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1. Introduction 

While competing for a finite number of resources in a flexible manufacturing system (FMS), 

e.g., robots and machines, each part has a particular operational flow that determines the 

order in which such resources are needed. However, such competition for shared resources 

by concurrent job processes can lead to a system deadlock. It occurs when parts are blocked 

waiting for shared resources held by others that will never be granted. Its related blocking 

phenomena often incur unnecessary overhead cost, e.g., a long downtime and low 

utilization rate of some critical and expensive resources, possibly leading to a catastrophic 

outcome in some highly automated FMS. Therefore, an efficient deadlock control policy 

must be developed to ensure that deadlocks do not occur. Having received considerable 

attention in literature, deadlock is normally prevented by using an offline computational 

mechanism to control the resource requests in order to avert deadlocks. Fanti and Zhou1 

introduce three fundamental methods (i.e. prevention, detection and avoidance) to solve the 

deadlock problems. Deadlock prevention aims to impose system constraints to prevent a 

deadlock. Importantly, deadlock prevention algorithms do not require run-time costs since 

the problems are solved in system design and planning stages. This study belongs to the 

deadlock prevention field. 

Petri nets (PN)2 have been recognized as one of the most powerful formal methods for 

modeling FMS. The reason is that they are well suited to represent such FMS characteristics 

as precedence relations, concurrence, conflict and synchronization. Their analysis methods 

used for deadlock prevention in FMS include structural analysis and reachability graphs. 

Deadlock prevention and avoidance schemes have been developed for controlling FMS3-8 by 

using the former. In particular, deadlock prevention problems are solved using the concept 



 

Petri Nets – Manufacturing and Computer Science 52 

of siphons3-6. Li & Zhou propose an elementary siphon control policy (ESCP) to reduce the 

redundant siphons to obtain structurally simpler controllers9-10.  However, they cannot 

obtain optimal ones. Reachability graph methods are used to obtain the live system 

behavior11-14. Without confining to a certain class of FMS, they can provide an optimal 

deadlock controller by adopting the theory of regions15. The theory is originally developed 

for a transition system (TS). A state-based representation with arcs labeled with symbols 

from an alphabet of events in a TS can be mapped into a PN model. For an elementary TS 

(ETS) there exists a PN with minimum transition count (one transition for each label) with a 

reachability graph isomorphic to the original TS.  

Uzam12 follows the theory of regions15 to define a deadlock-zone (DZ) and deadlock-free 

zone (DFZ) for preventing deadlocks. Hence, the concept of DZ and DFZ is used to solve 

ESSPs. An optimal controller can be obtained but suffers from many redundant control 

places. Ghaffari et al.13 propose a unique interpretation of the theory of regions and define 

MF (forbidden marking), MD (dangerous marking), ML (legal marking), and  (the set of 

marking/transition-separation instances or MTSI). An optimal PN controller synthesis method 

for FMS is proposed based on both MTSI and the theory of regions. Unfortunately, 

redundant MTSIs cannot be entirely avoided for large FMS cases.  

To reduce redundant control places, Li et al.16 adopt a combined algorithm based on siphon 

control and the theory of regions15. Its advantage is that the number of separation instances 

is significantly reduced after some sets of elementary siphons of a system are controlled. 

However, it fails to determine all sets of MTSIs and its application seems limited to some 

special nets only.  

Uzam and Zhou propose an iterative control policy of liveness enforcement for PNs based 

on the theory of regions17.  Less computation is required to obtain a controller.  However, as 

indicated by Li et al18, it requires the repeated calculation of reachability graphs. Piroddi et 

al. propose a combined selective siphons and critical markings in a reachability graph 

algorithm to obtain optimal controllers via iterations19. They successfully identify the critical 

uncontrolled siphons and control them to make a deadlock-prone PN live. However, their 

algorithm also requires the repeated calculation of reachability graphs. Eventually, the 

controllers are not ordinary (i.e. they contain weighted arcs). 

This work in this chapter aims to develop a computationally more efficient optimal 

deadlock control policy by using the theory of regions.  It focuses on dead markings in a 

reachability graph. The concept of a crucial MTSI (CMTSI) is proposed to synthesize optimal 

controllers. The proposed method can reduce the computational burden of the MTSI 

method13 and redundant control places12-13. The experimental results indicate that it is the 

most efficient policy among all known ones12-13, 16 that can design optimal controllers. 

Section 2 presents the basic definitions and properties of PNs and the theory of regions.  

Section 3 describes the proposed policy.  Section 4 presents the experimental results. Section 

5 gives the comparisons.  Conclusions are made in Section 6.  
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2. Preliminaries 

2.1. Petri nets2 

A Petri net (PN) is a 5-tuple N = (P, T, F, W, M0) where P is a finite set of places; T  is a finite 

set of transitions, with P  T ≠   and P  T =  ; F  (P×T)  (T×P) is the set of all directed 

arcs, W: (P×T)  (T×P) →  is the weight function where  = { 0, 1, 2, …}, and  M0: P →  is 

the initial marking. A PN is said to be ordinary, denoted as (P, T, F), if f  F, W(f) = 1. 

[N]+(p, t) = W(p, t) is the input function that means the multiplicity of a directed arc from p to 

t if (p, t)F. [N]-(p, t) = W(t, p) is the output function that means the multiplicity of a directed 

arc from t to p if (t, p)F. The set of input (resp., output) transitions of a place p is denoted 

by �p (resp., p�). Similarly, the set of input (resp., output) places of a transition t is denoted 

by �t (resp., t�). A PN structure (P, T, F, W) is denoted by N. A PN with a given initial 

marking is denoted by (N, M0). 

A PN is said to be pure if no place is both input and output places of the same transition. 

