
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322416778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 1

A Petri Net-Based Approach to the Quantification

of Data Center Dependability

Gustavo Callou, Paulo Maciel, Dietmar Tutsch, Julian Araújo,
João Ferreira and Rafael Souza

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/47829

1. Introduction

Data center availability and reliability have accomplished greater concern due to increased
dependence on Internet services (e.g., Cloud computing paradigm, social networks and
e-commerce). For companies that heavily depend on the Internet for their operations, service
outages can be very expensive, easily running into millions of dollars per hour [15]. A widely
used design principle in fault-tolerance is to introduce redundancy to enhance availability.
However, since redundancy leads to additional use of resources and energy, it is expected to
have a negative impact on sustainability and the associated cost.

Data center designers need to verify several trade-offs and select the feasible solution
considering dependability metrics. In this context, formal models (e.g., Stochastic Petri nets
and Reliability Block Diagrams) are important to provide estimates before implementing the
data center system. Additionally, a growing concern of data center designers is related to the
identification of components that may cause system failure as well as systems parts that must
be improved before implementing the architecture.

In this work, we propose a set of formal models for quantifying dependability metrics for data
center power infrastructures. The adopted approach takes into account a hybrid modeling
technique that considers the advantages of both stochastic Petri nets (SPN) [22] and reliability
block diagrams (RBD) [10] to evaluate system dependability. An integrated environment,
namely, ASTRO [20] has been developed as one of the results of this work to automate
dependability evaluation of data center architectures.

2. Preliminaries

This section briefly touches some fundamental concepts as a basis for a better understanding
of this work.

©2012 Callou et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 14

2 Petri Nets

2.1. Petri nets

Petri nets (PN) were introduced in 1962 by the PhD dissertation of Carl Adams Petri [16],
at Technical University of Darmstandt, Germany. The original theory was developed as an
approach to model and analyze communication systems. Petri Nets (PNs) [14] are a graphic
and mathematical modeling tool that can be applied in several types of systems and allow
the modeling of parallel, concurrent, asynchronous and non-deterministic systems. Since its
seminal work, many representations and extensions have been proposed for allowing more
concise descriptions and for representing systems feature not observed on the early models.
Thus, the simple Petri net has subsequently been adapted and extended in several directions,
in which timed, stochastic, high-level, object-oriented and coloured nets are a few examples
of the proposed extensions.

2.2. Place-Transition nets

Place/Transition Petri nets are one of the most prominent and best studied class of Petri nets,
and it is sometimes called just by Petri net (PN). A marked Place/Transition Petri net is a
bipartite directed graph, usually defined as follows:

Definition 2.1. (Petri net) A Petri net [14] is a 5-tuple:

PN = (P, T, F, W, M0)

where:

1. P = {p1, p2, ..., pm} is a finite set of places;

2. T = {t1, t2, ..., tn} is a finite set of transitions;

3. F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation);

4. W : F →{1, 2, 3, ...} is a weight function;

5. M0 : P → {0, 1, 2, 3, ...} is the initial marking;

This class of Petri net has two kinds of nodes, called places (P) represented by circles and
transitions (T) represented by bars, such that P ∩ T = and P∪ T �= . Figure 1 depicts the basic
elements of a simple PN. The set of arcs F is used to denote the places connected to a transition
(and vice-versa). W is a weight function for the set of arcs. In this case, each arc is said to have
multiplicity k, where k represents the respective weight of the arc. Figure 2 shows multiple
arcs connecting places and transitions in a compact way by a single arc labeling it with its
weight or multiplicity k.

Figure 1. Petri net basic elements.

Places and transitions may have several interpretations. Using the concept of conditions and
events, places represent conditions, and transitions represent events, such that, an event may
have several pre-conditions and post-conditions. For more interpretations, Table 1 shows
other meanings for places and transitions [14].

314 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 3

Figure 2. Compact representation of a PN

Input Places Transitions Output Places

pre-conditions events post-conditions
input data computation step output data
input signals signal processor output signals
resource needed tasks resource releasing
conditions logical clauses conclusions
buffers processor buffers

Table 1. Interpretation for places and transitions.

It is important to show that there are another way to represent PN’s elements. As an example,
the set of input and output places of transitions is shown in Definition 2.2. Similarly, the set of
input and output transitions of determinate place is shown in Definition 2.3.

Definition 2.2. (Input and Output Transitions of a place) The set of input transitions (also

called pre-set) of a place pi ∈ P is:

label = •pi = {tj ∈ T|(tj, pi) ∈ F}.

and the set of output transitions (also called post-set) is:

label = pi• = {tj ∈ T|(pi, tj) ∈ F}.

Definition 2.3. (Input and output places of a transition) The set of input places of a transition

tj ∈ T is:

label = •tj = {pi ∈ P|(pi, tj) ∈ F}.

and the set of output places of a transition tj ∈ T is:

label = tj• = {pi ∈ P|(tj, pi) ∈ F}.

315A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

4 Petri Nets

2.2.1. Marked Petri nets

A marking (also named token) has a primitive concept in PNs such as place and transitions.
Markings are information attributed to places; the number and mark distributions consist of
the net state in determined moment. The formal definitions are presented as follows.

Definition 2.4. (Marking) Considering the set of places P in a net N, the formal definition of

marking is represented by a function that maps the set of places P into non negative integers

M : P → N.

Definition 2.5. (Marking vector) Considering the set of places P in a net N, the marking can

be defined as a vector M = (M(p1), ..., M(pn)), where n = #(P), ∀pi ∈ P / M(pi) ∈ N. Thus,

such vector gives the number of tokens in each place for the marking Mi.

Definition 2.6. (Marked net) A marked Petri net is defined by a tupla NM = (N; M0), where

N is the net structure and M0 is the initial marking.

