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1. Introduction 

Material’s internal structure knowledge is highly relevant to improve quality indexes [1]. 

For example, the exact information of the internal structure of a wood log or lumber such as 

density and internal defects is an important economic advantage (see [2]). Internal 

characteristics of materials have been studied with different non-destructive techniques, 

including ultrasound [3], microwaves [4-7,8], gamma rays, X-rays, nuclear magnetic 

resonance and, lately, artificial vision techniques [9]. X-rays have been used to examine the 

internal characteristics of many materials [10-13].  

In the wood industry, some applications have been found that allow the recognition of 

different types of defects of the raw material [14,15]. Methods for measuring moisture [16-

18] have also been developed. Some works have been presented related to knot detection 

[19,20]. Recently, several approaches have been proposed in the literature along these lines 

of research; for example in the detection of wood defects [21,22], and more specifically to 

detect tree-ring knots in wood [23]. However, automatic defect recognition in the 

manufacture process is ever more necessary and fundamental.  

An X-ray computerized tomography reflects variations on the density of an object or body. 

X-ray sensors reveal the shape of a log below the bark, allowing the detection of 

macroscopic and microscopic aspects. The latter favors its application in the wood industry, 

for example Figure 1 shows images of X-ray tomography on wood log. In these illustrations 

can be clearly seen internal constitutions such as knots and knotty cylinder: a) wood log, b) 

X-ray computed tomography, c) and d) images of two cuts. 

The current work is focused on the visual inspection of wood in order to automatically 

detect classical defects such as knots and knotty cylinders. The proposed approach is based 

on the use of simulated annealing in deformable contours and X-ray tomography. The 
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remainder of the manuscript is organized as follow. Firstly, the deformable contour 

technique, which is used to represent detected defect, is presented. Then, Section 3 

introduces the simulated annealing-based optimization that is used to obtain an accurate 

description of wood’s defect. Experimental results and discussions are given in Section 4. 

Finally, conclusions and future works are provided in Section 5. 

 

Figure 1. X-ray tomography process of wood log. 

2. The deformable contour  

A deformable contour or snake [24] is a parametric curve of the type: 

 = ,  (1) 

where x(s) and y(s) are coordinates along the contour and 0,1s    . These contours are 

influenced by internal and external forces and forces typically related to the gradient of the 

intensity of the image, mathematically: 

=  (2)

where: 

(a) (b)

(d)(c)
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, = shape energy measurement of external constraints either from higher level shape 

information or user applied energy. = − ‖∇ ‖  

The internal energy,

 

intE  , with alpha and beta parameters, controls the tension and rigidity of 

the contour;

 

extE  represents measures or external considerations with respect to the shape of 

the contour; and imgE  is the force related to the gradient of the image given a Gaussian-type 

convolution filter. The contour is initially located near the object to be segmented in the image. 

Then, the attraction and repulsion forces, generated by internal, external image forces, deform 

the contour until surrounds the object; thereby isolating the object with respect to the overall 

image. Minimizing the energy equation allows the final solution of the contour (see Fig. 2). 

 

Figure 2. Evolution of a deformable contour. 

Figure 3 presents a tomographic image of a log; Fig. 3(a) shows the tomographic image 

itself, in which two knots, and the appearance of a third knot, can clearly be seen at the 

bottom of the image; Fig. 3(b) shows the enlarged sector of the image corresponding to a 

particular knot. Figure 3(c) represents the gradient of the image; the most intense points 

represent the greatest values of the gradient. These forces guide the contour around the knot 

in order to completely isolate it, as shown in Fig. 3(d). One of the problems to confront is to 

identify, given the energy function and initial contour, the location of each new point of the 

contour. This can be done with different search algorithms. 

The deformable contour presented in Fig. 3(d) capture the knot’s shape present in the image 

but also some inaccuracies due to noisy date. Actually, these inaccuracies can be due to 

noise or distracter points; both points distort the contour by attracting or repulsing it (Fig. 

4). This is the case of tomography X-ray images in which other objects or variation in object 

density (e.g., other knots or water saturation in wood pieces) artificially loses the form of the 

objects to detect, provoking by this influence, and a large error in segmentation. 



 
Simulated Annealing – Advances, Applications and Hybridizations 94 

 

Figure 3. (a) Tomographic image; (b) knot (enlargement); (c) gradient of the image; (d) segmentation 

through a deformable contour. 

For example, a tomography image with distinct singularities or objects can be appreciated in 

Fig. 5. In a) and b), the tomography with low humidity is presented, involving very clear 

and easy-to-segment images; however, in c) and d) an image with a very high humidity, can 

be appreciated. Since it is not homogeneously distributed, the object to be segmented can be 

deformed. 

Several techniques have been employed to improve these aspects, like characteristic 

extraction techniques and improvements in the energy function. However, when there is a 

prior-knowledge about the objects to detect, such as in the case of well-defined objects and 

with known forms and characteristics, this information can be incorporated into the energy 

function. Some approaches, like Deformable Templates, use templates defined a priori and 

transform the deformation problem to a template adjustment problem. However, even 

though this produces good results, it suffers from the rigidity due to the templates.  