The so-called incidence matrix [N] of a pure Petri nets is defined as [N] = [N]-  [N]+. A 

transition t is said to be enabled at marking M, if p �t, M(p)  W(p, t), or p is marked with 

at least W(p, t) tokens, as denoted by M[t>. A transition may fire if it is enabled. In an 

ordinary net, it is enabled iff p  �t, M(p)  1. Firing t at M gives a new marking Msuch 

that  p  P, M(p) = M(p) – W(p, t) + W(t, p). It is denoted as M[t>M. M indicates the number 

of tokens in each place, which means the current state of the modeled system.  When Mn can 

be reached from M0 by firing a sequence of transitions σ, this process is denoted by M [σ > 

Mn and satisfies the state equation Mn = M + [N] . Here,   is a vector of non-negative 

integers, called a firing vector, and ( )t  indicates the algebraic sum of all occurrences of t in 

. The set of all reachable markings for a PN given M0 is denoted by R(N, M0). Additionally, 

a definition of linearized reachability set (using the state equation) is defined as (N, R

M0)={M: M = M0 + [N](� )}. This definition is suitable for the incorporation of the state 

equation into a set of linear constraints. The markings in (N, M0) - R(N, M0) are called R

spurious ones (with respect to the state equation)20. They may also be the solutions of the state 

equation but not reachable markings. In this work, ones just focus on the reachable 

markings. 

A transition t is said to be live if for any M R(N, M0), there exists a sequence of transitions 

whose firing leads to M’ that enables t. A PN is said to be live if all the transitions are live.  A 

PN contains a deadlock if there is a marking M  R(N, M0) at which no transition is enabled.  

Such a marking is called a dead marking. Deadlock situations are as a result of 

inappropriate resource allocation policies or exhaustive use of some or all resources.  

Liveness of a PN means that for each marking M  R(N, M0) reachable from M0, it is finally 

possible to fire t, t  T through some firing sequence. (N, M0) is said to be reversible, if  M 

 R(N, M0), M0  R(N, M). Thus, in a reversible net it is always possible to go back to initial 

marking (state) M0. A marking M is said to be a home state, if for each marking M  R(N, 

M0), M is reachable from M. Reversibility is a special case of the home state property, i.e. if 

the home state M = M0, then the net is reversible. 
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2.2. Theory of regions and synthesis problem13 

The theory of regions is proposed for the synthesis of pure nets given a finite TS15, which can 

be adopted to synthesize the liveness-enforcing net supervisor (LENS) for a plant model12-13. 

For convenience, our method follows the interpretation of the theory of regions in13. 

First of all, let T be a set of transitions and G be a finite directed graph whose arcs are 

labeled by transitions in T.  Assume that there exists a node v in G such that there exists a 

path from it to any node.  The objective of the theory of regions is to find a pure PN (N, M0), 

having T as its set of transitions and characterized by its incidence matrix [N](p, t) and its 

initial marking M0, such that its reachability graph is G and the marking of node v is M0. In 

the following, M denotes both a reachable marking and its corresponding node in G. 

Consider any marking M in net (N, M0). Because (N, M0) is pure, M can be fully 

characterized by its corresponding incidence vector [N](p, ) M


 where M


is the firing 

vector of path M .  For any transition t that is enabled at M, i.e., t is the label of an outgoing 

arc of the node M in G  

 M(p) = M(p) + [N](p, ) M M


, (M, M)  G  M [ t > M'     (1) 

Consider now any oriented cycle  of a reachability graph.  Applying the state equation to a 

node in  and summing them up give the following cycle equation: 

 [ ]( , ) ( ) 0,
t T

N p t t C 


   
    (2) 

where  is an oriented cycle of G, ( )t is a firing vector corresponding to , and C is the set of 

oriented cycles of G.  

According to the definition of G, there exists an oriented path M from M0 to M. Applying (1) 

along the path leads to M(p)  = M0(p) + [N](p,) M


. There are several paths from M0 to M.  

Under the cycle equations, the product [N](p,) M


 is the same for all these paths.  As a 

result, M  can be arbitrarily chosen.  The reachability of any marking M in G implies that  

 0( ) ( ) [ ]( , ) 0,MM p M p N p M G      


  (3) 

The above equation is called the reachability condition.  Notably, (3) is necessary but not 

sufficient. Hence, spurious markings are beyond this paper.  

It is clear that the cycle equations and reachability conditions hold for any place p.  For each 

pair (M, t) such that M is a reachable marking of G and t is a transition not enabled at M, t 

should be prevented from happening by some place p.  Since the net is pure, t is prevented 

from happening at M by a place p iff  

 0( ) [ ]( , ) [ ]( , ) 1MM p N p N p t     


   (4) 
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The above equation (4) is called the event separation condition of (M, t).  The set of all 

possible pairs (M, t) where M is a reachable marking and t is not enabled at M is called the 

set of event separation instances or marking/transitions-separation instances (MTSI)13. Symbol  is 

used to represent the set of MTSI in this paper. To solve the control problem,  is identified. 

The corresponding control places can then be found to prevent the transitions of the 

controlled system from firing in order to keep all legal markings only. 

3. Controller synthesis method 

In this section, an efficient controller synthesis method is developed based on the theory 

of regions. Please note that all transitions of the PN models are regarded as controllable 

ones. 

3.1. Supervisory control problem 

It is assumed that a deadlock-prone PN model contains at least a dead marking in its 

reachability graph at which no transition is enabled. Its reachability graph contains dead 

and live zones. Consequently, this study attempts to propose a method to prevent the 

controlled systems from entering a dead zone/marking. 

A dead marking cannot enable any transition and thus cannot go to any other markings.  

We can formally define the dead marking MD as follows. 

