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1. Introduction 

Endovascular Treatment (EVAR) is considered the treatment of choice for the majority of 

Abdominal Aortic Aneurysms (AAA) nowadays, since it demonstrates improved 

perioperative morbidity and aneurysm-related mortality, comparing to conventional open 

repair. However, despite the initial technical success and early discharge of the patient, this 

technique is amenable to early and late complications, the most important of which are the 

endoleaks (ie. recurrence of blood flow detection within the aneurysm sac) accompanied 

sometimes with variable degrees of intrasac pressurization (Georgakarakos et al, 2012a). 

Furthermore, the hemodynamic changes that the endograft sustains during the follow-up 

period make it prone to positional changes with subsequent risk for endograft migration 

and loss of sealing between the endograft and either the aneurysm neck or the iliac fixation 

sites.  

Computer-enhanced geometric modeling and Finite Volume Analysis have been used to 

study the biomechanical behavior of the aortic aneurysms before and after the insertion of 

the endograft device (Georgakarakos et al, 2012b). Numerical modeling of endovascular-

treated AAA is used to determine the stresses and forces developed on AAA sac and 

stent-graft materials in-vivo, estimating hemodynamic parameters, such as the pressure 

and stress  distribution over the main body, the bifurcation, the limbs of a stent-graft or 

the drag and displacement forces predisposing to graft migration. Consequently, the 

study of flow dynamics within aortic endografts holds a fundamental role in the 

delineation of the endograft behavior under pulsatile flow, providing useful information 

for developing and modifying the endograft design and surgical techniques. This chapter 

discusses the aforementioned changes, by using three-dimensional (3D) reconstructed 

endograft model.   
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2. Reconstruction of the AAA endograft model 

Finite Volume Analysis technique has a crucial role in the computational research of 

hemodynamic systems, utilizing small subsections (elements) of 3-dimentional structures 

created by segmentation and meshing. By solving Navier-Stokes equations for all finite 

volumes of the model, Computational flow dynamics (CFD) techniques utilize numerical 

methods and algorithms to analyze problems that involve fluid flows. Furthermore, Fluid 

Structure Interaction (FSI) methods combine fluid and structural equations, solved either 

simultaneously or separately (partitioned approach), in order to determine the flow fields 

and solid body stresses on a deformable model. Most researchers acquire information on the 

3D AAA realistic, complex geometry using patient-specific DICOM data derived from high-

resolution spiral CT or MR angiography (Georgakarakos et al, 2012b). 

Our study group used a reconstructed 3D model of a AAA endograft using commercially 

available appropriate, validated software (MIMICS 13.0, Materialise NV, Leuven, Belgium), 

based on the DICOM images derived from contrast-enhanced high-resolution computed 

tomography. The computational model (Figure1) includes the aortic neck proximal to the 

endograft and the iliac arteries distal to the endograft limbs. A validated Finite Volume 

analysis software ANSYS v 12.1 (Ansys Inc., Canonsburg, PA, USA) was used for 

Computational Fluid Dynamics (CFD). The velocity and pressure waveforms during a 

period of 1.2 s as previously described in a one-dimensional fluid-dynamics model for the 

abdominal aorta (Olufsen et al, 2000 and Li et al, 2005) were used for both models as inlet 

and outlet boundary conditions. Blood was assumed to be non-Newtonian fluid, according 

to the Carreau-Yasuda model, with a density of 1050 kg/m3.  

 

Figure 1. Reconstructed images of the aortic endograft using purpose-developed software.   
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Accordingly, the velocity streamlines and the pressure distribution were calculated over the 

entire surface of the endograft and are demonstrated in 6 distinct time-phases through the 

cardiac cycle (Figure2). For study reasons, the cardiac cycle was dived in six distinct phases, 

namely the late diastole (t1), the accelerating systolic phase (t2), the peak systolic phase (t3), 

the late deceleration (t4), the end-systolic (t5) and the early diastolic phase (t6).  

 

 

 
 

Figure 2. Plot of the flow waveform used for the calculations in our endograft model (left panel). Six 

distinct phases are depicted in each cardiac cycle. t1 depicts the late diastole, t2 the accelerating phase, t3 

represents the peak systolic phase, t4 the late deceleration, t5 depicts the end-systole and t6 the early 

diastolic phase (right panel).   

3. Changes in flow patterns and pressure distribution 

Figures 3-8 depict the flow patterns in the endograft throughout the cardiac cycle. A flow 

disturbance is seen near the inlet zone (panel top-left) during the late diastole, t1 (Figure 3). 

