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1. Introduction

The dynamics of urban growth are the direct consequence of the actions of individuals, and
public and private organisations, which act to change the urban landscape simultaneously
over space and time. Since previous urban form has a strong influence on the present, a
prime concern of urban planners, spatial scientists and government authorities is to under‐
stand how a city has grown in the past in order to predict the growth of the city in the fu‐
ture. This requires flexible tools that allow planners to examine the impacts and potential
consequences of applying different development policies, strategies and future plans [1].
However, traditional linear, static and top-down models are unable to adequately capture
the processes underlying urban change. The non-linearity of spatial and temporal relation‐
ships and irregular, uncoordinated and uncontrolled local decision-making gives rise to
seemingly coordinated global patterns that define the size and shape of cities in familiar
ways [2-7]. Cities are now increasingly recognized as complex systems and display many of
the characteristic traits of complexity, i.e. non-linearity, self-organization and emergence.
Cellular Automata (CA) offer a modeling framework and a set of techniques for modelling
the dynamic processes and outcomes of self-organizing systems [8-13]. Since the late 1980s
they have demonstrated significant potential benefits for urban modelling through their
simplicity, flexibility and transparency [8, 14-17]. CA are capable of generating complex pat‐
terns in aggregate form by using relatively simple local transition rules, i.e. by recursive de‐
velopment decisions being made at individual cells or sites [2, 15, 18]. However, cities are
also influenced by global factors representing government polices (such as broader social,
economic and technological factors). This has led to a number of hybrid-type urban growth
models, which take into consideration local, regional and global factors [19-22]. When inte‐
grated with other technologies such as GIS and remote sensing, the potential of CA for geo‐
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spatial, temporal and sectoral studies increases significantly through the ability of CA to
utilise physical, environmental, social and economic data in their simulations [23]. For ex‐
ample, remote sensing and GIS can be integrated with CA for providing detailed land use
information as well as information on other characteristics of cities to produce realistic simu‐
lations of urban change [24].

A current challenge facing CA urban growth models is the lack of rigorous calibration pro‐
cedures [21, 25-27]. Progress in the evolution of algorithms, particularly from artificial intel‐
ligence (AI), has, however, created many new options for calibrating these complex models.
For example, [28] suggested that heuristic-based searches using AI would be an effective ap‐
proach for optimising spatial problems, since they offer many advantages for model calibra‐
tion compared to traditional methods. An example of an urban growth CA model calibrated
using AI was developed in [29-31]. They presented an urban planning tool for the city of
Riyadh, Saudi Arabia, which is one of the world’s major cities undergoing rapid develop‐
ment. At the core of the system is a Fuzzy Cellular Urban Growth Model (FCUGM), which
is capable of simulating and predicting the complexities of urban growth. This model was
shown to be capable of replicating the trends and characteristics of an urban environment
during three periods: 1987-1997, 1997-2005 and 1987-2005.

Along with calibration, one of the most significant aspects of any model is to verify, validate
and assess its performance. This is normally undertaken by verifying the model’s output
against the real-world system through evaluation of goodness-of-fit tests. Validation can be
defined as ‘a demonstration that a model within its domain of applicability possesses a satis‐
factory range of accuracy consistent with the intended application of the model’ [32]. In
terms of urban CA models, the validation process refers to the approach by which the per‐
formance of the model is assessed by comparing the simulated map (one generated by the
model) with the observed map (based on ground truth). The observed map should be accu‐
rate and shape the benchmark for comparison. A good performing urban CA model gener‐
ates outcomes that capture the basic features of urban forms between simulated and
observed spatial patterns [1]. Researchers have utilised a combination of different methods
for validating CA models. For example, in [33], thirty-three urban CA models were re‐
viewed and compared using a number of different criteria including the types of validation
method employed. In some cases no validation method was used since the models were
largely hypothetical or idealized, while in other models, a range of different methods were
employed including one or a combination of the following approaches: visual comparison,
confusion matrices [21], statistical measures [18], a fractal index and analysis [8, 21, 34],
landscape metrics [35], spatial statistics, for example, Moran’s I index [8, 25] and structural
measurements such as the Lee-Sallee index [25]. It it clear from the review [33], however,
that there is no consensus on how CA models of urban growth should be validated and re‐
search in this area has not progressed that much [26-27].

The focus of this chapter is on the techniques used to validate the performance of the
FCUGM model; however these approaches are applicable to urban CA models more gener‐
ally. A brief overview of the fuzzy cellular urban growth model (FCUGM) for the city of
Riyadh is first provided. We then present seven different validation metrics including visual
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inspection, accuracy and spatial statistics, metrics for spatial pattern and district structure
detection as well as spatial multi-resolution validation. Results of these methods are given
followed by a discussion of the usefulness of the different validation approaches in relation
to the assessment of the FCUGM.

2. The Fuzzy Cellular Urban Growth Model (FCUGM) for the City of
Riyadh

The Fuzzy Cellular Automata Urban Growth Model (FCUGM) is driven by the following
simple rule of development:

If DP ij
t ≥λ Then Sij

t+1 =Urban,  Otherwise=Non-Urban (1)

where a new urban cell, Sij
t+1 , is created at time t+1 if the cell’s development possibility (DP)

is greater than or equal to a transition threshold parameter, λ, which is determined through
the calibration process. The DP is a function of the development suitability (DSij

t) of a cell
and a stochastic disturbance factor. The development suitability is, in turn, a function of four
driving forces, i.e. transportation (TS F ij

t) , urban agglomeration and attractiveness

(UAAF ij
t) , topographical constraints (TS F ij

t) and a factor that encompasses planning policies

and regulations (PPRF ij
t) :

DS ij
t = f (TSF ij

t ,  UAAF ij
t ,  TCF ij

t ,  PPRF ij
t ) (2)

The four driving forces of urban growth (TSF, UAAF, TCF and PRF) are themselves func‐
tions of a series of fuzzy input variables expressed as follows:

TSF ij
t = f (ALR ij

t ,  AMR ij
t ,  AMJR ij

t ) (3)