Definition 1: The set of dead markings MD = {M R(N, M0)| at M, no transition is enabled}. 

Definition 2: A zone consisting of all dead markings is called a dead zone, denoted by ZD. 

Once a marking enters a dead zone, the system is dead. If there is no dead zone in a 

reachability graph, the system is called a live one. 

The goal of the work is to control a deadlock-prone system such that it is live.  All markings 

of a reachability graph can be divided into three groups: legal markings (ML), quasi-dead 

markings (MQ), and dead markings (MD). 

Definition 3: The set of quasi-dead markings MQ = {MR(N, M0)| M must eventually evolve to a 

dead one regardless of transition firing sequences}. 

Definition 4: A zone consisting of all quasi-dead markings is called a quasi-dead zone, denoted 

by ZQ. 

Definition 5: A zone consisting of all quasi-dead and dead markings, i.e., ZI = ZD  ZQ, is 

called an illegal zone. 

Markings except quasi-dead and dead markings are legal ones. Once a legal marking is 

enforced into the illegal zone, the net will eventually become deadlock. 

Definition 6: A zone consisting of all legal markings is called a legal zone, i.e., ZL = R(N, M0) - ZI. 

Ramadge and Wonham show that a system has the maximally permissive behavior if the 

system behavior equals ZL21. In other words, one must remove all the markings in illegal 
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zone (i.e. quasi-dead and dead markings) from R(N, M0) if one wants to obtain the 

maximally permissive behavior. Ghaffari et al. propose the MTSI method to achieve their 

deadlock prevention based on the theory of regions13.  However, the set of all MTSIs from 

the reachability graph must be identified.  As a result, we can conclude that their method is 

computationally inefficient. A more efficient method is thus needed as described next. 

3.2. Crucial MTSI (CMTSI) 

Two types of CMTSIs are defined as follows. 

Definition 7: Type I CMTSI:  = {(M, t)|M ML, t  T, and  M  MD, M ML, and t T such 

that M [t > M  and M [t > M}. Denote the set of all the dead markings related to  as M'D, 

i.e., MD = {M  MD |  (M, t)   such that M [t  M}. They are called type I deadlocks. 

Definition 7 explains a legal marking that can evolve into a dead or legal zone as shown in 

Figure 1 through a single transition’s firing.  For those dead markings that are not type I 

deadlocks, we need to introduce Type II CMTSI and deadlocks. 

Definition 8: A zone consisting of all type I deadlocks (M'D) is called type I dead zone, 

denoted by Z. 

Definition 9: k is defined as a transition firing sequence starting in a quasi-dead marking 

(MQ) and ending in a deadlock marking in MD where i = |σk| is the number of transitions in 

σk, called its length. Denote a firing sequence with the shortest length (i.e., smallest i) from 

any quasi-dead marking to M' as σ*(M') given M'  MD –M'D. 

Definition 10: Type II CMTSI :  = {(M, t)|M  ML, t  T, and  M  MQ, M  ML, M  

MD, t T, and a firing sequence σ = σ*(M ) from M to M such that M [t > M , M [t > M, 
and M [σ > M}. The set of dead markings associated with Type II CMTSI is denoted as 

M"D, called type II deadlocks. MD = {M  MD |  (M, t)  , M  MQ and a firing 

sequence  from M to M such that M[tM and σ = σ*(M )}. 

 

Figure 1. A structure of Type I CMTSI. 
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Definition 11: A zone consisting of all type II deadlocks (MD) is called type II dead zone, Z. 

A Type II CMTSI contains a legal marking that cannot reach a dead marking with one single 

transition’s firing as shown in Figure 2. Given a dead marking in M"D, the shortest transition 

firing sequence needs to be found. The main reason is based on the fact that, for a dead 

marking, the length of the firing sequence from the initial marking to CMTSI is the longest 

path than those from the initial marking to MTSIs. Hence, the solutions of MTSIs will be 

totally covered by the solution of CMTSI.  For example, as shown in Figure 3, σ* is the 

shorter path since |σ*| < |σ| (i.e. |σ*| =1 and |σ| = 3). 

Remark 1: A dead marking is always with its corresponding CMTSI. As a result, the 

corresponding CMTSI is of either Type I or II. Type I may be viewed as a special case of 

Type II CMTSI by defining * = 0 (no need to enter ZQ but directly to ZD). Type I CMTSI will 

be processed first in our proposed method. In the following, Theorems 1-3 will help readers 

to understand how to choose CMTSIs, which are with the same firing sequence of legal 

markings, from Types I and II. 

Theorem 1: If a dead marking M  M'D is associated with two different CMTSIs, only one 

CMTSI needs to be controlled. 

Proof: Assume that a dead marking M is with both CMTSIs {Mi, tm} and {Mj, tn} as shown in 

Figure 4. According to the state equation, Mi + [N](�tm) = Mj + [N](�tn) = M. Arranging the 

above equation, M0 + [N](�
0 iM M 


) + [N](�tm) = M0 + [N] (�

0 jM M 


) + [N](�tn). According 

to (4), realizing either CMTSI, e.g., {Mi, tm}, leads to M0 + [N](�
0 iM M 


) + [N](�tm)  -1, which 

in turn implies M0 + [N](�
0 jM M 


) + [N](�tn)  -1 and vice versa. Hence, only one CMTSI 

needs to be controlled.  

Remark 2: Based on Theorem 1, if a dead marking M  M'D is associated with more than two 

CMTSIs, only one of them needs to be controlled. 

 

Figure 2. A structure of Type II CMTSI. 



 

Petri Nets – Manufacturing and Computer Science 58 

 

Figure 3. The shorter path σ* in Type II CMTSI given a dead marking. 