The flow pattern is normalized during the entire systolic phase, ie. t2 to t4 (Figures 4-6) and 

exhibits disturbance again, from the the end-systole t5 early diastole t6 (Figures 7,8). 

Interestingly, there is disturbed flow in the iliac limb unilaterally (left) during the 

decelerating systolic phase (Figure 6), whereas the irregular flow is also transmitted in the 

contralateral (right) iliac limb, during the next time-step (end-systolic phase, t5, Figure 7).  

 

 t1 t2 t3 t4 t5 t6 

Pressure values (mmHg)       

Max 87 167 147 120 104 97 

Min 87 136 136 115 102 96 

Table 1. Maximum and minimum values of pressure in the endograft surface, for the different phases 

of the cardiac cycle. Excessively high values of pressure due to alteration in the iliac limbs geometry 

were excluded (outlier values). 
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Figure 3. The velocity streamlines, as demonstrated for the late diastolic phase (t1).  

 

Figure 4. The velocity streamlines, as demonstrated for the accelerating systolic phase (t2).  
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Figure 5. The velocity streamlines, as demonstrated for the peak systolic phase (t3).  

 

Figure 6. The velocity streamlines, as demonstrated for the decelerating systolic phase (t4).  
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Figure 7. The velocity streamlines, as demonstrated for the end-systolic phase (t5).  

 

Figure 8. The velocity streamlines, as demonstrated for the early diastolic phase (t6).  
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Figure 9. The distribution of pressures across the endograft, as demonstrated for the late diastolic phase 

(t1).  

 

Figure 10. The distribution of pressures across the endograft, as demonstrated for the accelerating 

systolic phase (t2).  
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Figure 11. The distribution of pressures across the endograft, as demonstrated for the peak systolic 

phase (t3).  

 

Figure 12. The distribution of pressures across the endograft, as demonstrated for the decelerating 

systolic phase (t4).  
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 4.  

Figure 13. The distribution of pressures across the endograft, as demonstrated for the end-systolic 

phase (t5).  

 

Figure 14. The distribution of pressures across the endograft, as demonstrated for the early diastolic 

phase (t6).  
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Table 1 depicts the minimum and maximum pressure values along the endograft surface, 

for the different phases of the cardiac cycle (as described above). As depicted in Figures 9-14 

and Table 1, there is a similar, homogenous distribution of the pressure values along the 

different parts of the endograft during the diastolic phase (t6 and t1). However, when it 

comes to the systolic phase (t2 and t4), there is a marked linear decrease of the pressure 

values from the endograft inlet to the iliac limbs (outlet). The greatest pressure value 

difference is marked in the accelerating systolic phase (t2). Interestingly, the highest and 

lowest pressure values are demonstrated in the inlet-main body area and the iliac limbs of 

the endograft, respectively, during the accelerating and peak systolic phase, whereas this 

pressure relation is reversed in the decelerating systolic phase (t4), where the highest values 

are located distally (outflow). Moreover, there seems to be a narrower range of pressure 

distribution in the peak systolic phase (t3). Finally, in the early diastolic phase (t6) there is 

again a reverse in the pressure distribution compared to the early systolic phase, with the 

highest pressure being located in the inflow area of the endograft. 

Figures 15-17 demonstrate the vertical velocity patterns and the secondary flow fields in the 

different parts of the endograft, during the peak systolic and the diastolic phase. The 

bifurcation of the endograft in two distinct outflow tracts (iliac limbs) causes a disturbance 

of flow especially in the secondary flow fields and generation of local vortices mainly in the 

proximal iliac parts (Figure 16), before this marked difference is subsided in the most distal 

iliac outflow parts (Figure 17). This pattern is also met in the diastolic phase, but with a 

greater discrepancy being present in this phase (Figures 15-17). In both iliac limbs there was 

a skewing of the flow towards the inner wall and significant flow separation towards the 

outer wall.   

4. The forces exerted on the endograft surface  

The forces applied on the surface of the endograft are demonstrated in Figures 18-20. The 

forces generated by the pressure are directed mainly vertical to the endograft surface 

(Figure 18) throughout the cardiac cycle. The tangential forces are mainly caused by the 

flow of blood and the boundary layer that is formed near the aortic wall, while their 

direction is depended on the cardiac phase. So, their vector heads forward during the early, 

peak (Figure 19) and late systolic phase, whereas the direction is reversed during the end 

systole (Figures 2 and 20) and late diastole. Notably, the values of the tangential forces are 

lower than the pressure ones by many orders of magnitude. The total sum of the pressure 

and viscous forces acting on the surface of the graft resolving into the x, y and z 

components, determines the drag forces that the endograft is subjected to, making it prone 

to migration.   