Besides incorporating more information in the energy function, for the case of images of 

nodes, can significantly improve the quality of final contours. Hence, the final segmentation 

can be improved by using methods that allow the contour freely explore neighborhood 

areas in the stage of evolution. The latter makes the simulated annealing, an ideal candidate 

for solving this type of problems. 

(a) (b)

(d)(c)
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Figure 4. Deformable contour and distracter points; (a) original contour; (b) final contour; (c) original 

contour with distracter point; and (d) final contour with distracter point. 

3. Simulated Annealing 

Simulated annealing (SA) is a stochastic optimization technique introduced by Kirkpatrick [25]. 

This algorithm begins by selecting an initial solution and later generating a new state, randomly 

generating a new solution in the neighbourhood of the current solution; this is called a 

neighbour solution. This new state is evaluated and compared with the previous solution. If the 

solution from the new state is better than the previous one, it is accepted; but if it is not, it is 

accepted or rejected with some probability. The probability of accepting a new state is given by: 

 
∆ /  (3) 

with: E  : Difference between the present and the candidate solutions 

 T: Temperature 

 R: Random uniform number between [0,1] 

E  reflects the change in the objective function and T is the current temperature. The way 

how the temperature decreases along the algorithm is commonly known as the Cooling 

Schedule and several types of cooling can be found in the literature as well as stopping 

criterion of the algorithm.  
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Figure 5. X-ray tomography of de wood log. 

Several implementations and variations of SA can be found in the literature: Threshold 

Accepting (TA), [26]; Boltzmann Annealing (BA), [27]; Simulated Quelching (SQ), [27]; Fast 

annealing (FA), [27] among others. The latest approaches, SQ and FA, are mainly focused on 

speeding up the searching for the right solution, which is one of the main drawbacks of BA. 

In the current work a classical simulated annealing algorithm is used. A Bolztman 

distribution (BA) is assumed and consequently, a logarithmic cooling schedule is used: T(k) 

=T0/ln k. It should be noticed that since the searching space of our application is not too big, 

the slowness problem of the method is not relevant. Figure 6 presents the pseudo-code of 

the algorithm used in the current work. 

The ability to accept poor solutions early in the evolution of a deformable contour is a 

powerful tool to explore complex areas of the image and get better final solutions. Then, SA 

provides a method of local evolution of each of the points of a contour, allowing the objects 

in a target to be more accurately represented.  

For the case of the images obtained by X-ray computed tomography applied to wood, unlike 

the steepest descent method that provides a global search method, there are other methods 

that are based on a local view to find a global minimum. In the current work we propose to 

use a method based on SA, which is based on a local view, and in this case, local portions of  

(a) (b)

(c) (d)



 
Simulated Annealing: A Novel Application of Image Processing in the Wood Area 97 

 

Figure 6. Simulated Annealing Algorithm used in the current work 

the contour, to find a global minimum of the energy function. SA explores the possibilities in 

a local environment of the contour and it evolves in the direction of minimum energy. The 

method initially considers the generation of a contour in the 2D image space by using a given 

number of vertices. A neighborhood patch of nxn pixels is created for every pixel in the 

contour. Then, in that neighborhood a new candidate vertex is selected by evaluating it 

according to the energy function; the acceptance of this new vertex will depend on criteria 

such as the number of iterations, number of acceptances and the probability of “bad solution” 

acceptance according to the temperature. Additionally, a criterion for the elimination and 

creation of new vertices is used. This criterion is based on the distance between the vertices in 

the contour and allows a homogeneous distribution through the whole contour. Once all the 

vertices in the contour have been checked for a given temperature Ti (Fig. 6) the criterion for 

elimination and creation is applied. A vertex is eliminated in case the distance to its neighbor 

is smaller than a minimum distance (dmin). Similarly, a vertex is created in case the distance 

between two vertices is higher than a maximum allowed distance (dmax). Figure 7 shows an 

example where a neighborhood of 3x3 pixels is considered  

Figure 8 shows a deformable contour applied to a knot in a X-ray tomography, the contour 

near to the object to be segmented is attracted and deformed by the force of the image until 

the contour completely surrounds the object. The forces coming from the gradient of the 

images guide the contour until it is located around the object’s borders. In Fig. 8, we can see 

the evolution of the contour for the segmentation of knots in Pinus radiata wood. We can see 

that this method can be strongly influenced by other objects in the image, or by points of 

intensities not related to the object, producing a poor segmentation of the defect.  
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Figure 7. Illustration of a contour evolution for a neighborhood patch of 3x3 pixels. For every contour 

vertex a new candidate vertex is created and accepted according to a set of user defined parameters. 

 

Figure 8. Evolution of a deformable contour: (a) initial image; (b) and (c) initial contour; (d) final contour. 