UAAF ij
t = f (UD ij

t ,  AECSES ij
t ,  ATC ij

t ) (4)

TCF ij
t = f (Gij

t ,  Aij
t ) (5)

PPRF ij
t = f (PAij

t , EAij
t ) (6)

where the TSF is a function of Accessibility to Local Roads (ALR), Accessibility to Main
Roads  (AMR) and Accessibility  to  Major  Roads  (AMJR);  the  UAAF is  determined by a
combination of Urban Density (UD), Accessibility to Town Centres (ATC) and Accessibili‐
ty to Employment Centres and Socio-Economic Services (AECSES); the TCF is a function of
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Gradient (G) and Altitude (A); and the PPRF takes Planned Areas (PA) and Excluded Areas
(EA) into account. These drivers of urban growth are integrated via a fuzzy rule base, where
the membership functions and the rules are determined through calibration. A fuzzy infer‐
ence engine is used to process the fuzzy rules and produce a fuzzy development suitabili‐
ty score at each cell. These fuzzy values are then defuzzified and used in combination with
the stochastic disturbance factor and the transition threshold to determine whether a giv‐
en cell becomes an area of further urban development. The full details of the model are
provided in [29, 31].

To calibrate the model, a stratified random sample consisting of 60% urban and 40% non-
urban cells was utilised in combination with a genetic algorithm (GA) where a single objec‐
tive function consisting of the mean squared error and the root mean squared error was
employed. The use of these two measures together was designed to penalise model instan‐
ces in which the parameters fell outside of an acceptable range. Nine different model instan‐
ces were developed, which are listed in Table 1. These nine instances were based on
different complexities of fuzzy rule (the modes) and different drivers (the scenarios). Mode 1
included fuzzy rules with only a single driver, e.g. transportation or topography while
modes 2 and 3 had multiple drivers connected by the AND operator in the fuzzy rules. Sce‐
narios considered different combinations of drivers in order to determine how well the dif‐
ferent drivers were able to explain the observed urban development on their own and in
combination. Thus M3-S1 is the most complex of the FCUGM instances. The top three per‐
forming models were M1-S4, M2-S4 and M3-S1, which clearly indicates that all the drivers
are important in explaining urban growth in the city of Riyadh. These three simulations will
be the focus of the validation process in this chapter.

Mode/Scenario Acronym Name of Simulation

Mode 1 – Scenario 1 M1-S1 Transportation

Mode 1 – Scenario 2 M1-S2 Urban density-attractiveness

Mode 1 – Scenario 3 M1-S3 Topography

Mode 1 – Scenario 4 M1-S4 Transportation, urban density-attractiveness and topography

Mode 2 – Scenario 1 M1-S1 Transportation and topography

Mode 2 – Scenario 2 M2-S2 Transportation and urban density-attractiveness

Mode 2 – Scenario 3 M2-S3 Topography and urban density-attractiveness

Mode 2 – Scenario 4 M2-S4 Transportation, urban density-attractiveness and topography

Mode 3 – Scenario 1 M3-S1 Transportation, urban density-attractiveness and topography

Table 1. Modes and scenarios of the FCUGM.

Once calibrated, the FCUGM was used to simulate the Urban Growth Boundary (UGB) in
the city of Riyadh for the following three periods: UGB I (1987–1997), UGB II (1997–2005)
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and UGB I+II (1987–2005) using the calibrated weights and parameters derived from the GA.
Figures 1 to 3 show the simulations for the three time periods respectively for the three top
performing simulations, i.e. M1-S4, M2-S4 and M3-S1. The new urban developments that are
simulated by the model are shown in red while blue cells indicate those areas that have al‐
ready been developed. For UGB I (1987-1997), simulation M1-S4 shows more compact urban
patterns compared with the other two simulations (M2-S4 and M3-S1), where the latter
show more urban development across the peripheral areas, in particular for M3-S1. This
might be attributed to the high weight assigned to the urban density variable for M1-S4 and
to the form of the distance decay effect captured through the membership functions. How‐
ever, the morphology of the simulated urban spatial structure that is located to the north
and north east shows quite some dispersed and scattered development. Generally, develop‐
ment sites are more linked in order to provide necessary infrastructure and service facilities.
However, dispersed development is one of the characteristics of Riyadh’s urban pattern.
Typically, urban sprawl is produced by the three simulations regardless of the overall mac‐
roscopic pattern. This sprawl might be attributed to a lack of implementation of a policy to
limit urban growth, which the government introduced to prevent chaotic development. In
addition, this sprawl mimics the non-continuous or leap-frog pattern of urban growth char‐
acteristic of this period.

Figures 1 to 3 also show that the direction of growth is generally radial, where urban growth
takes place around most of the already developed lands. In particular, most of the growth is
to the south west and to the east of the city, while only moderate growth is simulated in the
top south eastern part. Growth also rarely occurs to the west of the city. The pattern of
growth might be a result of the government’s free grant program. Most of the lands in these
two areas were granted by the government to households with low incomes. Another rea‐
son may be the lower price of this land compared with the high price of land located to the
north of the city. Moreover, moderate growth in the south east of the city could be due to
the concentration of heavy industry in this part of the city and to the low urban environ‐
mental quality due to proximity to industrial zones and the oil refinery. It can also be seen
that there is almost no urban growth simulated to the west of the city, where areas are either
steep or located at higher altitudes, indicating that topographical constraint factors have
confined growth in such areas. Topographical characteristics have also constrained growth
in the south western part of the city, where the steep areas located between the two big ur‐
ban clusters are simulated as non-urban.

In UGB II (1997-2005), the simulated urban pattern contrasts with that shown in UGB I
(1987-1997) where the pattern showed compact development around those areas already de‐
veloped, and dispersed in the outskirts of the city and peripheral areas. During this second
period (UGB II), the simulated pattern followed an in-filling strategy, where most of the de‐
velopment took place within already developed lands and no development occurred be‐
yond the boundary of the developed areas. This can be seen where small simulated clusters
(shown in red) are located within the existing urban areas (shown in blue). This is also an
expected finding, since during this historical period, the planning authority in Riyadh strict‐
ly applied a policy to limit urban growth to avoid further urban sprawl that characterised
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the period UGB I. As a result of this policy, most of the development occurred on vacant
land with the greatest development possibility occurring within existing developed areas.
This particular pattern was simulated by all three model instances.