5. Discussion 

(CFD) techniques provide a valuable and reliable tool in the study of the hemodynamic 

behavior of the cardiovascular system after therapeutic interventions (Frauenfelder, 2006).  
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Figure 15. Distribution of velocity values in the transverse axis (-z) along ten cross-section of the 

endograft, during the peak systolic phase (left panel) and the diastolic phase (right panel).  
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Figure 16. Distribution of velocity profiles in the secondary flow fields along the transverse axis (-z) in 

the 5 cephalad cross-sections (endograft inlet to proximal thirds of the iliac limbs) of the endograft, 

during the peak systolic (left panel) and the diastolic (right panel) phase.  
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Figure 17. Distribution of velocity profiles in the secondary flow fields along the transverse axis (-z) in 

the 5 caudal cross-sections (proximal to distal thirds of the iliac limbs) of the endograft, during the peak 

systolic (left panel) and the diastolic (right panel) phase.  
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Figure 18. The pressure forces on the endograft bifurcation area (peak systolic phase).   

 

 

Figure 19. The tangential forces on the endograft bifurcation area (peak systolic phase).   
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Figure 20. The tangential forces on the endograft bifurcation area during the end systolic phase, t5).   

The insertion of an endograft causes alterations in the hemodynamic environment of the 

AAA, regarding the pressures and stresses exerted on the AAA sac as well as the flow 

patterns inside the endograft lumen (Molony et al, 2009). There is a reduction in the 

intrasac pressure and the stress values on the sac of the stented AAA, leading to sac 

shrinkage. Chong and How (2004) used flow visualization and laser Doppler anemometry 

to study in vitro the flow patterns within a stent graft in different phases of the cardiac 

cycle. According to their study, the main trunk of the endograft is characterized by 

complex flow patterns with evidence of instability in systolic acceleration phase, 

developing into a number of vortical structures during systolic deceleration. The flow 

phenomena in the iliac limbs are strongly influenced by the geometry and the 

configuration of the limbs (Morris 2006 and Molony, 2008) and any degree of existing 

constriction caused in the iliac limbs. Basically, the flow in both limbs is triphasic, with a 
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large retrograde component in end-systole (Chong and How, 2004) and formation of 

recirculating zones. The profiles are significantly more disturbed in the deceleration phase 

than at maximum velocity (Chong and How, 2004).  

Finally, local geometric factors play a role in the determination of velocity values and flow 

patterns (recirculating zones, flow separation, skewed flow, vortices and Dean flows) with 

the out-of-plane endograft geometry determining greatly the outlet flow rates, flow patterns 

and drag forces (Morris 2006). Extrinsic constriction (due to calcified or stenosed iliac 

vessels) or excessive kinking in the iliac limbs can lead either to thrombosis of the graft 

limbs or altered flow patterns that induce excessive disturbances in shear stresses (not 

shown in our model), leading also to recirculating zones and prolonged transit times of 

platelets with consequent apposition and formation of thrombus in the endografts. The 

latter constitutes a rather common incidental finding, occurring more frequently that 

previously assumed (Wu et al, 2009). Finally, the study and understanding of the 

hemodynamic alterations and the parameters that influence them, could lead to better 

designs of endovascular grafts, in order to eliminate the factors that predispose to endograft 

migration as well as to generation of endoleaks (Figueroa 2009 and 2010, Liffman 2001, 

Mohan 2002).                 

6. Conclusion 

Aortic endografts are subject to hemodynamic alterations that determine the flow patterns 

within the different parts of the endografts and influence the values and distribution of 

pressures and stresses onto their surface during the different phases of the cardiac cycle. 

Certain geometric factors such as the inlet-to-outlet ratio of the graft as well as the out-of-

plane configuration of the main body and iliac limbs have been implicated as major 

determinants of the aforementioned hemodynamic alterations. Computational simulation 

techniques can help towards the understanding of these interactions and help us further 

design better endografts with greater resistance to migration, endoleaks and dislocation of 

modular stent-grafts, all of which are influenced by the hemodynamic environment that 

endografts are exposed to. 
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