid of an MR damper

thus providing safety and comfort while on the road. The adaptive backstepping controller

will be designed in such a way that, for a given γ > 0, the state-dependent error variables e1

and e2 (to be defined later) accomplish the following H∞ performance J∞ < 0:

J∞ =
∫

∞

0
(eTRe − γ2wTw)dt (19)

where e = (e1, e2)
T is a vector of controlled signals, R = diag{r1, r2} is a positive definite

matrix and w is an energy-bounded disturbance.

In order to formulate the backstepping controller, the state space model (3) - (4) must be first

written in strict feedback form [14]. Therefore, the following coordinate transformation is

performed [13]:

z1 = x1 +
ρ

ρ + 1
x3

z2 =
1

ρ + 1
x2 +

ρ

ρ + 1
x4

z3 = x3

z4 = −x2 + x4

(20)

The system, represented in the new coordinates, is given by:

143On Variable Structure Control Approaches to Semiactive Control of a Quarter Car System
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• Tyre subsystem:

ż1 = z2 − d

ż2 = −kt[mu(ρ + 1)]−1z1 + ρkt[mu(ρ + 1)2]−1z3
(21)

• Suspension subsystem:

ż3 = z4

ż4 = ktm
−1
u z1 − ktρ[mu(ρ + 1)]−1z3 − (ρ + 1)u

(22)

Substitution of the expression for u (5) into (22) yields:

ż3 =z4

ż4 =ktm
−1
u z1 − ktρ[mu(ρ + 1)]−1z3−

(ρ + 1)m−1
s [ksx3 + cs(x4 − x2)− fmr]

=− [ktmsρ(ρ + 1)−1 + (ρ + 1)ksmu](mums)
−1z3+

ktm
−1
u z1 − (ρ + 1)m−1

s csz4 + (ρ + 1)m−1
s fmr

=di − akz3 − acz4 + a f fmr

(23)

where ak = [ktmsρ(ρ + 1)−1 + (ρ + 1)ksmu](mums)−1, ac = (ρ + 1)m−1
s cs and a f = (ρ +

1)m−1
s ; di = ktm

−1
s z1 reflects the fact that the disturbance enters to the suspension subsystem

through the tyre subsystem.

Assume that ak and ac in (23) are uncertain constant parameters whose estimated values are

âk and âc, respectively. Thus, the errors between the estimates and the actual values are given

by:

ãk = ak − âk (24)

ãc = ac − âc (25)

Let ad = kt [mu(ρ + 1)]−1, an = ρkt [mu(ρ + 1)2]−1 and am = ktm
−1
u . From (21) - (22), it can be

shown that the transfer functions from d(t) and fmr(t) to z1(t) are:

Z1(s)

D(s)
=

−s(s2 + acs + ak)

s4 + acs3 + (ad + ak)s2 + adacs + adak − aman
(26)

Z1(s)

Fmr(s)
=

ana f

s4 + acs3 + (ad + ak)s2 + adacs + adak − aman
(27)

If the poles of the transfer functions (26) and (27) are in the left side of the s plane, then

we can guarantee the bounded input - bounded output (BIBO) stability of Z1(s) for any

bounded input D(s) and Fmr(s). Thus, the disturbance input di(t) in (23) is also bounded.

This boundedness condition will be necessary later in the controller stability condition.

Finally, since di(t) is the only disturbance input to the suspension subsystem, the vector w of

the H∞ performance objective as given in (19) becomes:

J∞ =
∫

∞

0
(eTRe − γ2d2

i )dt (28)
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In order to begin with the adaptive backstepping design, we firstly define the following error

variable and its derivative:

e1 = z3 (29)

ė1 = ż3 = z4 (30)

Now, the following Lyapunov function candidate is chosen:

V1 =
1

2
e2

1 (31)

whose first-order derivative is:

V̇1 = e1 ė1 = e1z4 (32)

Equation (30) can be stabilized with the following virtual control input:

z4d = −r1e1 (33)

ż4d = −r1 ė1 = −r1z4 (34)

where r1 > 0. Now define a second error variable and its derivative:

e2 = z4 − z4d (35)