Figure 1. Model simulations from the FCUGM for the period 1987 – 1997 for the three scenarios: (a) M1-S4; (b) M2-
S4; and (c) M3-S1.
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Figure 2. Model simulations from the FCUGM for the period 1997 – 2005 for the three scenarios: (a) M1-S4; (b) M2-
S4; and (c) M3-S1.

In contrast to the two individual periods (UGB I and UGB II), the simulated urban growth
over the combined period UGB I +II shows a more consistent pattern in terms of trend and
direction of growth. This is not surprising since the simulation is for a period of 18 years,
where more macroscopic urban growth patterns can be identified. The three model simula‐
tions produced a broadly similar direction of urban growth where the highest growth took
place to the east of the city followed by a moderate growth to the south west and south east
and a low growth to the north and south for the reasons noted above. However, there is a
notable variation between the three scenarios in terms of urban morphological pattern. M1-
S4 produced highly compact urban patterns while M2-S4 and M3-S1 both generated more
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dispersed patterns. The patterns produced by M3-S1 contained less noise (i.e. unrealistic
scattered urban lands) compared to M2-S4, which can be clearly viewed in the north eastern
part of the city. However, the non-uniform dispersal of lands, as shown in these simulations,
is one of the characteristics of Riyadh’s historical pattern of urban growth.

Overall the model outputs verify that the model is replicating the main processes and driv‐
ers as would be expected given knowledge of policies and city structure in the past. In the
following sections, more formal methods of model validation are considered.

Figure 3. Model simulations from the FCUGM for the period 1987 – 2005 for the three scenarios: (a) M1-S4; (b) M2-
S4; and (c) M3-S1.
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3. Methods of CA Validation

Seven different methods are described in this chapter; these approaches have all been used
to validate the FCUGM model for the city of Riyadh. These include: visual validation; meas‐
ures of accuracy; urban cell correspondence; the Lee-Sallee index; a spatial pattern measure;
a spatial district measure; and multi-resolution validation. The first method, or visual vali‐
dation, compares the observed results and simulated images by overlaying one image on
top of the other and comparing the patterns qualitatively. Such an approach has been used
in a number of studies to compare the overall spatial distribution and urban patterns of ob‐
served and simulated images, see e.g. [25, 36-39]. Visual comparison by itself may be prone
to bias as it is based on the judgment of the researcher or planner. For this reason, more ob‐
jective methods are required such as those described below. However, visual examination is
still an essential part of the validation process since the human brain is particularly good at
recognising spatial patterns (and highlighting missing ones), which a more automated or
global method would not adequately capture [40].

One of the most common methods for assessing the performance of urban CA models quan‐
titatively is through the calculation of an error or confusion matrix. This approach has been
widely used by several authors to compare simulated results against the actual ones for ur‐
ban CA models [21, 25, 38-39, 41]. The error matrix is a square array, where the rows and
columns represent the number of categories whose classification accuracies are being as‐
sessed. Typically, the columns represent the observed data and the rows indicate the simu‐
lated data. Table 2 shows the error matrix for evaluating the FCUGM where the cells that
are categorized in agreement with their observed data are located along the major diagonal
of the matrix from the upper left to the lower right. These include urban areas that were si‐
mulated and are also observed, i.e. the true urban areas (TU) and areas that are not urban in
both the observed and simulated data (true not urban or TNU). The cells off the diagonal
represent errors that are underestimated (FNU or false non-urban) or overestimated (FU or
false urban) in the simulated image when compared to the observed image.

Observed Image

Urban Non-Urban Overall

Urban TU FNU TU+FNU

Simulated Image Non-Urban FU TNU FU+TNU

Overall TU+FU FNU+TNU TU+FU+TNU+FNU

Table 2. Error matrix of the FCUGM. TU = True Urban, FU = False Urban, TNU = True Non-Urban and FNU = False Non-
Urban.

From this error matrix, the accuracy can be calculated, which assesses the overall perform‐
ance of the model by calculating the proportion of the total number of simulated cells that
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match the corresponding ones in the observed image using Equation 7. In addition the percen‐
tages of agreement and disagreement can be calculated as expressed in Equations 8 and 9:

( ) ( ) ( )Accuracy %    /  TU TNU TU FU FNU TNU= + + + + (7)

( ) ( ) ( )( )Agreement %    /  *100TU TNU TU FU FNU TNU= + + + + (8)

( ) ( ) ( )( )Disagreement %    /  *100FU FNU TU FU FNU TNU= + + + + (9)

However, if the study area includes a large number of non-urban cells and a small number
of urban cells, the accuracy measure might overstate the model performance due to the high
number of non-urban simulated cells that match the non-urban observed ones (i.e. true non-
urban (TNU) in Table 2). Such a situation renders it difficult to differentiate between the true
performances of different simulations as they might yield similarly high values of accuracy.
A validation measure which overcomes this problem is the urban cell correspondence
(UCC), since it considers only the True Urban and False Urban cells from the error matrix, as
outlined in Equation 10:

UCC =  TU
(TU + FU ) (10)

Another problem with the error matrix is that it is not able to assess and estimate the form
and shape of patterns because it is based on independent comparisons between pairs of
cells. Once such measure that does take shape into account and which has been used fre‐
quently for assessing the urban shape produced by CA models is the Lee-Sallee Index (LSI)
[18, 38-39, 42-43]. The LSI is calculated as the ratio of the intersection between the observed
and simulated urban areas against the union of these areas in the two images as follows:

LSI =  ∑ (Sij ∩Oij) /∑ (Sij ∪Oij) (11)

where Sij is a simulated urban cell ij and Oij is an observed urban cell ij .