Theorem 2: If a dead marking M  MD, is associated with two CMTSIs whose markings can 

reach a same quasi-dead marking M' via their respective single transition’s firing, only one 

CMTSI needs to be controlled. 

Proof: Assume that a dead marking M is associated with Type II CMTSIs {Mp, tr} and {Mq, ts}. 

Mp and Mq reaches a quasi-dead markings M' via tr and ts’s firing, respectively as shown in 

Figure 5. 

According to the state equation, Mp + [N](�tr) + [N](� * ) = Mq + [N](�ts) + [N](� * )  M. 

Arranging the above equation, one can realize that Mp + [N](�tr) = Mq + [N](�ts).  According 

to (4), realizing either CMTSI, e.g., {Mp, tr}, leads to M0 + [N] (�
0 pM M 


) + [N](�tr)  -1, 

which in turn implies M0 + [N] (�
0 qM M 


) + [N](�ts)  -1 and vice versa. Hence, only one 

CMTSI needs to be controlled.  

Theorem 3: A dead marking M  MD, is associated with two CMTSIs whose markings can 

reach two different quasi-dead markings Mp and Mq via two different single transitions’ 

firing.  Both need to be controlled if [N](� *
r


)  [N](� *
s


). 

Proof: Assume that a dead marking M is associated with both Type II CMTSIs {Mp, tr} and 

{Mq, ts}.  Mp and Mq reach two different quasi-dead markings Mp and Mq via tr and ts’s firing, 

respectively as shown in Figure 6. 

According to the state equation, Mp + [N](�tr) + [N](� *
r


) = Mq + [N](�ts) + [N](� *
s


) = M"D. 

Arranging the above equation, Mp + [N](� *
r


) = Mq + [N](� *
s


). Since [N](� *
r


)  [N](�
*

s


), Mp is not equal to Mq. And also according to the definition of the event separation 

condition equation, the first set of CMTSI {Mp, tr} leads to the first event separation condition 

equation is M0 + [N](�
0 pM M 


) + [N](�tr)  -1; and the second set of CMTSI {Mq, ts} leads to 

the another event separation condition equation is M0 + [N](�
0 qM M 


) + [N](�ts)  -1. Hence, 
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one can infer that Mp and Mq are two different quasi-dead markings if [N](� *
r


)  [N](�
*

s


). It hints the two event separation condition equations are different. As a result, both 

CMTSIs need to be controlled. 

 

Figure 4. A type I deadlocks associated with two CMTSIs. 

 

Figure 5. Two CMTSIs connected to the same quasi-dead marking. 

Definition 12: A legal marking M  ML can be led to a quasi-dead marking Mq via a single 

transition firing. Mq must eventually evolve to a dead one Md (i.e. Md  MD) after a sequence 

n = t1t2…tn fires. Denote the set of all the markings on the path from Mq to Md as Mq-d. 
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Figure 6. Two CMTSIs connected to two quasi-dead markings. 

Remark 3: Based on Theorem 3, both CMTSIs still need to be controlled even if MP = Mq for 

the case shown in Figure 7. 

 

Figure 7. Two CMTSIs connected to two quasi-dead markings Mp and Mq with r* = s* = *(MD). 

Control places are then found after CMTSIs. They are used to keep all markings of the 

controlled system within the legal zone.   
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Theorem 4: (  )   

 

Figure 8. (a) A Petri net model.22 (b) Its reachability graph. 

Here, Figure 8(a) taken from existing literatures22 is used to demonstrate how to identify two 

types of CMTSIs from its reachability graph (i.e. Figure 8(b)). Assume that all transitions of 

PN models are immediately in this case. Therefore, one can easy identify there are two dead 

markings M'D (i.e. M2) and M"D (i.e. M15) and four quasi-dead markings (i.e. M11, M12, M13 

and M14). Additionally, the markings M0, M1, M3-M10 are the legal markings. Based on the 

mentioned above, there are two sets of CTMSIs in the reachability graph system due to the 

two dead markings in the system. As a result, one can infer that {M0, t2} belongs to type I 

CMTSI and {M7, t1} belongs to type II. In this Petri net system model, there are only one type 

I CMTSI and only one type II. 

3.3. Procedure of deadlock prevention policy 

Next, quasi-dead, dead, and legal markings are identified. Based on12-13, the maximally 

permissive behavior means all of legal markings (ML) and the number of reachability 

condition equations equals |ML|. Additionally, all CMTSIs can be obtained such that the 

legal markings do not proceed into the illegal zone. The proposed deadlock prevention 

algorithm is constructed as Figure 9. 

Theorem 5: The proposed deadlock prevention policy is more efficient than the method 

proposed by Ghaffari et al.13 

Proof: The theory of regions is used to prevent the system deadlocks by both our deadlock 

prevention policy and the conventional one. All MTSIs can be controlled by the two control 

policies.  Since (  )  , the use of CMTSI can more efficiently handle the synthesis 

problem than that of MTSI13.  
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Figure 9. The Proposed Deadlock Prevention Flowchart.  

4. Experimental results 

Two FMS examples are used to evaluate our deadlock prevention policy12-23.  
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Figure 10. An FMS PN Model12. 

Example I: An FMS is shown in Figure 1012. This PN is a system of simple sequential 

processes with resources (S3PR), denoted by (N1, M0).  To do our deadlock prevention policy, 

R(N1, M0) of the PN system can be constructed as shown in Figure 11. 

Two dead markings (i.e. M7 and M12) can then be identified.  Next, '1 = {(M3, t5)} and '2 = 

{(M15, t1)} are obtained. The event separation condition equations can be obtained through 

them as follows. 