A marked Petri net contains tokens, which reside in places, travel along arcs, and their flow
through the net is regulated by transitions. A peculiar distribution (M) of the tokens in the
places, represents a specific state of the system. These tokens are denoted by black dots inside
the places as shown in Figure 1 (d).

2.2.2. Transition enabling and firing

The behavior of many systems can be described in terms of system states and their changes.
In order to simulate the dynamic behavior of a system, a state (or marking) in a Petri net is
changed according to the following firing rule:

1. A transition t is said to be enabled, if each input place p of t is marked with at least the
number of tokens equal to the multiplicity of its arc connecting p with t. Adopting a
mathematical notation, an enabled transition t for given marking mi is denoted by mi[t >,
if mi(pj) ≥ W(pj, t), ∀pj ∈ P.

2. An enabled transition may or may not fire (depending on whether or not the respective
event takes place).

3. The firing of an enabled transition t removes tokens (equal to the multiplicity of the input
arc) from each input place p, and adds tokens (equal to the multiplicity of the output
arc) to each output place p′. Using a mathematical notation, the firing of a transition is
represented by the equation mj(p) = mi(p)− W(p, t) + W(t, p), ∀p ∈ P. If a marking mj is

reachable from mi by firing a transition t, it is denoted by mi[t > mj .

Figure 3 (a) shows the mathematical representation of a Petri net model with three places
(p0, p1, p2) and one transition (t0). Besides, there is one arc connecting the place p0 to the
transition t0 with weight two, one arc from the place p1 to the transition t0 with weight one,
and one arc connecting the transition t0 to the place p2 with weight two. The initial marking
(m0) is represented by three tokens in the place p0 and one token in the place p1. Figure 3 (b)

316 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 5

outlines its respective graphical representation, and Figure 3 (c) provides the same graphical
representation after the firing of t0. For this example, the set of reachable markings is m =
{m0 = (3, 1, 0), m1 = (1, 0, 2)}. The marking m1 was obtained by firing t0, such that, m1(p0) =
3 - 2 + 0, m1(p1) = 1 - 1 + 0, and m1(p2) = 0 - 0 + 2.

Figure 3. (a) Mathematical formalism; (b) Graphical representation before the firing of t0; (c) Graphical
representation after the firing of t0.

There are two particular cases which the firing rule happens differently. The first one is
a transition without any input place that is called as a source transition, and the other
one is a transition without any output place, named sink transition. A source transition is
unconditionally enabled, and the firing of a sink transition consumes tokens, but does not
produce any. Figure 4 (a) shows a source transition, and Figure (b) 4 depicts a sink transition.
In both, the markings are represented before and after their respective firing.

Figure 4. (a) Source transitions; (b) Sink transitions.

Definition 2.7. (Source transitions) A transition is said to be source if, and only if, I(p, t) = 0,

∀p ∈ P.

Definition 2.8. (Sink transitions) A transition is said to be sink if, and only if, O(p, t) = 0,

∀p ∈ P.

Definition 2.9. (Inhibitor arc) Originally not present in PN, the introduction of the concept of

inhibitor arc increases the modeling power of PN, adding the ability of testing if a place does

not have tokens. In the presence of an inhibitor arc, a transition is enabled to fire if each input

place connected by a normal arc has a number of tokens equal to the arc weight, and if each

input place connected by an inhibitor arc has no tokens. Figure 5 illustrates an inhibitor arc

connecting the input place p0 to the transition t0, which is denoted by an arc finished with a

small circle. In such Figure, the transition t0 is enabled to fire.

317A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

6 Petri Nets

Figure 5. PN with an inhibitor arc.

Definition 2.10. (Pure net) A Petri net is said to be pure if it has no self-loops. A pair of a

place p and transition t is called a self-loop if p is both an input and output place of t. Figure

6 shows a self-loop net.

Figure 6. Self-Loop.

2.3. Elementary structures

Elementary nets are used as building blocks in the specification of more complex applications.
Figure 7 shows five structures, namely, (a) sequence, (b) fork, (c) synchronization, (d) choice,
and (e) merging.

Figure 7. Elementary PN Structures.

Sequence

Sequence structure represents sequential execution of actions, provided that a condition is
satisfied. After the firing of a transition, another transition is enabled to fire. Figure 7(a)
depicts an example of this structure in which a mark in place p0 enables the transition t0. The
firing of transition t0 enables the transition t1 (p1 is marked).

318 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 7

Fork

Figure 7(b) shows an example of a fork structure that allows the creation of parallel processes.

Join

Generally, concurrent activities need to synchronize with each other. This net (Figure 7(c))
combines two or more nets, allowing that another process continues this execution only after
the end of predecessor processes.

Choice

Figure 7(d) depicts a choice model, in which the firing of the transition t0 disables the
transition t1. This building block is suited for modeling if-then-else statement, for instance.

Merging

The merging is an elementary net that allows the enabling of the same transition by two or
more processes. Figure 7(e) shows a net with two independent transitions (t0 and t1) that
have an output place in common (P2). Therefore, firing of any of these two transitions, a
condition is created (p2 is marked) which allows the firing of another transition (not shown in
the figure).

Confusions

The mixing between conflict and concurrency is called confusion. While conflict is a local
phenomenon in the sense that only the pre-sets of the transitions with common input places
are involved, confusion involves firing sequences. Figure 8 depicts two types of confusions:
(a) symmetric confusion, where two transitions t1 and t3 are concurrent while each one is in
conflict with transition t2; and (b) asymmetric confusion, where t1 is concurrent with t2, but
will be in conflict with t3 if t2 fires first.

Figure 8. (a) symmetric confusion; (b) asymmetric confusion.

2.4. Petri nets modeling examples

In this section, several simple examples are given in order to introduce how to model some
basic concepts such as parallel process and mutual exclusion in Petri nets.