Another validation measure that considers shape is the spatial pattern measure (SPM). Most
cell-by-cell based analyses like those described above ignore the underlying presence of
neighbourhoods. In the case of the SPM, a cell is regarded as erroneous if the category in the
observed map differs from the category in the simulated map, irrespective of whether the
category is found in the neighbouring cell or nowhere near the cell. In this sense, the SPM
evaluates the performance based on the agreement within a neighbourhood. If a simulated
cell and its corresponding observed urban cell have the same number of adjacent urban
neighbours within a predefined neighbourhood, then the cell in question gets a value of 1,
indicating that this simulated cell and its neighbours have the same simulated spatial pat‐
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tern as the observed one. Finally, the total number of correct cells is summed and compared
against the results generated by the cell-by-cell analysis. In practice, a pre-designed kernel
matrix is moved across the whole study area which simultaneously compares the number of
neighbours for each cell both in the simulated and observed images. When the number of
neighbours (cells) is the same for this particular cell, a value of 1 is assigned to the output
image. This can be expressed mathematically as shown below:

IF  S   O ;  then SPM   1;  otherwise SPM  0ij ij ij ijåW = åW = = (12)

where Ω Sij is the number of simulated urban cells ij within a neighbourhood Ω; and Ω Oij
is the number of observed urban cells ij within a neighbourhood Ω. To calculate this meas‐
ure, a special kernel matrix is designed as a neighbourhood measure to mimic the common
urban block shape in Riyadh. The general urban pattern can be characterised as a grid-iron
pattern. The most common shape and size of urban blocks in the contemporary and future
districts of Riyadh are rectangular shapes of 180m length and 60m width. In the FCUGM
(with a cell size of 20m), this is equivalent to 9 cells in length and 3 cells in width. Thus, a
neighbourhood with a rectangular shape of 180m in length and 60m in width is used to vali‐
date the performance of the model in terms of spatial pattern. The SPM compares the num‐
ber of developed land cells within this neighbourhood shape and size in both the simulated
and observed images.

A measure that captures the spatial district structure (SDS) is also used to validate the struc‐
tural similarity between the simulated and observed urban growth in terms of urban neigh‐
bourhood (Figure 4a). It would also be possible to assess this in terms of urban sub-
neighbourhood (Figure 4b) and urban block (Figure 4c), where the boundaries of these
zones are shown for the city of Riyadh in Figure 4. Figure 5 shows what these structures
look like when zooming into a section of the city. In this chapter, only the spatial structure
of the urban neighbourhood is examined.

Figure 4. The boundaries of three spatial structures in the city of Riyadh: (a) urban neighbourhoods; (b) urban sub-
neighbourhoods; and (c) urban blocks.
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The final validation method considers the effect of spatial scale or resolution on the model
results. The effects of scale have been considered in previous studies of urban growth mod‐
elling by [40, 44-45]. For example, in [40], a multiple-resolution comparison was conducted
between the reference and modelled images by demonstrating a pixel aggregation proce‐
dure by which four adjacent pixels were averaged at increasingly coarser levels of resolu‐
tion. To investigate the influence of spatial resolution on the outputs from the FCUGM
model, a similar multiple-resolution validation experiment was conducted to that of [40].
The model output from simulation M3-S1 over the period UGB I+II and the observed image
for the corresponding period were aggregated from higher to lower levels of spatial resolu‐
tion whereby four neighbouring pixels were averaged at each coarser resolution. Thus, cells
at the next level up had twice the width and height of the previous cell size. The initial cell
size was 20 m and the experiments were conducted for 40, 80, 160, 320 and 640 m pixel sizes.

Figure 5. a) A section of the city of Riyadh with delineations for (b) urban neighbourhood; (c) urban sub-neighbour‐
hood; and (d) an urban block.

4. Results

This section provides the results from the application of the seven validation methods as de‐
scribed in section 3.

4.1. Visual Validation of Urban Growth Patterns

The simulated images were overlaid on the observed patterns of development for each of
the three time periods and for the three model simulations. Figure 6 shows the overlaid out‐
puts for the period UGB I (1987-1997) for M1-S4, M2-S4 and M3-S1 while Figures 7 and 8
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show the same comparison but for UGB II (1997-2005) and UGB I+II (1987-2005) respective‐
ly. In the comparison of the images, four main categories were mapped:

i. non-urban match (non-urban in observation and simulation);

ii. urban match (urban in observation and simulation);

iii. underestimated (urban in observation but non-urban in simulation); and

iv. overestimated (non-urban in the observation but urban in the simulation).

The first two classes indicate that the simulation is correct while the latter two are incorrect.
Two other classes have been added to facilitate the comparison:

i. starting urban (i.e. already developed lands before the year of the simulation); and

ii. agricultural areas.

For the period UGB I (1987 – 1997), the urban development for the three scenarios in most
areas of the city such as north, north east or south west is relatively well estimated (as
shown in red). However, areas located at the immediate edges of boundaries of urbanised
areas are overestimated (as shown in yellow). This is not surprising because those cells are
adjacent to urban land and nearby to attractions, which are more likely to be urban than
non-urban. Although the model was able to simulate the pattern or distribution of the devel‐
oped land of the city reasonably well, it is clear that the FCUGM was not able to reproduce
all of the actual urban development that took place, for example, at the extreme south east‐
ern edge of the city (right-bottom corner of Figure 6, coloured in black), which resulted in an
underestimation of these lands. Additionally, some small clusters at the extreme edge of the
mid-east, west and south west of the city are also underestimated. This underestimation
could be attributed to the fact that these areas are widely scattered from one another and
from the boundaries of the other urbanised areas, and they are located at some distance
from most attractions (e.g. the town centre, developed lands and other services), which in
turn were assigned a low possibility of being developed. Thus these areas would have been
simulated as non-urban. Another possible explanation is misclassification of the satellite im‐
ages during the image processing procedure. However, this underestimation is reasonably
small, indicating that the model was able to capture the majority of chaotic and fragmented
development that occurred during this period.