 M7(pc) = M0(pc) + 2[N](pc, t1) + [N](pc, t2) + [N](pc, t5)  -1     (5) 

 M12(pc) = M0(pc) + [N](pc, t1) + 2[N](pc, t5) + [N](pc, t6)  -1     (6) 

 

Figure 11. R(N, M0) of Example I. 

Two cycle equations are as follows.  
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 [N](pc, t1) + [N](pc, t2) + [N](pc, t3) + [N](pc, t4) = 0      (7) 

 [N](pc, t5) + [N](pc, t6) + [N](pc, t7) + [N](pc, t8) = 0        (8) 

After listing all reachability conditions, all legal markings can be determined. In detail, M0-

M6, M8, and M13-M19 are legal. Hence, the following reachability conditions are obtained.  

 M0(pc)  0                    (9) 

 M1(pc) = M0(pc) + [N](pc, t1)  0             (10) 

 M2(pc) = M0(pc) +  [N](pc, t1) + [N](pc, t2)  0      (11) 

 M3(pc) = M0(pc) + 2[N](pc, t1) + [N](pc, t2)  0       (12) 

 M4(pc) = M0(pc) + 2[N](pc, t1) + [N](pc, t2) + [N](pc, t3)  0     (13) 

 M5(pc) = M0(pc) + 2[N](pc, t1) + 2[N](pc, t2) + [N](pc, t3)  0    (14) 

 M6(pc) = M0(pc) + 3[N](pc, t1) + 2[N](pc, t2) + [N](pc, t3)  0    (15) 

 M8(pc) = M0(pc) + [N](pc, t1) + [N](pc, t2) + [N](pc, t3)  0    (16) 

 M13(pc) = M0(pc) +  [N](pc, t5)  0                         (17) 

 M14(pc) = M0(pc) +  [N](pc, t5) + [N](pc, t6)  0                (18) 

 M15(pc) = M0(pc) + 2[N](pc, t5) + [N](pc, t6)  0                    (19) 

 M16(pc) = M0(pc) + 2[N](pc, t5) + [N](pc, t6) + [N](pc, t7)  0        (20) 

 M17(pc) = M0(pc) + 2[N](pc, t5) + 2[N](pc, t6) + [N](pc, t7)  0      (21) 

 M18(pc) = M0(pc) + 3[N](pc, t5) + 2[N](pc, t6) + [N](pc, t7)  0       (22) 

 M19(pc) = M0(pc) + [N](pc, t5) + [N](pc, t6) + [N](pc, t7)  0          (23) 

Furthermore, two optimal control places CP1 and CP2 can be obtained when (5) and (7)-(23) 

are solved. Their detailed information is: M0(CP1) = 1, t1 = t5 = -1, t2 = t6 = 1, t3 = t4 = t7 = t8 = 0; and 

M0(CP2)=1, t2 = t5 = -1, t3 = t6 = 1, t1 = t4 = t7 = t8 = 0. By the same way, using (6) and (7)-(23), one 

can find two optimal control places, Cp3 and Cp4. M0(CP3) = 1, t1 = t6 = -1, t2 = t7 = 1, t3 = t4 = t5 = t8 

= 0; and M0(CP4) = 1, t1 = t5 = -1, t2 = t6 = 1, t3 = t4 = t7 = t8 = 0. Notably, CP1 and CP4 are the same. 

Therefore, a redundant control place (CP4) can be removed. As a result, the system net can be 

controlled with the three control places CP1, CP2 and CP3. The optimally controlled system net 

(N1H, M0) is obtained as shown in Table 1. 

It is worthy to emphasize that the three control places are obtained by using two CMTSIs 

and 36 equations under our control policy. However, six MTSIs/ESSPs and 108 equations 

have to be solved in two existing literatures12, 24. 



A Computationally Improved Optimal Solution  
for Deadlocked Problems of Flexible Manufacturing Systems Using Theory of Regions 65 

Additional Control Places M0(Cpi) (Cp) (Cp) 

Cp1 1 t2, t6 t1, t5 

Cp2 1 t3, t6 t2, t5 

Cp3 1 t2, t7 t1, t6 

Table 1. Control Places of the Net (N1H, M0) 

Example II: This example is taken from23 and is used in 12, 16, 24. Here, the PN model of the 

system, denoted as (N2, M0), is shown in Figure 12. 

 

Figure 12. The Petri nets model of example II. 

To prevent deadlock, 282 reachable markings (M1 to M282) are identified according to the 

software INA25. 16 dead markings M9, M19, M70, M71, M76, M77, M78, M83, M84, M94, M99, M100, 

M105, M106, M112, and M113 are then located.  Next, 61 quasi-dead markings M6, M7, M8, M14, 

M15, M16, M17, M18, M25, M48, M66, M67, M68, M69, M72, M73, M74, M75, M79, M80, M81, M82, M87, 

M101, M102, M103, M104, M108, M109, M110, M111, M124, M130, M135, M136, M141, M142, M143, M150, M162, 

M198, M203, M204, M210, M250, M251, M257, M258, M259, M260, M261, M262, M263, M265, M269, M270, M272, 

M273, M274, M277, and M278 are found based on Definition 3 in this paper. Hence, the number 

of legal markings (i.e. 288 – (16 + 61) = 205) can be determined. Type I and II CMTSIs can be 

obtained as shown in Table 2. Notice that {(M56, t9)} in M77 is a redundant one.  
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MD 'C MD C 

M9 {(M65, t1)} M19 
{(M56, t1)} 

{(M56, t9)} 

M70 {(M43, t9)} M76 {(M65, t11)} 

M71 {(M51, t9)} M77 
{(M56, t9)} 

{(M56, t11)} 

M78 {(M171, t9)} M83 {(M128, t11)} 

M94 {(M93, t1)} M84 
{(M60, t9)}  

{(M60, t11)} 

M99 {(M98, t1)} M105 {(M93, t11)} 

M100 {(M98, t4)} M106 {(M98, t11)} 

  M112 {(M122, t11)} 

  M113 {(M96, t11)} 

Table 2. The Dead Markings and Their Relative CMTSIs. 