319A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

8 Petri Nets

Parallel processes

In order to represent parallel processes, a model may be obtained by composing the model for
each individual process with a fork and synchronization models. Two transitions are said to
be parallel (or concurrent), if they are causally independent, i.e., one transition may fire either
before (or after) or in parallel with the other.

Figure 9 depicts an example of parallel process, where transitions t1 and t2 represent parallel
activities. When transition t0 fires, it creates marks in both output places (p0 and p1),
representing a concurrency. When t1 and t2 are enabled for firing, each one may fire
independently. The firing of t3 depends on two pre-conditions, p2 and p3, implying that the
system only continues if t1 and t2 have been fired.

Figure 9 presents a net in which each place has exactly one incoming arc and exactly one
outgoing arc. Thus, such model represents a sub-class of Petri nets known as marked graphs.
Marked graphs allow representation of concurrency but not decisions or conflicts.

Figure 9. A Petri net representing parallel activities.

Mutual exclusion

The sharing of resources and/or data are common in many system applications, in which
most of resources and data should be accessed in a mutual exclusive way. Resources (or data
variable) may be modeled by a place with tokens representing the amount of resources. This
place is seen as pre-conditions for all transitions that need such resource. After the use of one
resource, it must be released. Figure 10 depicts an example of a machine that is accessed in a
mutual exclusive way.

Figure 10. Mutual Exclusion.

320 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 9

Dataflow computation

Petri nets can be used to represent not only the control-flow but also the data-flow. The net
shown in Figure 11 is a Petri net representation of a dataflow computation. A dataflow is
characterized by the concurrent instruction execution (or transitions firing) as soon as the
operands (pre-conditions) are available. In the Petri net representation, tokens may denote
values of current data as well as the availability of data. The instructions are represented
by transitions such as Add and Subtract that can be executed in parallel. After that, if the
activity Subtract has computed a result different from zero, meaning that the pre-conditions
to perform divide operation were satisfied. Afterwards, when the transition divide occur, the
dataflow computation is completed.

Figure 11. Dataflow example.

2.5. Petri nets properties

The PN properties allow a detailed analysis of the modeled system. For this, two types of
properties have been considered in a Petri net model: behavioral and structural properties.
Behavioral properties are those which depend on the initial marking. Structural properties,
on the other hand, are those that are marking-independent.

2.5.1. Behavioral properties

This section, based on [14], describes some behavioral properties, since such properties are
very important when analyzing a given system.

Reachability

The firing of an enabled transition changes the token marking in a Petri net, and a sequence
of firings results in a sequence of markings. A marking Mn is said to be reachable from a
marking M0 if there exists a sequence of firings that transforms M0 to Mn.

A firing (or occurrence) sequence is denoted by σ = t1, t2, ..., tn. In this case, mi is
reachable from m0 by σ, and it is denoted by m0[σ > mi. The set of all possible reachable
markings from m0 in a net (PN, m0) is denoted by R(PN,m0), or simply R(m0). The set of
all possible firing sequence from m0 in a net (PN,m0) is denoted by L(PN, m0), or simply L(m0).

321A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

10 Petri Nets

Boundedness

A Petri net is said to be bounded if the number of tokens in each place does not exceed a
finite number k for any marking reachable from M0. In a formal way, M(p) ≤ k, ∀p ∈ P and
∀M ∈ R(M0).

Safe

When the number of tokens in each place does not exceed the number “1” (one), such Petri
net is said to be safe. It is important to state that if a net is bounded or safe, it is guaranteed
that there will be no overflows in any place, no matter the firing sequence adopted.

Deadlock freedom

A PN is said to be deadlock free if there is no reachable marking such that no transition is
enabled.

Liveness

In an informal way, a Petri net is said to be live if it is guaranteed that no matter what firing
sequence is chosen, it continues in deadlock-free operation. The formal definition, a Petri net
(N,M0) is said to be live if, no matter what marking has been reached from M0, it is possible
to ultimately fire any transition of the net.

Liveness is an ideal property for many real systems. However, it is very strong and too costly
to verify. Thus, the liveness condition is relaxed in different levels. A transition t is said to be
live at the following levels:

• L0 Live (dead), if t can never be fired in any firing sequence in L(m0), it is a dead transition.

• L1-Live (potentially firable), if it can be fired at least once in some firing sequence in L(m0).

• L2-Live if, given any positive integer k, t can be fired at least k times in some firing
sequence in L(m0).

• L3-Live if there is an infinite-length firing sequence in L(m0) in which t is fired infinitely.

• L4-Live (or simply live), if it is L1-Live for every marking m in R(m0).

Persistence

A Petri net is said to be persistent if, for any two enabled transitions, the firing of one transition
will not disable the other. Once a transition is enabled in a persistent net, it is continue to be
enabled until it fires. Persistency is closed related to conflict-free nets. It is worth noting that
all marked graph are persistent, but not all persistent nets are marked graphs. Persistence is
a very important property when dealing with parallel system design and speed-independent
asynchronous circuits.

2.5.2. Structural properties

Structural liveness

A PN N is said to be structurally live if there is a live initial marking for N.

Structural boundedness

A PN N is said to be structurally bounded if it is bounded for any finite initial marking M0.

322 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 11

Structural conservativeness

A PN that provides a constant weighted sum of tokens for any reachable marking when
considering any initial marking is said to be structural conservative.

Structural repetitiveness

A PN is classified as repetitive if there is an initial marking m0 and an enabled firing sequence
from m0 such that every transition of the net is infinitely fired. On the other hand, if only
some of these transitions are fired infinitely often in the sequence σ, this net is called partially
repetitive.

Consistence

A net is classified as consistent if there is an initial marking m0 and an enabled firing sequence
from m0 back to m0 such that every transition of the net is fired at least once. If only some of
these transitions are not fired in the sequence σ, this net is called partially consistent.