In contrast to UGB I (1987 – 1997), during the period UGB II (1997 – 2005) (as shown in Figure
7), the correctly estimated urban areas are hard to distinguish and detect, because most of the
developments are in small urbanised clusters located within the boundaries of already devel‐
oped areas. Moreover, this particular period was characterised by significant levels of ‘leap‐
frog’ development, which might explain why most of the areas in the maps are coloured blue
(starting urban) and the urban match that is coloured in red is marginal and scarcely to be
seen. However, M1-S4 and M3-S1 seem to have estimated the urban development reasona‐
bly well. It is very hard to detect any urban matching in the M2-S4 simulation, which might
suggest that the topographical constraints factor can be considered as a significant influence

Validating Spatial Patterns of Urban Growth from a Cellular Automata Model
http://dx.doi.org/10.5772/51708

35



during this period. This is corroborated by the fact that each of the simulations that includ‐
ed this factor (such as M1-S4 and M3-S1) produced better results than M2-S4.

With respect to UGB I+II as shown in Figure 8, the main result of this analysis is that there is
a good visual similarity between the maps, and the simulation results resemble the real city.
It can be noted that urban development is largely estimated by the three simulations where
M3-S1 has estimated most of the urban development followed by M2-S4 and M1-S4. How‐
ever, some clusters of land cells are underestimated, mainly in the peripheral areas, showing
a different shape in comparison with the actual city. This particular area (coloured in black)
is under-estimated highly, moderately and slightly by M1-S4, M2-S4 and M3-S1 respective‐
ly. The locations of these cells are very difficult to model since they are located in a highly
non-linear and chaotic pattern (e.g. they are far from already developed lands, distant from
attractions and services, etc.). Furthermore, it can be noted that M3-S1 was capable of repro‐
ducing such complex features to a large extent. This can be attributed to that fact that in this
particular simulation, the three urban growth driving forces (TSF, UAAF and TCF) are em‐
bedded in each single fuzzy rule, while in M2-S4 and M1-S4 only two and one of these fac‐
tors are embedded, respectively. This explains why M3-S1 performed well over all periods.
It can also be noted that few cells are overestimated compared with the other two periods
(i.e. UGB I, UGB II).

Thus overall, the visual analysis of the simulated images shows that they compare well with
the patterns that actually occurred in Riyadh during these periods for most of the three
simulations, which is a positive reflection of the model’s ability to simulate urban growth in
the past.

4.2. Accuracy Assessment and Spatial Statistical Measures

An accuracy assessment is another commonly used validation method where the first step is
to calculate the error matrix as shown in Table 3 for the three simulations over the three time
periods. It can be seen from Table 3-A that the observed urban development during the peri‐
od UGB I (1987-1997) was about 261,000 cells. The FCUGM simulated around 265,000,
303,000 and 269,000 urban cells in M1-S4, M2-S4 and M3-S4, respectively. Amongst those si‐
mulated cells, about 135,000, 152,000 and 142,000 cells were correctly simulated and match‐
ed the observed image. However, 129,000, 151,000 and 128,000 were overestimated, and
approximately 125,000, 109,000 and 119,000 were underestimated. For the period UGB II
(1997-2005), the results were less good as shown in Table 3-B. The simulated urban cells that
were generated by the simulations M1-S4, M2-S4 and M3-S4 were only 82,000, 10,000 and
108,000 compared with 237,000 observed ones. In contrast, the simulated results for both pe‐
riods together UGB I+II (1987-2005) (Table 3-C) showed an improvement and resulted in a
higher correspondence of urban cells compared with the two preceding periods (UGB I and
UGB II). The urban cells that were correctly matched reached 222,000, 343,000 and 355,000
compared with 464,000 urban observed cells.

From the error matrix, the accuracy measures and the UCC were calculated as shown in Ta‐
ble 4. The LSI is also provided. The results show that the overall accuracy of all simulations
is quite high, ranging between 0.890 for simulation M2-S4 UGB II and 0.937 for scenario M3-
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S1 UGB I+II. However, these high values of accuracy are mainly achieved through the high
matching of non-urban cells, of which there are a very large number in this test area (i.e. it
ranges between 3,250,000 and 3,450,000). This implies the need to use a measure that allows
for better discrimination between the different simulations, i.e. the UCC, which considers
only the matching of the urban cells. Note that the accuracy drops across all simulations, re‐
sulting in 0.053 (lowest) and 0.743 (highest) for M2-S4 during UGB II and M3-S1 during
UGB I+II, respectively. The UCC measure reveals that the FCUGM simulated the urban
growth more accurately over the period UGB I+II (ranging between 0.635 – 0.743) followed
by UGB I (0.500 – 0.525), while over the period UGB II, the model produced the poorest re‐
sults (0.053 – 0.376).

Figure 6. Comparison of the simulated (FCUGM) versus observed cells for the period UGB I (1987 – 1997) for: (a) M1-
S4; (b) M2-S4; and (c) M3-S1.
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Figure 7. Comparison of the simulated (FCUGM) versus observed cells for the period UGB II (1997 – 2005) for: (a) M1-
S4; (b) M2-S4; and (c) M3-S1.

The M3-S1 simulation over all periods yielded the most accurate results compared to the other
two simulations, achieving UCC accuracies of 0.743, 0.525 and 0.376 for the periods UGB I
+II, UGB I and UGB II, respectively. In contrast, M2-S4 produced the poorest performance
across the two periods UGB I and UGB II with a UCC accuracy of 0.500 and 0.053, respective‐
ly, while over the period UGB I+II, this simulation performed better than M1-S4 but worse
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than M3-S1. The M1-S4 simulation produced moderately accurate results with UCC values of
0.635, 0.511 and 0.373 for the three periods UGB I+II, UGB I and UGB II, respectively.

Figure 8. Comparison of the simulated (FCUGM) versus observed cells for the period UGB I+II (1987 – 2005) for: (a)
M1-S4; (b) M2-S4; and (c) M3-S1.