 

MD Event Separation Condition Equations 

M9 M0 + 3t1 + t2 + t3 + 2t9 + t10  -1 

M70
M0 + 3t1 + t2 + 2t3 + 2t4 + t6 + 2t9 + t10  -1 

M0 + 3t1 + 2t2 + t3 + t4 + t5 + t6 + 2t9 + t10  -1 

M71
M0 + 3t1 + t2 + 2t3 + t4 + t5 + t6 + 2t9 + t10  -1 

M0 + 3t1 + 2t2 + t3 + 2t5 + t6 + 2t9 + t10  -1 

M78

M0 + 2t1 + t2 + t3 + t4 + t5 + t6 + 2t9 + t10  -1 

M0 + 2t1 + 2t2 + 2t5 + t6 + 2t9 + t10  -1 

M0 + 2t1 + 2t3 + 2t4 + t6 + 2t9 + t10  -1 

M94 M0 + 2t1 + t3 + 3t9 + 2t10 + t11 + t12  -1 

M99
M0 + 3t1 + 2t3 + t4 + t6 + 3t9 + 2t10 + t11 + t12  -1 

M0 + 3t1 + t2 + t3 + t5 + t6 + 3t9 + 2t10 + t11 + t12  -1 

Table 3. The Dead Markings and Relative Event Separation Condition Equations of Type I CMTSI. 

Tables 3-4 show the event separation condition equations based on 18 CMTSIs. Here, the 

procedure of our method is introduced as follows. Due to the space limitation, we use only 

one example (i.e. dead marking M9) to illustrate how to prevent legal markings from leading 

to dead one M9 by using a CMTSI. To do so, 'C1 = {(M65, t1)} can be located due to M9. The 

event separation condition equation can then be identified as follows. 

 M9(CP1) = M0(CP1) + 3t1 + t2 + t3 + 2t9 + t10  -1          (24) 

Next, three different cycle equations are:  

 t1 + t2 + t5 + t6 + t7 + t8 = 0         (25) 

 t1 + t3 + t4 + t6 + t7 + t8 = 0      (26) 

 t9 + t10 + t11 + t12 + t13 + t14 = 0            (27) 
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Finally, 205 reachability condition equations can be listed. They represent the sequence of all 

legal markings from the initial one. Moreover, control place CP1 can be computed, i.e., M0 

(CP1) = 2, CP1 = {t6, t13}, and CP1 = {t1, t11}. Similarly, other control places are obtained as 

shown in Tables 5-6. 

 
MD Event Separation Condition Equations 

M19 

M0 + 4t1 + t2 + 2t3 + t4 + t6 + t9 + t10  -1 

M0 + 4t1 + 2t2 + t3 + t5 + t6 + t9 + t10  -1 

M0 + 3t1 + t2 + 2t3 + t4 + t6 + 2t9 + t10  -1 

M0 + 3t1 + 2t2 + 2t3 + t5 + t6 + 2t9 + t10  -1 

M76 M0 + 2t1 + t2 + t3 + 2t9 + t10 + t11  -1 

M77 
M0 + 3t1 + t2 + 2t3 + t4 + t6 + t9 + t10 + t11  -1 

M0 + 3t1 + 2t2 + t3 + t5 + t6 + t9 + t10 + t11  -1 

M83 M0 + t1 + t2 + 2t9 + t10 + t11   -1 

M84 

M0 + 2t1 + t2 + t3 + t4 + t6 + t9 + t10 + t11  -1 

M0 + 2t1 + 2t2 + t5 + t6 + t9 + t10 + t11  -1 

M0 + 3t1 + t2 + 2t3 + t4 + t6 + 2t9 + t10  -1 

M0 + 3t1 + 2t2 + t3 + t5 + t6 + 2t9+ t10  -1 

M105 M0 + t1 + t3 + 3t9 + 2t10 + 2t11 + t12  -1 

M106 
M0 + 2t1 + 2t3 + t4 + t6 + 3t9 + 2t10 + 2t11 + t12  -1 

M0 + 2t1 + t2 + t3 + t5 + t6 + 3t9 + 2t10 + 2t11 + t12   -1 

M112 M0 + 3t9 + 2t10 + 2t11 + t12  -1 

M113 
M0 + t1 + t3 + t4 + t6 + 3t9 + 2t10 + 2t11 + t12  -1 

M0 + t1 + t2 + t5 + t6 + 3t9 + 2t10 + 2t11 + t12  -1 

Table 4. The Dead Markings and Relative Event Separation Condition Equations of Type II CMTSI. 

 
MD 'C M0(Cpi) (Cpi) (Cpi) 

M9 {(M65, t1)} 2 t6, t13 t1, t11 

M70 {(M43, t9)} 

3 t6, t11 t2, t4, t9 

3 t5, t7, t11 t2, t6, t9 

3 t7, t11 t4, t5, t9 

M71 {(M51, t9)} 3 t7, t11 t4, t5, t9 

M78 {(M171, t9)} 3 t7, t11 t4, t5, t9 

M94 {(M93, t1)} 2 t6, t13 t1, t11 

M99 {(M98, t1)} 4 t7, t11 t1, t9 

M100 {(M98, t4)} 3 t7, t11 t4, t5, t9 

Table 5. Control Places from TYPE I CMTSI. 