2.6. Stochastic Petri nets

Petri nets [17] are a classic tool for modeling and analyzing discrete event systems which
are too complex to be described by automata or queueing models. Time (stochastic delays)
and probabilistic choices are essential aspects for a performance evaluation model. We adopt
the usual association of delays and weights with transitions [11] in this paper, and adopt the
extended stochastic Petri net definition similar to [9]:

Let SPN= (P, T, I, O, H, Π, G, M0, Atts) be a stochastic Petri net, where

• P = {p1, p2, ..., pn} is the set of places, which may contain tokens and form the discrete
state variables of a Petri net.

• T = {t1, t2, ..., tm} is the set of transitions, which model active components.

• I ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities of input arcs, where ijk
entry of I gives the (possibly marking-dependent) arc multiplicity of input arcs from place
pj to transition tk [A ⊆ (P × T) ∪ (T × P) — set of arcs]. A transition is only enabled if
there are enough tokens in all input places.

• O ∈ (Nn → N)n×m is a matrix of marking dependent multiplicities of output arcs, where
ojk entry of O specifies the possibly marking-dependent arc multiplicity of output arcs from
transition tj to place pk. When a transition fires, it removes the number of tokens specified
by the input arcs from input places, and adds the amount of tokens given by the output
arcs to all output places.

• H ∈ (Nn → N)n×m is a matrix of marking-dependent multiplicities describing
the inhibitor arcs, where hjk entry of H returns the possibly marking-dependent arc
multiplicity of an inhibitor arc from place pjto transition tk. In the presence of an inhibitor
arc, a transition is enabled to fire only if every place connected by an inhibitor arc contains
fewer tokens than the multiplicity of the arc.

• Π ∈ N
m is a vector that assigns a priority level to each transition. Whenever there are

several transitions fireable at one point in time, the one with the highest priority fires first
and leads to a state change.

323A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

12 Petri Nets

• M0 ∈ N
n is a vector that contains the initial marking for each place (initial state).

• Atts : (Dist, W, G, Policy, Concurrency)m comprises a set of attributes for the m transitions,
where

• Dist ∈ N
m → F is a possibly marking dependent firing probability distribution

function. In a stochastic timed Petri net, time has to elapse between the enabling
and firing of a transition. The actual firing time is a random variable, for which the
distribution is specified by F . We differ between immediate transitions (F = 0) and
timed transitions, for which the domain of F is (0, ∞).

• W ∈ R
+ is the weight function, that represents a firing weight wt for immediate

transitions or a rate λt for timed transitions. The latter is only meaningful for the
standard case of timed transitions with exponentially distributed firing delays. For
immediate transitions, the value specifies a relative probability to fire the transition
when there are several immediate transitions enabled in a marking, and all have the
same probability. A random choice is then applied using the probabilites wt.

• G ∈ N
n → {true, false} is a function that assigns a guard condition related to place

markings to each transition. Depending on the current marking, transitions may not
fire (they are disabled) when the guard function returns false. This is an extension of
inhibitor arcs.

• Policy ∈ {prd, prs} is the preemption policy (prd — preemptive repeat different means
that when a preempted transition becomes enabled again the previously elapsed firing
time is lost; prs — preemptive resume, in which the firing time related to a preempted
transition is resumed when the transition becomes enabled again),

• Concurrency ∈ {ss, is} is the concurrency degree of transitions, where ss represents
single server semantics and is depicts infinity server semantics in the same sense as in
queueing models. Transitions with policy is can be understood as having an individual
transition for each set of input tokens, all running in parallel.

In many circumstances, it might be suitable to represent the initial marking as a mapping from
the set of places to natural numbers (m0 : P → N), where m0(pi) denotes the initial marking
of place pi. m(pi) denotes a reachable marking (reachable state) of place pi. In this work, the
notation #pi has also been adopted for representing m(pi).

2.7. Dependability

Dependability of a computer system must be understood as the ability to deliver services with
respect to some agreed-upon specifications of desired service that can be fully trusted [1, 13].
Indeed, dependability is related to disciplines such as fault tolerance and reliability. Reliability
is the probability that the system will deliver a set of services for a given period of time,
whereas a system is fault tolerant when it does not fail even when there are faulty components.
Availability is also another important concept, which quantifies the mixed effect of both failure
and repair process in a system. In general, availability and reliability are related concepts, but
they differ in the sense that the former may consider maintenance of failed components [8]
(e.g., a failed component is restored to a specified condition).

In many situations, modeling is the method of choice either because the system might not
yet exist or due to the inherent complexity for creating specific scenarios under which the
system should be evaluated. In a very broad sense, models for dependability evaluation

324 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 13

can be classified as simulation and mathematical models. However, this does not mean that
mathematical models cannot be simulated. Indeed, many mathematical models, besides being
analytically tractable, may also be evaluated by simulation. Mathematical models can be
characterized as being either state-based or non-state-based.

Dependability metrics (e.g., availability, reliability and downtime) might be calculated either
by using RBD or SPN (to mention only the models adopted in this work). RBDs allow
to one represent component networks and provide closed-form equations, so the results
are usually obtained faster than using SPN simulation. Nevertheless, when faced with
representing maintenance policies and redundant mechanisms, particularly those based on
dynamic redundancy methods, such models experience drawbacks concerning the thorough
handling of failures and repairing dependencies. On the other hand, state-based methods
can easily consider those dependencies, so allowing the representation of complex redundant
mechanisms as well as sophisticated maintenance policies. However, they suffer from the
state-space explosion. Some of those formalism allow both numerical analysis and stochastic
simulation, and SPN is one of the most prominent models of such class.

If one is interested in calculating the availability (A) of given device or system, he/she
might need either the uptime and downtime or the time to failure (TTF) and time to repair
(TTR). Considering that the uptime and downtime are not available, the later option is the
mean. If the evaluator needs only the mean value, the metrics commonly adopted are Mean
Time to Failure (MTTF) and Mean Time To Repair (MTTR) (other central values might also
be adopted). However, if one is also interested in the availability variation, the standard
deviation of time to failure (sd(TTF)), and the respective standard deviation of time to repair
(sd(TTR)) allow one the estimate the availability variation.