ė2 = ż4 − ż4d (36)

Therefore,

V̇1 = e2z4 = e1(e2 − r1e1) = e1e2 − r1e2
1 (37)

On the other hand, the derivatives of the errors of the uncertain parameter estimations are

given by:
˙̃ak = − ˙̂ak (38)

˙̃ac = − ˙̂ac (39)

Now, an augmented Lyapunov function candidate is chosen:

V = V1 +
1

2
e2

2 +
1

2rk
ã2

k +
1

2rc
ã2

c (40)

Thus, by using (35) - (39) and the fact that ak = ãk + âk and ac = ãc + âc, the derivative of V

yields:

V̇ =e1 ė1 + e2 ė2 + r−1
k ãk

˙̃ak + r−1
c ãc ˙̃ac

=e1e2 − r1e2
1 + e2di − akz3e2 − acz4e2 + a f fmre2 − r1z4e2 − r−1

k ãk
˙̂ak − r−1

c ãc ȧc

=e1e2 − r1e2
1 + e2di + a f fmre2 − r1z4e2 − r−1

k ãk
˙̂ak − (ãk + âk)z3e2 − (ãc + âc)z4e2 − r−1

c ãc ˙̂ac

=e1e2 − r1e2
1 + e2di − ãk(z3e3 + r−1

k
˙̂ak)− âkz3e2 − ãc(z4e2 + r−1

c
˙̂ac)− âcz4e2 + a f+

fmre2 − r1z4e2

(41)
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Now consider the following adaptation laws:

z3e1 + r−1
k

˙̂ak = 0 (42)

z4e2 + r−1
c

˙̂ac = 0 (43)

Substitution of (42) and (43) into (41) yields:

V̇ = −r1e2
1 + e2di + e2(e1 − âkz3 − âcz4 + a f fmr − r1z4) (44)

By choosing the following control law:

fmr = −
e1 − âkz3 − âcz4 − r1z4 + r2e2 + e2(2γ)−2

a f
(45)

with γ > 0 and r2 > 0, we get:

V̇ =− r1e2
1 + e2di − r2e2

2 − e2
2(2γ)−2

=− r1e2
1 + e2di − r2e2

2 − e2
2(2γ)−2 + γ2d2

i − γ2d2
i

=− r1e2
1 − r2e2

2 + γ2d2
i − (γdi − e2(2γ)−2)2

V̇ ≤− r1e2
1 − r2e2

2 + γ2d2
i

(46)

The objective of guaranteeing global boundedness of trajectories is equivalently expressed as

rendering V̇ negative outside a compact region. As stated earlier, the disturbance input di

is bounded as long as the poles of the transfer functions (26) and (27) are in the left side of

the s plane. When this is the case, the boundedness of the input disturbance di guarantees

the existence of a small compact region D ⊂ R
2 (depending on γ and di itself) such that V̇

is negative outside this set. More precisely, when r1e2
1 + r2e2

2 < γ2d2
i , V̇ is positive and then

the error variables are increasing values. Finally, when the expression r1e2
1 + r2e2

2 is greater

than γ2d2
i , V̇ is then negative. This implies that all the closed-loop trajectories have to remain

bounded, as we wanted to show. Now, under zero initial conditions, from 46 we can write:

∫

∞

0
V̇ dt ≤ −

∫

∞

0
r1e2

1 dt −
∫

∞

0
r2e2

2 dt +
∫

∞

0
γ2d2

i dt (47)

or, equivanlently,

V|t=∞ − V|t=0 ≤ −
∫

∞

0
eTRe dt + γ2

∫

∞

0
d2

i dt (48)

Then, it can be shown that

J∞ =
∫

∞

0
(eTRe − γ2d2

i ) dt ≤ −V|t=∞ ≤ 0 (49)

Thus, the adaptive backstepping controller satisfies both the H∞ performance and the

asymptotic stability of the system.
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The control force given by (45) can be used to drive an actively controlled damper. However,

the fact that semiactive devices cannot inject energy into a system, makes necessary the

modification of this control law in order to implement it with a semiactive damper; that is,

semiactive dampers cannot apply force to the system, only absorb it. There are different ways

to perform this [2, 27]. In this work, we will calculate the MR damper voltage making use of

its mathematical model. Thus, the following control law is proposed:

v =
−e1 − âzz3 + âcz4 + r1z4 − r2e2 − e2(2γ)−2 + a f (c0az4 + k0az3 + αaζ)

a f (c0bz4 + k0bz3 + αbζ)
(50)

provided that a f (c0bz4 + k0bz3 + αbζ) �= 0; otherwise, v = 0.