Finally, the controlled net is obtained by adding the six control places as shown in Table 7. It 

is live and maximally permissive with 205 reachable markings. However, 59 ESSPs and nine 

control places are required in 12.  It hints that 59 sets of inequalities are needed in 12, while 

only 18 sets of inequalities suffice using our algorithm.  Hence, our policy is more efficient 

than that in 12. 
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Li et al. solve this problem by using elementary siphons controlled policy (ESCP) and the 

theory of region 16. A two-stage deadlock prevention method is used. First, ESCP is used to 

replace a siphon control method5. Therefore, the number of dead markings is reduced.  

Second, the theory of regions is used to obtain the optimal solution. Three elementary 

siphons (i.e. S1 = {p2, p5, p13, p15, p18}, S2 = {p5, p13, p14, p15, p18} and S3 = {p2, p7, p11, p13, p16p19}) can 

be identified. As a result, three control places VS1VS3 as shown in Table 8 are needed to 

handle three elementary siphons. Then a partially controlled PN system, denoted as (N2L1, 

M0), can be obtained after the first stage. 

 

MD C M0(Cpi) (Cpi) (Cpi) 

M19 

{(M56, t1)} 
2 t6, t13 t1, t11 

4 t7, t11 t1,  t9 

{(M56, t9)} 
3 t5, t7, t11 t2, t6, t9 

4 t7, t11 t1,  t9 

M76 {(M65, t11)} 1 t5, t13 t2, t11 

M77 {(M56, t11)} 1 t5, t13 t2, t11 

M83 {(M128, t11)} 1 t5, t13 t2, t11 

M84 
{(M60, t9)} 3 t5, t7, t11 t2, t6, t9 

{(M60, t11)} 1 t5, t13 t2, t11 

M105 {(M93, t11)} 1 t5, t13 t2, t11 

M106 {(M98, t11)} 1 t5, t13 t2, t11 

M112 {(M122, t11)} 1 t5, t13 t2, t11 

M113 {(M96, t11)} 1 t5, t13 t2, t11 

Table 6. Control Places from TYPE II CMTSI. 

 

Additional Control Places M0(Cpi) (Cpi)  (Cpi) 

Cp1 1 t5, t13 t2, t11 

Cp2 2 t6, t13 t1, t11 

Cp3 3 t6, t11 t2, t4, t9 

Cp4 3 t5, t7, t11 t2, t6, t9 

Cp5 3 t7, t11 t4, t5, t9 

Cp6 4 t7, t11 t1, t9 

Table 7. Control Places for the Net (N2H, M0). 

However, (N2L1, M0) has a dead marking. Figure 13 shows a partial reachability graph and 

the deadlock marking M57 is included. M57 is one of the 210 reachable markings (i.e. the 

reachable markings M1-M210 as denoted in 16. In 16, 210 reachable markings are divided into 

two categories: legal and illegal zones. The illegal zone consists of quasi-dead markings (i.e. 

M54, M55, M56 and M60) and a dead marking (i.e. M57). Obviously, some legal markings (i.e. 

M43, M44, M47, M48, M49, M53, M59 and M74) can enter the illegal zone (i.e. ZI = ZQ  ZD). One 

can realize that they use the theory of regions to prevent these legal markings from entering 

ZI. Therefore, they must resolve 8 MTSIs (i.e. {(M43, t9)}, {(M44, t9)}, {(M47, t9)}, {(M48, t9)}, {(M49, 

t9)}, {(M53, t4)}, {(M59, t1)}, {(M74, t2)}) and many equations in this example. Then the additional 

three control places can be obtained as shown in Table 9. Eight MTSIs are needed. Hence, 
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their control policy16 does not seem efficiently enough when the MTSI at the second stage is 

used to obtain control places.  

To compare the efficiency of the deadlock prevention methods, the proposed one is 

examined in the system net (N2L1, M0). One can realize that M57 is the only deadlock marking 

in R(N2L1, M0). Based on our method, only the dead marking M57 needed to be controlled. 

Here, only one  = {(M44, t9)} is needed. Obviously, the involved necessary equations are 

much less than those of the conventional one. We can obtain the same controlled net as that 

in 16. Hence, the proposed concept of CMTSIs can be used in their approach 16 to improve its 

computational efficiency significantly as well. 

 

Figure 13. A Partial Reachability Graph of the Net (N2L1, M0)16.  

 

Additional Control Places M0(Cpi) (Cpi)  (Cpi) 

Vs1 1 t5, t13 t2, t11 

Vs2 2 t4, t5, t13 t1, t11 

Vs3 3 t7, t11 t4, t5, t9 

Table 8. Additional Control Places for the Net (N2L1, M0) 

 

Additional Control Places M0(Cpi) (Cpi)  (Cpi) 

Cp1 3 t6, t11 t2, t4, t9 

Cp2 3 t5, t7, t11 t2, t6, t9 

Cp3 4 t2, t4, t7, t11 t1, t6, t9 

Table 9. Control Places for (N2L1, M0) by Two-Stage Method. 
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5. Comparison with existing methods 

One can attempt to make a comparison with the previous methods12, 16, 24 in terms of 

efficiency.  The first one proposed by Uzam12, called Algorithm U, is totally based on the 

theory of regions.  It solves six ESSPs in Example I. Then three control places are added on 

the net such that the controlled net is live and reversible. As for Example II, it solves 59 

MTSIs. Nine control places are obtained. However, the proposed deadlock prevention 

policy called Algorithm P solves only two and 18 CMTSIs in Examples I and II, respectively.   