The availability (A) is obtained by steady-state analysis or simulation, and the following
equation expresses the relation concerning MTTF and MTTR:

A =
MTTF

MTTF + MTTR
(1)

Through transient analysis or simulation, the reliability (R) is obtained, and, then, the MTTF
can be calculated as well as the standard deviation of the Time To Failure (TTF):

MTTF =
∫ ∞

0
t f (t)dt =

∫ ∞

0
−

dR(t)

dt
tdt =

∫ ∞

0
R(t)dt (2)

sd(TTF) =

√

∫ ∞

0
t2 f (t)dt − (MTTF)2 (3)

Considering a given period t, R(t) is the probability that the time to failure is greater than or
equal to t. Regarding exponential failure distributions, reliability is computed as follows:

R(t) = exp

[

−
∫ t

0
λ(t′)dt′

]

(4)

where λ(t′) is the instantaneous failure rate.

325A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

14 Petri Nets

One should bear in mind that, for computing reliability of a given system service, the repairing
activity of the respective service must not be represented. Besides, taking into account UA =
1 − A (unavailability) and Equation 1, the following equation is derived

MTTR = MTTF ×
UA

A
(5)

As well, the standard deviation of the Time To Repair (TTR) can be calculated as follows:

sd(TTR) = sd(TTF)×
UA

A
(6)

Next, MTTF
sd(TTF)

(and MTTR
sd(TTR)

) are computed for choosing the expolinomial distribution that best

fits the TTF and TTR distributions [6, 22].

Figure 12 depicts the generic simple component model using SPN, which provides a
high-level representation of a subsystem. One should notice the trapezoidal shape of
transitions (high-level transition named s-transition). This shape means that the time
distributions of such transitions are not exponentially distributed, instead they should be
refined by subnets. The delay assigned to s-transition f is the TTF and the delay of s-transition
r is the TTR. If the TTF and TTR are exponentially distributed, the shape of the transitions
should be the regular one (white rectangles) and TTF and TTR should be summarized by the
respective MTTF and MTTR.

Figure 12. Generic simple model - SPN

A well-established method that considers expolynomial distribution random variables is based
on distribution moment matching. The moment matching process presented in [6] takes
into account that Hypoexponential and Erlangian distributions have the average delay (μ)
greater than the standard-deviation (σ) -μ > σ-, and Hyperexponential distributions have
μ<σ, in order to represent an activity with a generally distributed delay as an Erlangian
or a Hyperexponential subnet referred to as s-transition1. One should note that in cases
where these distributions have μ = σ, they are, indeed, equivalent to an exponential

distribution with parameter equal to 1
μ . Therefore, according to the coefficient of variation

associated with an activity’s delay, an appropriate s-transition implementation model could
be chosen. For each s-transition implementation model (see Figure 13), a set of parameters
should be configured for matching their first and second moments. In other words, an
associated delay distribution (it might have been obtained by a measuring process) of the

1 In this work, μ could be MTTF or MTTR and the σ could represent sd(TTF) or sd(TTR), for instance.

326 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 15

original activity is matched with the first and second moments of s-transition (expolynomial
distribution). According to the aforementioned method, one activity with μ<σ is approximated
by a two-phase Hyperexponential distribution with parameters

r1 =
2μ2

(μ2 + σ2)
, (7)

r2 = 1 − r1 (8)

and

λ =
2μ

(μ2 + σ2)
. (9)

where λ is the rate associated to phase 1, r1 is the probability of related to this phase, and r2

is the probability assigned to phase 2. In this particular model, the rate assigned to phase 2 is
assumed to be infinity, that is, the related average delay is zero.

Figure 13. Hyperexponential Model

Activities with coefficients of variation less than one might be mapped either to
Hypoexponential or Erlangian s-transi-
tions. If

μ
σ /∈ N,

μ
σ �= 1, (μ, σ �= 0), the respective activity is represented by a Hypoexponential

distribution with parameters λ1, λ2(exponential rates); and γ, the integer representing the
number of phases with rate equal to λ2, whereas the number of phases with rate equal to λ1 is
one. In other words, the s-transition is represented by a subnet composed of two exponential
and one immediate transitions. The average delay assigned to the exponential transition t1

is equal to μ1 (λ1 = 1/μ1), and the respective average delay assigned to the exponential
transition t2 is μ2(λ2 = 1/μ2). γ is the integer value considered as the weight assigned to the
output arc of transition t1 as well as the input arc weight value of the immediate transition t3

(see Figure 14). These parameters are calculated by the following expressions:

(
μ

σ
)2 − 1 ≤ γ < (

μ

σ
)2, (10)

λ1 =
1

μ1
and 2 =

1

μ2
, (11)

where

μ1 =
μ ±

√

γ(γ + 1)σ2 − γμ2

γ + 1
, (12)

μ2 =
γμ ∓

√

γ(γ + 1)σ2 − γμ2

γ + 1
(13)

327A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

16 Petri Nets

If
μ
σ ∈ N,

μ
σ �= 1, (μ, σ �= 0), an Erlangian s-transition with two parameters, γ = (

μ
σ)

2 is
an integer representing the number of phases of this distribution; and μ1 = μ/γ, where
μ1(1/λ1) is the average delay value of each phase. The Erlangian model is a particular case
of a Hypoexponential model, in which each individual phase rate has the same value.

Figure 14. Hypoexponential Model

The reader should refer to [6] for details regarding the representation of expolinomial
distributions using SPN. For the sake of simplicity, the SPN models presented in the next
sections consider only exponential distributions.