With respect to the agreement between the shape of the simulated and observed images in
the form of the LSI, Clark and Gaydos (1998) reported that the practical accuracy of the LSI
is only around 0.3 while Cheng and Masser (2004) reported values of 0.383 for their model
simulations. However, LSI values of greater than 0.35 were achieved in six out of nine simu‐
lations from the FCUGM, indicating a better performance than other CA urban growth
models. It can also be noted that the LSI and UCC are highly related to one another where a
correlation coefficient of 0.969 was obtained between the two measures for all simulations.
Thus, simulations with high UCC are more likely to achieve high LSI, indicating a consisten‐
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cy in performance and stability between the spatial shape measure and the cell-by-cell accu‐
racy measure.

The accuracy of the LSI produced by the FCUGM was relatively good with the majority
above 0.35. During the period UGB I+II, the model was reasonably good at capturing the
shape of the simulated urban areas with values ranging between 0.375 and 0.602. In contrast,
the poorest LSI was produced for the period UGB II with values falling to between 0.024 and
0.259. The LSI during the period UGB I was acceptable, ranging between 0.347 and 0.364.
The simulation M3-S1 during the period UGB I+II generated the highest shape matching,
whilst simulation M2-S4 over the period UGB II showed the poorest performance.

(a): UGB I Observed

Urban Non-Urban Overall

Urban 135,934 129,948 265,882

M1-S4 Simulated Non-Urban 125,405 3,309,700 3,435,105

Overall 261,339 3,439,648 3,700,987

Observed

Urban Non-Urban Overall

Urban 151,902 151,773 303,675

M2-S4 Simulated Non-Urban 109,437 3,287,875 3,397,312

Overall 261,339 3,439,648 3,700,987

Observed

Urban Non-Urban Overall

Urban 141,904 128,060 269,964

M3-S1 Simulated Non-Urban 119,435 3,311,588 3,431,023

Overall 261,339 3,439,648 3,700,987

(b): UGB II Observed

Urban Non-Urban Overall

Urban 81,630 135,234 216,864

M1-S4 Simulated Non-Urban 155,936 3,328,187 3,484,123

Overall 237,566 3,463,421 3,700,987

Observed

Urban Non-Urban Overall

Urban 10,099 178,113 188,212

M2-S4 Simulated Non-Urban 227,467 3,285,308 3,512,775

Overall 237,566 3,463,421 3,700,987
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Observed

Urban Non-Urban Overall

Urban 108,066 178,113 286,179

M3-S1 Simulated Non-Urban 129,500 3,285,308 3,414,808

Overall 237,566 3,463,421 3,700,987

(c): UGB I+II Observed

Urban Non-Urban Overall

Urban 222,175 127,517 349,692

M1-S4 Simulated Non-Urban 241,992 3,109,303 3,351,295

Overall 464,167 3,236,820 3,700,987

Observed

Urban Non-Urban Overall

Urban 342,960 124,755 467,715

M2-S4 Simulated Non-Urban 121,207 3,112,065 3,233,272

Overall 464,167 3,236,820 3,700,987

Observed

Urban Non-Urban Overall

Urban 355,315 122,649 477,964

M3-S1 Simulated Non-Urban 108,852 3,114,171 3,223,023

Overall 464,167 3,236,820 3,700,987

Table 3. The error matrices for the three FCUGM simulations over the period: (a) UGB I (1987 – 1997); (b) UGB II (1997
– 2005); and (c) UGB I+II (1987 – 2005).

Simulation
Agreement

(%)

Disagreement

(%)
Accuracy UCC LSI

M1-S4 UGB I 93.1 6.9 0.931 0.511 0.347

M2-S4 UGB I 92.9 7.1 0.929 0.500 0.367

M3-S1 UGB I 93.3 6.7 0.933 0.525 0.364

M1-S4 UGB II 91.6 8.4 0.916 0.373 0.259

M2-S4 UGB II 89.0 11.0 0.890 0.053 0.024

M3-S1 UGB II 92.1 7.9 0.921 0.376 0.218

M1-S4 UGB I+II 90.0 10.0 0.900 0.635 0.375

M2-S4 UGB I+II 93.3 6.7 0.933 0.733 0.582

M3-S1 UGB I+II 93.7 6.3 0.937 0.743 0.605

Table 4. Statistical performance of the FCUGM for the three different simulations over the three periods of growth
UGB I (1987 – 1977), UGB II (1997 – 2005) and UGB I+II (1987 – 2005).
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4.3. Spatial Pattern Measure (SPM)

Tables 5 and 6 show the error matrix and statistical indices for the spatial pattern measure
for the three FCUGM simulations over the three time periods. These measures include the
percentage of agreement, disagreement, accuracy, UCC and LSI when considering the un‐
derlying neighbourhood (Equation 12). It can be seen from Tables 5 and 6 that the perform‐
ance of the FCUGM taking the spatial pattern of neighbourhoods into account shows
relatively positive results. For example, the percentage of agreement across all simulations
lies between 88% and 94%. The UCC indicates a very high degree of matching between the
simulated and observed urban lands with the UCC accuracy as high as 0.765 generated by
simulation M3-S1 over the period UGB I+II, and a value of 0.542 generated by simulation
M1-S4 and M2-S4 over the period UGB II. The least satisfactory performance was generated
by M2-S4 during the period UGB II. In terms of the shape index, this measure shows fairly
consistent results similar to the accuracy and the UCC. Those results with high values of
UCC and accuracy also generated high shape agreements similar to the findings in section
4.2 where the underlying neighbourhood was not taken into account.

The performance of the different simulations based on both cell-by-cell and spatial pattern
methods of validation are provided in Figure 9. If the validation measures from applying
the SPM method produced better results than the cell-by-cell ones, this would be under‐
standable since it is extremely difficult to simulate and predict the precise location of urban
lands due to the complexity of the urban system. However, the results in Figure 9 indicate a
high degree of consistency and stability in the model. From this it can be inferred that the
FCUGM has simulated urban growth based on both local and neighbourhood configura‐
tions to a large extent.