The same process followed to obtain the control law (45) can be used to demonstrate that the

control law (4) does stabilize the system. Begin by replacing (6) into (44) in order to obtain:

V̇ =− r1e2
1 + e2di + e2[e1 − âkz3 − âcz4 + a f (c0az4 + k0az3 + αaζ)+

a f (c0bz4 + k0bz3 + αbζ)v − r1z4]
(51)

Thus, by replacing the control law of (4) into (51) we also get V̇ ≤ −r1e2
1 − r2e2

2 + γ2d2
i and, as

previously stated, the stability of the system is guaranteed.

Finally, we can write the control law in terms of the state variables as follows:

v =

(

−âc − r1 + r2 + (2γ)−2 + a f c0a

)

x2 +
(

−1 − âz − r1r2 + r1(2γ)−2 + a f k0a

)

x3

−a f c0bx2 + a f k0bx3 + a f c0bx4 + a f αbζ
+

(

ẑc + r1 − r2 − (2γ)−2 + a f c0a

)

x4 + a f αaζ

−a f c0bx2 + a f k0bx3 + a f c0bx4 + a f αbζ

(52)

5. Numerical simulations

In this section we will analyze the performance results obtained form simulations performed

in Matlab/SImulink. The numerical values of the model that we used in this study. Thus:

αa = 332.7 N/m, αb = 1862.5 N·V/m, c0a = 7544.1 N·s/m, c0b = 7127.3 N·s·V/m,

k0a = 11375.7 N/m, k0b = 14435.0 N·V/m, δ = 4209.8 m−2, κ = 10246 and n = 2.

This is a scaled version of the MR damper found in [5]. The parameter values of the

suspension system are [13]: ms=11739 kg, mu=300 kg, ks=252000 N/m, cs=10000 N·s/m and

kt=300000 N/m. In order to facilitate the analysis, we will quantify the performance results

by means of the indices shown in Table 1. Indices J1 - J3 show the ratio between the peak

response of the controlled suspension system (displacement, velocity and acceleration) and

that of the uncontrolled system. Indices J4 - J6 are the normalized ITSE (integral of the time

squared error) signals that indicate how much the displacement, velocity and acceleration

are attenuated compared to the uncontrolled case. Index J7 is the relative maximum control

effort with respect to the weight of the suspension system. Small indices indicate good control

performance. Two scenarios are considered: an uneven road, simulated by random vibrations

and the presence of a bump on the road.
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We assume that the car has laser sensors that allow us to read the position of the sprung

and unsprung masses. Since the velocities are needed for control implementation, these are

obtained by first low-pass filtering the displacement readings and then applying a filter of the

form
s

(λs + 1)q that approximates the derivative of the signal. In this filter, λ is a sufficiently

small constant that can be obtained from the ratio between the two-norm of the second

derivative of the signal and the noise amplitude; q is the order of the filter which should

be at lest equal to 2. Choosing parameters this way, allows for minimizing the error between

the real and the estimated signal derivatives [4].

Index Definition

J1 =
max|x3(t)|cont

max|x3(t)|unc
Norm. peak suspension deflection.

J2 =
max|x4(t)|cont

max|x4(t)|unc
Norm. peak sprung mass velocity.

J3 =
max|ẋ4(t)|cont

max|ẋ4(t)|unc
Norm. peak sprung mass acceleration.

J4 =

∫ T
0 tx2

3cont(t) dt
∫ T

0 tx2
3unc(t) dt

Norm. suspension deflection ITSE.

J5 =

∫ T
0 tx2

4cont(t) dt
∫ T

0 tx2
4unc(t) dt

Norm. sprung mass velocity ITSE.