Depending on the system characteristics, a RBD model (Figure 15) could be adopted instead
of the SPN counterpart, whenever the former is more suitable.

TTF

TTR

Figure 15. Generic simple model - RBD

3. Related works

In the last few years, some works have been developed to perform dependability analysis of
data center systems [24][26][27]. Reliability (which encompasses both the durability of the
data and its availability for access) correspond to the primary property that data center users
desire [2], .

Robidoux [28] proposes Dynamic RBD (DRBD) model, an extension to RBD, which supports
reliability analysis of systems with dependence relationships. The additional blocks (in
relation to RBD) to model dependence, turned the DRBD model complex. The DRBD model
is automatic converted to CPN model in order to perform behavior properties analysis which
may certify the correctness of the model [18]. It seems that an interesting alternative would be
to model the system directly using CPN or any other formalism (e.g., SPN) which is able to
perform dependability analysis as well as to model dependencies between components.

Wei [25] presents an hierarchical method to model and analyze virtual data center (VDC).
The approach combines the advances of both RBD and General SPN (GSPN) for quantifying
availability and reliability. Data center power architectures are not the focus of their research
and the proposed models are specific for modeling VDC.

Additionally, redundancies on components to increase system reliability are costly. [7]
propose an approach for reliability evaluation and risk analysis of dynamic process systems
using stochastic Petri nets.

328 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 17

Different from previous works, this paper proposes a set of models to the quantification
of dependability metrics in the context of data center design. Furthermore, the adopted
methodology for the quantification of those values takes into account a hybrid modeling
approach, which utilizes RBD and SPN whenever they are best suited. The idea of mixing
state (SPN) and non-state (RBD) based models is not new (e.g., [23]), but, as far as we are
concerned, there is no similar work that applies such technique on the evaluation of data
center infrastructures. Besides, a tool is proposed to automate several activities.

4. Dependability models

The following sections presents the adopted dependability models.

RBD Models
Reliability Block Diagram (RBD) [8] is a combinatorial model that was initially proposed
as a technique for calculating reliability of systems using intuitive block diagrams. Such a
technique has also been extended to calculate other dependability metrics, such as availability
and maintainability [10]. Figure 16 depicts two examples, in which independent blocks are
arranged through series (Figure 16(a)) and parallel (Figure 16(b)) compositions.

Figure 16. Reliability Block Diagram

In the series arrangement, if a single component fails, the whole system is no longer
operational. Assuming a system with n independent components, the reliability
(instantaneous availability or steady state availability) is obtained by

Ps =
n

∏
i=1

Pi (14)

where Pi is the reliability - Ri(t) (instantaneous availability (Ai(t)) or steady state availability
(Ai)) of block bi.

For a parallel arrangement (see Figure 16(b)), if a single component is operational, the whole
system is also operational. Assuming a system with n independent components, the reliability
(instantaneous availability or steady state availability) is obtained by

Pp = 1 −
n

∏
i=1

(1 − Pi) (15)

where Pi is the reliability - Ri(t) (instantaneous availability (Ai(t)) or steady state availability
(Ai)) of block bi.

A k-out-of-n system functions if and only if k or more of its n components are functioning. Let
p be the success probability of each of those blocks. The system success probability (reliability
or availability) is depicted by:

329A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

18 Petri Nets

Σn
i=k

(

n

b

)

pk(1 − p)n−k (16)

For other examples and closed-form equations, the reader should refer to [10].

SPN Models
This section presents two proposed SPN building block for obtaining dependability metrics.

Simple Component. The simple component has two states: functioning or failed. To compute
its availability, MTTF and MTTR should be represented. Figure 17 shows the SPN model
of the “simple component”, which has two parameters (not depicted in the figure), namely
X_MTTF and X_MTTR, representing the delays associated to the transitions X_Failure and
X_Repair, respectively.

Figure 17. Simple component model

Places X_ON and X_OFF are the model component’s activity and inactivity states,
respectively. The simple component also includes an arc from X_OFF to X_Repair
with multiplicity depending on place marking. The multiplicity is defined through the
expression IF(#X_Rel_Flag = 1):2 ELSE 1, where place X_Rel_Flag models the evaluation
of reliability/availability. Hence, if condition #X_Rel_Flag = 1 is true, then the evaluation
refers to reliability. Otherwise, the evaluation concerns availability.

Besides, although simple component model has been presented using the exponential
distribution, other expolinomial distributions that best fits the TTF and TTR may be adopted
following the techniques presented in [22].

Cold standby. A cold standby redundant system is composed by a non-active spare module
that waits to be activated when the main active module fails. Figure 18 depicts the SPN
model of this system, which includes four places, namely X_ON, X_OFF, X_Spare1_ON,
X_Spare1_OFF that represent the operational and failure states of both the main and spare
modules, respectively. The spare module (Spare1) is initially deactivated, hence no tokens are
initially stored in places X_Spare1_ON and X_Spare1 _OFF. When the main module fails, the
transition X_Activate_Spare1 is fired to activate the spare module.

Table 2 presents the attributes of each transition of the model. Once considering
reliability evaluation (number of tokens (#) in the place X_Rel_Flag = 1), the X_Repair,
X_Activate_Spare1 and X_Repair_Spare1 transitions receive a huge number (many times
larger than the associated MTTF or MTActivate) to represent the absence of repair. The
MTActivate corresponds to the mean time to activate the spare module. Besides, when
considering reliability, the weight of the edge that connects the place X_Wait_Spare1 and the
X_Activate_Spare1 transition is two; otherwise, it is one. Both availability and reliability may
be computed by the probability P{#X_ ON = 1 OR #X_Spare1 _ON = 1}.

330 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 19

Figure 18. Cold standby model.