Figure 9. Comparison of the FCUGM performance between the cell-by-cell measures and spatial pattern measures for
the different simulations and time periods UGB I (1987 – 1977), UGB II (1997 – 2005) and UGB I+II (1987 – 2005)
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(a) UGB I Observed

Urban Non-Urban Overall

Urban 141,904 128,060 269,964

M1-S4 Simulated Non-Urban 119,435 3,600,558 3,719,993

Overall 261,339 3,728,618 3,989,957

Observed

Urban Non-Urban Overall

Urban 141,902 151,773 293,675

M2-S4 Simulated Non-Urban 119,437 3,611,426 3,730,863

Overall 261,339 3,763,199 4,024,538

Observed

Urban Non-Urban Overall

Urban 135,934 129,948 265,882

M3-S1 Simulated Non-Urban 125,405 3,630,959 3,756,364

Overall 261,339 3,760,907 4,022,246

(b) UGB II Observed

Urban Non-Urban Overall

Urban 81,630 135,234 216,864

M1-S4 Simulated Non-Urban 155,936 3,328,187 3,484,123

Overall 237,566 3,463,421 3,700,987

Observed

Urban Non-Urban Overall

Urban 99 178,113 178,212

M2-S4 Simulated Non-Urban 237,464 3,285,308 3,522,772

Overall 237,563 3,463,421 3,700,984

Observed

Urban Non-Urban Overall

Urban 108,066 178,113 286,179

M3-S1 Simulated Non-Urban 129,500 3,285,308 3,414,808

Overall 237,566 3,463,421 3,700,987

(c) UGB I+II Observed

Urban Non-Urban Overall

Urban 222,175 127,517 349,692

M1-S4 Simulated Non-Urban 241,992 3,393,273 3,635,265
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Overall 464,167 3,520,790 3,984,957

Observed

Urban Non-Urban Overall

Urban 342,960 124,775 467,735

M2-S4 Simulated Non-Urban 121,207 3,401,015 3,522,222

Overall 464,167 3,525,790 3,989,957

Observed

Urban Non-Urban Overall

Urban 355,315 122,649 477,964

M3-S1 Simulated Non-Urban 108,852 3,403,130 3,511,982

Overall 464,167 3,525,779 3,989,946

Table 5. The error matrix for the FCUGM using the spatial pattern measure for the period: (a) UGB I (1987 – 1997); (b)
UGB II (1997 – 2005); and (c) UGB I+II (1987 – 2005).

Simulation
Agreement

(%)

Disagreement

(%)
Accuracy UCC LSI

M1-S4 UGB I 93.7 6.3 0.937 0.542 0.364

M2-S4 UGB I 93.2 6.8 0.932 0.542 0.343

M3-S1 UGB I 93.6 6.4 0.936 0.520 0.347

M1-S4 UGB II 92.1 7.9 0.921 0.343 0.218

M2-S4 UGB II 88.7 11.3 0.887 0.004 0.002

M3-S1 UGB II 91.6 8.4 0.916 0.454 0.259

M1-S4 UGB I+II 90.2 9.8 0.902 0.478 0.375

M2-S4 UGB I+II 93.8 6.2 0.938 0.738 0.582

M3-S1 UGB I+II 94.1 5.9 0.941 0.765 0.605

Table 6. Statistical performance of the spatial pattern measure for three FCUGM simulations and three time periods:
UGB I (1987 – 1977), UGB II (1997 – 2005) and UGB I+II (1987 – 2005).

4.4. Spatial District Structural Measure

Figure 10 presents the results of the spatial structure indicator, which plots the number of
developed areas in each district against the observed ones for the city of Riyadh over the
three periods UGB I, II and I+II producing a profile of development by district ID. During
the periods UGB I+II and UGB I, the simulation results generated similar patterns to the ob‐
served while, in contrast, the simulation results over the period UGB II underestimated
large areas for districts with IDs between 47-50, 75-90 and 110-150.
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With respect to the simulations, the model results generated from simulations M2-S4 and
M3-S1 show good matching with the observed data, while M1-S4 moderately underestimat‐
ed some actual developed areas. During the period UGB II, simulation M3-S1 performed
better than the other two simulations (M1-S4 and M3-S1), while over the period UGB I, the
three simulations produced similar moderate levels of urban matching.

Figure 10. The development profiles by the districts in Riyadh for (a) UGB I (1987 – 1977); (b) UGB II (1997 – 2005);
and (c) UGB I+II (1987 – 2005).
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4.5. Spatial Multi-Resolution Validation

Table 7 shows the error matrix for the FCUGM for simulation M3-S1 over the period UGB I
+II (1987 – 2005) at the original and five increasingly coarser spatial resolutions while Table 8
presents the statistical indicators derived from the error matrix.

Cell Size Observed

Urban Non-Urban Overall

Urban 355,315 122,649 477,964

20 (Original) Simulated Non-Urban 108,852 3,114,171 3,223,023

Overall 464,167 3,236,820 3,700,987

Observed

Urban Non-Urban Overall

Urban 144,635 33,206 177,841

40 Simulated Non-Urban 27,264 890,363 917,627

Overall 171,899 923,569 1,095,468

Observed

Urban Non-Urban Overall

Urban 361,127 8,430 369,557

80 Simulated Non-Urban 6,738 222,551 229,289

Overall 367,865 230,981 598,846

Observed

Urban Non-Urban Overall

Urban 9,120 2,045 11,165

160 Simulated Non-Urban 1,721 55,577 57,298

Overall 10,841 57,622 68,463

Observed

Urban Non-Urban Overall

Urban 2,269 538 2,807

320 Simulated Non-Urban 380 13,933 14,313

Overall 2,649 14,471 17,120

Observed

Urban Non-Urban Overall

Urban 579 137 716

640 Simulated Non-Urban 104 3,459 3,563

Overall 683 3,596 4,279

Table 7. The error matrix of the FCUGM for simulation M3-S1 over the period UGB I+II (1987 – 2005) at the original
and five coarser spatial resolutions.
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Cell Size (m) Agreement (%) Disagreement (%) Accuracy UCC LSI