In general, the tomography of logs show the existence of the distortions in the shape of the 

knots and forces of attraction in other regions of the contour not associated with the knot (in 

this case, growth rings) and in zones or points that influence the contour, thereby causing a 

poor final segmentation. Figure 9(a) and (b) present a tomographic image of a wood log; an 

enlargement of a knot is presented in Fig. 9(c); the corresponding gradient image is depicted 

in Fig. 9(d). Note that in Fig. 9(c), the most intense points represent the greatest values of the 

(a) (b)

(c) (d)
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gradient. These forces guide the contour around the knot in order to completely isolate it, 

but not all are related to force the knot. The latter is one of the problems to be properly 

solved by the segmentation methods. 

 

Figure 9. (a) and (b) Tomographic image of a knot, (c) knot (enlargement), (d) gradient of the image. 

4. Result and discussion 

According to the above description and using the energy functions described in (2), we 

proceeded to analyse the images from the X-ray computerized topographies of logs with 

different characteristics. To carry out these experiments, we used discreet versions of the 

energy functions and a local optimization algorithm based on the greedy algorithm and 

another based on classic Boltzmann Annealing with T0=1000. The tests were carried out with 

topographies of various logs using a medical scanner. In total, 90 images were analysed. The 

most relevant results are shown in the following figures. 

Figure 10 shows a sequence of images revealing the evolution of the knots inside a log. On 

the left, we can see the images of the complete log and, on the right, an enlargement of the 

image corresponding to a single knot. Figure 11 shows the situation of a knot that appears to 

be an isolated object in the image: Fig. 11(a) shows the result of the segmentation using the 

greedy algorithm; and Fig. 11(b) presents the result using SA. In both cases, the 

segmentation gives good results; the contour becomes deformed around the knot, isolating 

(a) (b)

(c) (d)
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it completely. It should be noted here that, in this case, the knot in the image appears to be 

totally isolated and there are no objects that distort the contour deformation. Figure 12 

presents the result of the segmentation in a case in which the knots are confused with the 

growth rings: Fig. 12(a) shows the result when the greedy algorithm is used; and Fig. 12(b) 

depicts the result with SA. In this case, a considerable difference can be appreciated between 

the two methods. The energy gradients generated by the image of the growth rings tend to 

move the contour away from the knot. However, with SA, due to its random exploration 

characteristic, in general it tends to better segment the knot. In Fig. 13, the situation is more  

 

Figure 10. Tomography of a log; (left) transversal cuts; (right) enlarged image. 

(a) (b)

(c) (d)

(e) (f)
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critical. In these images the knots are merged with the growth rings; in fact, the knot is only 

partially visible in the tomographic image, and it appears to be an object with different 

geometric characteristics than those visible in the previous images. Figure 13(a) shows the 

result of the evolution of the contour with the greedy algorithm; in this case the algorithm 

clearly does not surround the knot correctly and the result of the segmentation is extremely 

poor. Nonetheless, in Fig. 13(b), with SA and thanks to a wider exploration, the general 

result is perceptibly better. 

As we can see in the figures presented above, in some situations the images obtained by X-

ray computerized topographies facilitate the segmentation. Nevertheless, in other situations, 

the segmentation is seriously complicated by confusion with other objects in the image. In 

particular, growth rings and other objects distract the contours. In such cases, a classical 

optimization algorithm such as the greedy algorithm does not provide good results, 

principally due to the tendency of local minima. However, SA provides a more robust 

method for presenting better results in these situations. 

 

Figure 11. Evolution of an initial contour around an isolated knot; (a) greedy algorithm; (b) simulated 

annealing algorithm. 

 

Figure 12. Evolution of an initial contour around a knot with interference from growth rings; (a) greedy 

algorithm; (b) simulated annealing algorithm. 

(a) (b)

(a) (b)
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Figure 13. Evolution of an initial contour around a knot with interference from growth rings; (a) greedy 

algorithm; (b) simulated annealing algorithm 

5. Conclusions 

From the experimental results presented above, we can conclude that the proposed method 

is a very good alternative for knot segmentation. The use of SA allows much more precise 

segmentation of knots with greater irregularities in the images. Nonetheless, the initial 

position of the deformable contour is of vital importance for a good identification. We can 

also use the results obtained to infer that both excessive humidity content in the logs and 

growth rings present inconveniences. The latter presents a great challenge since the knot 

shows up in the images obtained with X-rays both in isolation and confused with other 

objects. In the second case, additional information, for example morphological information 

on the knots, can be incorporated into the contour’s energy function that describes the force 

of the image, offering a very good alternative. The cases examined correspond to 

segmentation by X-ray computerized tomography for logs having distortions mainly due to 

their storage; this causes the density of the material to increase, which then has an effect on 

the images. This case is of great interest for the wood industry. However, this technique can 

also be used in other situations such as the study of other defects in logs. The authors are 

currently developing 3D techniques and a way to reduce the method’s computerization 

costs that was not considered in this first study. 
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