Transition Priority Delay or Weight

X_Failure - X_MTTF

X_Repair - IF #X_Rel_Flag=1:(1013 x X_MTTF)
ELSE X_MTTR

X_Activate_Spare1 - IF #X_Rel_Flag=1:(1013 x MTActivate)
ELSE MTActivate

X_Failure_Spare1 - X_MTTF_Spare1

X_Repair_Spare1 - IF #X_Rel_Flag=1:(1013 x X_MTTF_Spare1)
ELSE X_MTTR_Spare1

X_Desactivate_Spare1 1 1

Table 2. Cold standby model - Transition attributes.

5. Applications

This section focuses in presenting the applicability of the proposed models to perform
dependability analysis of real-world data center power architectures (from HP Labs Palo Alto,
U.S. [12]). The environment ASTRO was adopted to conduct the case study. ASTRO was
validated through our previous work [5] [3] [4].

5.1. Architectures

Data center power infrastructure is responsible for providing uninterrupted, conditioned
power at correct voltage and frequency to the IT equipments. Figure 19 (a) depicts a real-world
power infrastructure. From the utility feed (i.e., AC Source), typically, the power goes through
voltage panels, uninterruptible power supply (UPS) units, power distribution units (PDUs)
(composed of transformers and electrical subpanels), junction boxes, and, finally, to rack
PDUs (rack power distribution units). The power infrastructure fails (and, thus, the system)
whenever both paths depicted in Figure 19 are not able to provide the power demanded (500
kW) by the IT components (50 racks). The reader should assume a path as a set of redundant
interconnected components inside the power infrastructure. Another architecture is analyzed
with an additional electricity generator (Figure 19 (b)) for supporting the system when both
AC sources are not operational.

331A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

20 Petri Nets

Figure 19. Data Center Power Architectures.

5.2. Models

Figure 20. RBD of Architecture A1.

This work adopts a hierarchical methodology for conducting dependability evaluation of data
center architectures. In general, the methodology aims at grouping related components in
order to generate subsystem models, which are adopted to mitigate the complexity of the
final system model evaluation. Thus, the final model is an approximation, but rather simpler,
of a more intricate system model. One should bear in mind that the detailed model could be
adopted instead, but at the expenses of complexity.

Following the adopted methodology, systems with no failure dependencies between
components have been evaluated through RBD models. For instance, Figure 20 depicts the
RBD model that represents the architecture A1.

332 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 21

Figure 21. SPN of Architectures A2.

Figure 22. RBD of Architectures A2.

In architecture A2, the generator is only activated when both AC sources are not available.
Therefore, a model that deal with dependencies must be adopted. Figure 21 shows the
SPN model considering cold standby redundance to represent the subsystem composed of
generator and two AC sources. Besides, we assume that UPS’ batteries support the system
during the generator activation. The reliability or availability is computed by the probability
P{#ACSource1_ON = OR #ACSource2_ON = 1 OR #Generator_ON = 1}.

The other components of the architecture A2 are modeled using RBD as shown in Figure 22.
Once obtained the results of both models (RBD and the SPN model with dependencies), a RBD
model with two blocks (considering the results of those models) in a serial arrangement is
created. The RBD evaluation provides the dependability results of the architecture A2 system.

The adopted MTTF and MTTR values for the power devices were obtained from [21] [29] [19]
and are shown in Table 3.

5.3. Results

Figure 23 depicts a graphical comparison between the reliability results (in number of 9’s) of
those two data center power architectures. The respective number of nines (-log[1 - A/100])
and the period of 8760 hours (1 year) are adopted. As the reader should note, the reliability of
both architectures decreases when the time increases. Besides, it is also possible to notice that

333A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

22 Petri Nets

Equipment MTTF (hs) MTTR (hs)

AC Source 4,380 8
Generator 2,190 8
STS 240,384 8
Subpanel 1,520,000 8
Transformer 1,412,908 8
UPS 250,000 8
Low Voltage Panel 1,520,000 8

Table 3. MTTF and MTTR values for power devices.

the generator has increased the reliability of the architecture A2. Considering the availability
results, similar behavior happened. The availability has increased from 5.47 to 7.96 (in number
of 9’s).

Figure 23. Reliability Comparison of Architectures A1 and A2.

6. Conclusion

This work considers the advantages of both Stochastic Petri Nets (SPN) and Reliability
Block Diagrams (RBD) formalisms to analyze data center infrastructures. Such approach
is supported by an integrated environment, ASTRO, which allows data center designers to
estimate the dependability metrics before implementing the architectures. The methodology
proposes that the system should be evaluated piecewisely to allow the composition of simpler
models representing a data center infrastructure appropriately. Moreover, experiments
demonstrate the feasibility of the environment, in which different architectures for a data
center power infrastructures have been adopted.

Acknowledgments

The authors would like to thank CNPQ for financing the project (290018/2011-0) and
supporting the development of this work.

Author details

Gustavo Callou, Paulo Maciel, Julian Araújo, João Ferreira and Rafael Souza
Informatics Center, Federal University of Pernambuco - Recife, Brazil

334 Petri Nets – Manufacturing and Computer Science

A Petri Net-Based Approach to the Quantification of Data Center Dependability 23

Dietmar Tutsch
Automation/Computer Science, University of Wuppertal, Wuppertal, Germany

7. References

[1] Avizienis, A., Laprie, J. & Randell, B. [2001]. Fundamental Concepts of Dependability,
Technical Report Series-University of Newcastle upon Tyne Computing Science .

[2] Banerjee, P., Bash, C., Friedrich, R., Goldsack, P., Huberman, B. A., Manley, J., Patel,
C., Ranganathan, P. & Veitch., A. [2011]. Everything as a service: Powering the new
information economy, IEEE Computer pp. 36–43.

[3] Callou, G., Maciel, P., Magnani, F., Figueiredo, J., Sousa, E., Tavares, E., Silva, B., Neves,
F. & Araujo, C. [2011]. Estimating sustainability impact, total cost of ownership and
dependability metrics on data center infrastructures, Sustainable Systems and Technology
(ISSST), 2011 IEEE International Symposium on, pp. 1 –6.