The other one is proposed by Li et al.16, 24 called Algorithm L in which only the theory of 

regions is used in Example I. Notice that both the controlled results of Algorithms L and U 

are the same in Example I. In Example II, using Algorithm L, eight MTSIs are solved and six 

control places are computed. However, under the two-stage control policy, only one set of 

MTSI is needed by using our new policy to obtain the controlled result that is as the same as 

Algorithm L in Example II. Note that both the definitions of ESSP and MTSI are the same. 

Hence, ESSP and CMTSI can be regarded as MTSI for the comparison purpose. The detailed 

comparison results are given in Table 10. However, only 18 MTSIs among 59 MTSIs are 

needed by using Algorithm P. 

 

EXAMPLE # of Places # of Resource Places 
 MTSI 

U, L, P 

Control Places 

U, L, P 

Reachable 

Markings 

I 11 3 6, 6, 2 3, 3, 3 15 

II 

19 6 

59,  ,18 9,  , 6 

205 

II (two stages)  , 8, 1  , 6, 6 

Table 10. Comparison of the Controlled Systems. 

For Example II, eight MTSIs are required to obtain the six control places under Algorithm L. 

Hence, one can infer that its performance is better than that of Algorithm U. Only one set of 

CMTSI is needed to obtain the same control result by Algorithm P. As a result, one can 

conclude that our proposed policy is more efficient than the other two methods. 

To examine and compare the efficiency of the proposed method with those in16, 24 in a system 

with large reachability graphs, one can use eight different markings of p1, p8, p15, p18, and p19: 

[6, 5, 1, 1, 1]T, [7, 6, 2, 1, 1]T, [7, 6, 1, 2, 1]T , [7, 6, 1, 1, 2]T, [9, 8, 2, 2, 2]T, [12, 11, 3, 3, 3]T, [15, 14, 

4, 4, 4]T, and [18, 17, 5, 5, 5]T. Tables 11 and 12 show various parameters in the plant and 

partially controlled net models, where M (p15), M (p18), and M (p19) vary; |R|, |ML|, |RD|U, 

|RD|L, indicate the number of reachable markings (states), legal markings, and dead 

markings under Algorithms U and L, respectively.  Additionally, MTSIs of Algorithms U, L, 

and P are symbolized by ||U, ||L and ||P, respectively. The last column is ra = ||P / 

||U in Table 11, and rb = |P / ||L in Table 12.  Notably, Algorithm G13 can be regarded as 



A Computationally Improved Optimal Solution  
for Deadlocked Problems of Flexible Manufacturing Systems Using Theory of Regions 71 

Algorithm U in Table 11 since the number of MTSIs and ESSPs are the same. In table 11, here, 

Nsep represents the number of MTSIs, and the Nsep/U, Nsep/L and Nsep/P represent the number 

of MTSIs of Algorithms U, L, and P, respectively. Obviously, the number of ||U in the plant 

model grows quickly from cases 1 to 8. For instance, when M (p15) = M (p18) = M (p19) = 5, 

||U = 4311, meaning that one must solve 4311 MTSIs when Algorithm U is used. However, 

since ||P = 228, only 228 equations (MTSIs) need to be solved under Algorithm P. As a 

result, Algorithm P is more efficient than Algorithm U in a large system.  

 

CASES |R| |ML| |RD|U ||U ||P ra 

1 282 205 16 59 18 30.5% 

2 600 484 27 95 28 29.5% 

3 972 870 26 103 26 25.2% 

4 570 421 16 107 19 17.8% 

5 4011 3711 42 288 42 14.6% 

6 27152 26316 84 886 84 9.5% 

7 124110 122235 145 2115 145 6.9% 

8 440850 437190 228 4311 228 5.3% 

Table 11. Parametersin the Plant and Partially Controlled Models with Varying Markings: U vs. P. 

 

CASE |R| |ML| |RD|L ||L ||P rb 

1 282 205 1 8 1 12.5% 

2 600 484 1 8 1 12.5% 

3 972 870 6 10 6 60.0% 

4 570 421 1 8 1 12.5% 

5 4011 3711 9 15 9 60.0% 

6 27152 26316 28 48 28 58.3% 

7 124110 122235 60 105 60 57.1% 

8 440850 437190 108 192 108 56.3% 

Table 12. Parametersin the Plant and Partially Controlled Models with Varying Markings: L vs. P. 

In Table 12, the number of MTSIs calculated by Algorithm L can be controlled, but Algorithm 

P is more efficient in these cases.  For instance, when M (p15) = M (p18) = M (p19) = 5, ||L = 

192, meaning that one still has to solve 192 MTSIs when Algorithm L is used. However, ||P 

=108. Only 108 MTSIs need to be solved by using Algorithm P.  Importantly, the 

computational cost can be reduced by using our proposed method when it is compared with 

those in12, 16. In conclusion, Algorithm P is more efficient in large reachability graph cases 

than those in12-13. 

6. Conclusion 

The proposed policy can be implemented for FMSs based on the theory of regions and 

Petri nets, where the dead markings are identified in its reachability graph.  The 
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underlying notion of the prior work is that many inequalities (i.e. MTSIs) must be solved 

to prevent legal markings from entering the illegal zone in the original PN model. One 

must generate all MTSIs in a reachability graph and require high computation. This work 

proposes and uses CMTSI to overcome the computational difficulty. The detail 

information is also obtained in existing literatures.26-29 The proposed method can reduce 

the number of inequalities and thus the computational cost very significantly since 

CMTSIs are much less than MTSIs in large models. Consequently, it is optimal with much 

better computational efficiency than those existing optimal policies12-13, 16. More 

benchmark studies will be desired to establish such computational advantages of the 

proposed one over the prior ones. It should be noted that the problem is still NP-hard the 

same as other optimal policies due to the need to generate the reachability graph of a Petri 

net. The future research is thus much needed to overcome the computational inefficiency 

of all these methods. 
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