20 93.744 6.256 0.937 0.743 0.605

40 94.454 5.455 0.944 0.841 0.705

80 97.467 2.543 0.974 0.981 0.959

160 94.499 6.251 0.944 0.841 0.707

320 94.637 5.363 0.946 0.856 0.711

640 94.367 5.633 0.943 0.847 0.706

Table 8. Statistical performance of the FCUGM for simulation M3-S1 over the period UGB I+II (1987 – 2005) at the
original and five coarser spatial resolutions

The results show that there are improvements to all the measures reported in Table 8 as the
cell size increases from 20 m to a higher resolution. However, some of these improvements
are very small and they remain relatively stable as the resolution continues to increase. For
example, the accuracy at a 20m resolution is 93.7%, while accuracies at higher resolutions
are all around 94%. The only exception is at 80 m where the performance according to all
measures is the highest. In terms of urban cell matching, the lowest performance (0.841) was
found at 40 and 160 m while moderate UCC accuracies (0.856 and 0.847) were found at spa‐
tial resolutions of 320 and 640 m respectively. Thus, the UCC does not appear to improve
very much with a coarser spatial resolution and is likewise quite stable at higher resolutions.
With respect to matching the shape between the output of the model and the actual urban
image, the LSI also indicates similar values at the higher resolutions with the exceptional
performance at a resolution of 80 m. Overall the results suggest that the simulated urban im‐
ages produced by the FCUGM are not that sensitive to spatial resolution, which indicates
that a significant feature of the model is its stability and consistency of accuracy over vari‐
ous cell sizes.

5. Discussion and Conclusions

Simulating the main processes and drivers of urban growth is a challenging area; research‐
ers are increasingly turning to individual-based models to handle the complexity of these
systems. To have any confidence in the outputs of these models, rigorous calibration and
validation tests need to be applied. Within this chapter, a series of different measures were
used to validate the FCUGM, a complex CA model, for the city of Riyadh. While no one val‐
idation method was found to ‘outperform’ the others, there was great benefit in using a
combination of several approaches. Three different simulations of the FCUGM applied to
three different time periods of urban growth were considered. It is clear from the results that
the characteristics and patterns of urban development over a particular time period have a
large influence on the performance of the model and the resulting accuracy of a given simu‐
lation. For example, over UGB II, urban development has mainly followed a pattern of infill‐
ing of urban growth, i.e. the non-urban areas surrounded by urban areas were converted to
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urban, while very limited development took place on the margins or fringe areas of the city.
This type of development exhibits a highly non-linear pattern, where the new potential de‐
veloped land occurs in very small clusters that are surrounded by very large urban clusters.
Consequently, the simulation results over this period were the least satisfactory when com‐
pared with the other two time periods. It is worth noting that this pattern was generated as
a result of applying the urban growth limit regulations (as advocated by the planning local
authority of Riyadh) to prevent urban sprawl. The urban growth pattern over the periods
UGB I and UGB I+II can be characterised by a pattern of edge-expansion, where the newly
developed urban areas spread out from the fringes or margins of existing urban patches.
This feature was modeled in a satisfactory manner during these two periods of growth.

Similarly, the characteristics of the simulation are another factor that can have a significant
impact on the results, which was clearly supported by consistency across the different vali‐
dation measures when examining the three simulations, i.e. simulation M3-S1 produced the
best spatial simulation over all of the periods followed by M1-S4 and M2-S4. It is worth not‐
ing that the three urban growth factors, i.e. transportation, urban density and attractiveness,
and topographical constraints, were part of all three simulations M1-S4, M2-S4 and M3-S1.
However, the difference between these model instances has to do with the form of the fuzzy
rules and how many factors are combined in each rule. M1-S4 embeds only one factor, M2-
S4 embeds two factors and M3-S1 combines all three factors in each fuzzy rule. Embedding
all factors into the fuzzy rules and combining these via the AND operator appears to have
produced the best performing model. However, M1-S4, with only one factor per fuzzy rule,
generally outperformed M2-S4 with two factors in each rule but containing all three factors
in the model with more rules needed to capture all the possible pairs of factors. Perhaps re‐
stricting the model to rules with only two factors produced a model that was actually more
complex than the simple M1-S4 and even the M3-S1 simulation, but less able to capture ur‐
ban growth as adequately.

Overall there was consistency between the measures regarding which model instance per‐
formed better and for which growth periods. The visual inspection provided an overall
qualitative assessment that would not have been possible using any of the quantitative
measures and is therefore always recommended as a method of model validation. The accu‐
racy measures are very sensitive to the number of non-urban cells and should mostly likely
not be used or reported in conjunction with the UCC, which took only urban cells into ac‐
count. This measure provides a much better assessment of model performance. The meas‐
ures that took shape or underlying neighbourhood into account are also valuable. In this
case, they provided a consistent message regarding model performance but they could help
to identify models that are good global predictors but are not spatially or locally very good.
Finally the analysis at multiple resolutions provides a good indication of model stability
across spatial scales and should be implemented as a minimum measure of validation as ad‐
vocated in [40].

While the validation techniques used in this work provided a comprehensive assessment of
the model outputs, there are other techniques available, e.g. fractal dimensional analysis [34,
46]. However, this approach has limitations, e.g. two maps that seem different may have
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identical fractal dimensions. Thus, this measure tells us very little about how similar the two
maps may be in terms of local structures. Although the approach reflects how much space is
filled correctly across a range of scales, it does not seem to be valid when dealing with non-
urban situations [1]. However, other approaches involving comparison with null models re‐
quire further investigation [40]. What remains clear from this study and the current state of
validation approaches in the CA urban modelling literature is that there is no one best meth‐
od or set of approaches available for validating CA urban growth models. Many different
methods are available and the best approach appears to be validation using multiple meas‐
ures. Ultimately, these measures must be linked to confidence in the model performance
and the ability to simulate future growth especially when they move from an academic and
experimental environment to real world applications by planners.
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