[4] Callou, G., Maciel, P., Tavares, E., Sousa, E., Silva, B., Figueiredo, J., Araujo, C., Magnani,
F. & Neves, F. [2011]. Sustainability and dependability evaluation on data center
architectures, Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on,
pp. 398 –403.

[5] Callou, G., Sousa, E., Maciel, P., Tavares, E., Silva, B., Figueirêdo, J., Araujo, C., Magnani,
F. & Neves, F. [2011]. A formal approach to the quantification of sustainability and
dependability metrics on data center infrastructures, Proceedings of the 2011 Symposium
on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, TMS-DEVS ’11,
Society for Computer Simulation International, San Diego, CA, USA, pp. 274–281.
URL: http://dl.acm.org/citation.cfm?id=2048476.2048512

[6] Desrochers, A. & Al-Jaar, R. [1995]. Applications of Petri Nets in Manufacturing Systems:
Modeling, Control, and Performance Analysis, IEEE Press.

[7] Dutuit, Y., Chātelet, E., Signoret, J. & Thomas, P. [1997]. Dependability modelling
and evaluation by using stochastic Petri nets: application to two test cases, Reliability
Engineering & System Safety 55(2): 117–124.

[8] Ebeling, C. [1997]. An Introduction to Reliability and Maintainability Engineering, Waveland
Press.

[9] German, R. [2000]. Performance Analysis of Communication Systems with Non-Markovian
Stochastic Petri Nets, John Wiley & Sons, Inc., New York, NY, USA.

[10] Kuo, W. & Zuo, M. J. [2003]. Optimal Reliability Modeling - Principles and Applications,
Wiley.

[11] Marsan, M. A., Balbo, G., Conte, G., Donatelli, S. & Franceschinis, G. [1995]. Modelling
with Generalized Stochastic Petri Nets., John Wiley and Sons.

[12] Marwah, M., Maciel, P., Shah, A., Sharma, R., Christian, T., Almeida, V., Araújo,
C., Souza, E., Callou, G., Silva, B., Galdino, S. & Pires, J. [2010]. Quantifying
the sustainability impact of data center availability, SIGMETRICS Perform. Eval. Rev.
37: 64–68.
URL: http://doi.acm.org/10.1145/1773394.1773405

[13] Meyer, J. F. & Sanders, W. H. [1993]. Specification and construction of performability
models., Proceedings of the Second International Workshop on Performability Modeling of
Computer and Communication Systems, Mont Saint-Michel, France.

[14] Murata, T. [1989]. Petri nets: Properties, analysis and applications, Proceedings of the IEEE
77(4): 541 –580.

335A Petri Net-Based Approach to the Quantifi cationof Data Center Dependability

Petri Nets – Manufacturing and Computer Science 336

[15] Patterson, D. [2002]. A simple way to estimate the cost of downtime, Proceedings of the

16th USENIX conference on System administration, LISA ’02, USENIX Association,

Berkeley, CA, USA, pp. 185–188. URL: http://dl.acm.org/citation.cfm?id=1050517.1050538

[16] Petri, C. A. [1962]. Kommunikationmit Automaten, PhD Dissertation,Darmstad University,

Germany.

[17] Reisig, W. [1985]. Petri nets: an introduction, Springer-Verlag New York, Inc., New York,

NY, USA.

[18] Robidoux, R., Xu, H., Member, S., Xing, L., Member, S. & Zhou, M. [2010]. Automated

modeling of dynamic reliability block diagrams using colored petri nets, IEEE

Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 40(2): 337–351.

[19] Service Level Agreement for Data Center Services [2012].

http://www.earthlinkbusiness.com/_static/_files/_pdfs/legal/DataCenterServiceSLA.pdf.

[20] Silva, B., Maciel, P., Tavares, E., Araujo, C., Callou, G., Sousa, E., Rosa, N., Marwah, M.,

Sharma, R., Shah, A., Christian, T. & Pires, J. [2010]. Astro: A tool for dependability

evaluation of data center infrastructures, Systems Man and Cybernetics (SMC), 2010 IEEE

International Conference on, pp. 783 –790.

[21] std., I. [1997]. Gold Book 473 Design of Reliable Industrial and Commercial Power Systems,

IEEE.

[22] Trivedi, K. [2002]. Probability and Statistics with Reliability, Queueing, and Computer Science

Applications, 2 edn, Wiley Interscience Publication.

[23] Trivedi, K. & et al [1994]. Reliability analysis techniques explored through a

communication network example, International Workshop on Computer-Aided Design, Test,

and Evaluation for Dependability.

[24] Vilkomir, S. A., Parnas, D. L., Mendiratta, V. B. & Murphy, E. [2006]. Segregated failures

model for availability evaluation of fault-tolerant system, ACSC ’06: Proceedings of the

29th Australasian Computer Science Conference, Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia, pp. 55–61.

[25] Wei, B., Lin, C. & Kong, X. [2011]. Dependability modeling and analysis for the virtual

data center of cloud computing, High Performance Computing and Communications

(HPCC), 2011 IEEE 13th International Conference on, pp. 784 –789.

[26] Wiboonrat, M. [2008a]. An empirical study on data center system failure diagnosis,

Internet Monitoring and Protection, 2008. ICIMP ’08. The Third International Conference on,

pp. 103 –108.

[27] Wiboonrat, M. [2008b]. Risk anatomy of data center power distribution systems,

ICSET’08.

[28] Xu, H., Xing, L. & Robidoux, R. [2008]. Drbd: Dynamic reliability block diagrams for

system reliabilitymodeling, International Journal of Computers and Applications .

[29] Zhou, L. & Grover, W. [2005]. A theory for setting the "safety margin" on availability

guarantees in an sla, Design of Reliable Communication