J6 =

∫ T
0 tẋ2

4cont(t) dt
∫ T

0 tẋ2
4unc(t) dt

Norm. sprung mass acceleration ITSE.

J7 =
max| fmr(t)|

ws
Maximum control effort.

Table 1. Performance indices.

In the first scenario, the unevenness of the road was simulated by random vibration, as shown

in Figure 4. This figure also compares the performance of the three σ controllers. What we can

see for this figure, is that the three VSC controllers perform in a similar way and satisfactorily

control the deflection of the tyre subsystem. In Figure 5, we see the performance of the

same controllers at regulating the suspension deflection. Once again, the three controllers

accomplish the objective in a similar way. This visual observations can be confirmed by

analyzing the performance indices of Table 2. In Figures 6 and 7, we can see a comparison of

the σ3 controller and the backstepping controller. A notable superiority of the VSC controller is

observed over the backstepping controller. It can be due to the fact that this kind of controllers

are more sensitive to the fast-changing dynamics of a signal, in this case, the velocity, which

can make it react faster. The performance indices of Table 2 also show that it is harder for

the backstepping controller to keep the peak acceleration, velocity and displacement under

acceptable limits, despite its control effort is much higher than that of the VSC controllers.
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Figure 4. Uneven road disturbance and tyre subsystem response.
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Figure 5. Uneven road disturbance and tyre subsystem response.
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Figure 6. Uneven road disturbance and tyre subsystem response.
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Figure 7. Uneven road disturbance and car subsystem response.
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Index σ1 σ2 σ3 Backstepping

J1 0.1288 0.1280 0.0993 0.5144

J2 0.1485 0.1488 0.2157 0.9800

J3 0.2205 0.2803 0.2803 1.2586

J4 0.0059 0.0058 0.0053 0.2317

J5 0.0090 0.0089 0.0181 0.5852

J6 0.0189 0.0187 0.0310 0.9615

J7 0.1268 0.1279 0.1471 0.4538

Table 2. Performance indices of the random unevenness disturbance case.

In the second scenario a bump on the road is simulated as seen in Figure 8. In this case,

the VSC controllers have a similar performance and it happened in the previous scenario.

The performance indices of Table 3 confirm this fact. In comparison, the σ3 controller seems

to perform slightly better, specially at reusing the peak response of the suspicion and tyre

deflections as can be seen in Figure 10 and 11 where a comparison between then σ3 and

backstepping controllers is illustrated. These results are in the line than those of the first

scenario. It is worth noting the fact that the VSC controllers perform better with less control

effort.
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Figure 8. Bump on the road disturbance and tyre subsystem response.
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Figure 9. Bump on the road disturbance and tyre subsystem response.

Index σ1 σ2 σ3 Backstepping

J1 0.8317 0.8325 0.4584 0.4271

J2 1.1507 1.1505 1.3430 1.3892

J3 1.1157 1.2623 1.2623 1.3007

J4 0.1605 0.1625 0.2241 0.0703

J5 0.1827 0.1797 0.2681 0.4702

J6 0.4168 0.4113 0.5884 1.0308

J7 0.3613 0.3614 0.4100 0.4431

Table 3. Performance indices of the road bump disturbance case.
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Figure 10. Bump on the road disturbance and tyre subsystem response.
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Figure 11. Bump on the road disturbance and car subsystem response.
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6. Conclusions

In this chapter we presented the problem of the vibration control in vehicles. One model-based

and three variable structure controllers were analyzed and compared in order to study

their performance during typical road disturbances. The performance of the controller

were also analyzed for the particular situation in which the suspension system is made

up of a magnetorheological damper, which is well-known to be a nonlinear device. All

of the controllers performed satisfactorily at regulating the suspension deflection while

keeping the acceleration, velocity and displacement variables within acceptable limits. One

important result obtained in this work was that despite the simplicity of these controllers, they

performed significantly better than the model-based controller. It is to be noted that further

studies -theoretical and experimental- should be performed in order to get a better insight of

the performance of such controllers and the possibilities of being used in real systems.
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