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1. Introduction 

Acute disruption in brain blood circulation is a widespread cause of death and the most 

frequent cause of health loss in most countries of the world. About 6 millions of people 

suffer from stroke every year and this number is constantly increasing. Stroke has a high 

mortality rate – up to 30% of patients die. Only about 20% of surviving patients manage to 

return to their previous occupation. Most of patients are unable to take care of themselves 

and need help of relatives or medical personnel [1, 2]. About 80-85% of all cases of stroke are 

ischemic strokes. Therefore protecting brain from ischemia-induced damage is in the focus 

of modern neuropathology and neurosurgery studies, especially due to the increase in the 

number of neurosurgical operations which might cause additional blood flow 

impairements.  

The severity of injuries of physiological reactions and biochemical processes caused by 

blood flow impairements depends on the degree of blood flow disruption in brain (fig.1) 

[1, 3]. 

Blood brain flow, ml/100 

g/min 

Parameters 

60-80 Standard 

35-60 Decrease of protein synthesis, selective gene expression  

20-35 Lactate acidosis, cytotoxic edema 

10-20 Energic deficiency, glutamate excitoxicity 

0-10 Anoxic depolarization, necrosis, apoptosis 

Figure 1. Correspondence between brain tissue changes and blood flow disruption 
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Decline of partial pressure of oxygen, significant decrease of ATP and glucose levels, 

membrane depolarization, extremely high levels of extracellular glutamate and intracellular 

calcium ions - all these factors contribute to development of the aforementioned injuries in 

the nervous tissue [4, 5, 6]. For example, higher level of calcium ions leads to stimulation of 

phospholipases and proteases, and activation of glutamate NMDA-receptors which in turn 

increase activity of nNoS and eNOS isoforms. As the result, amplification of 

lipoperoxidation takes place. 

Disruption of electron transfer and oxidative phosphorilation within mitochondria are the 

first manifestations of ischemia-induced damages in the brain [7, 8, 9, 10], and the basic 

object of the injuries are presumably mitochondrial membranes [11, 12, 13, 14]. On this basis, 

ability of the brain to restore its functions following ischemia and reperfusion depends 

mainly on three processes - depletion of energic resources, excessive accumulation of 

excitatory amino acids [15, 16, 17], and formation of reactive oxygen species caused by 

leakage of electrons from intermediate links of respiratory change [18, 19, 20].  

2. Features of oxidative stress in brain tissue during ischemia-reperfusion 

Brain ischemia causes formation of free radical forms of oxygen which induce damage of 

neuronal membranes and biomacromolecules, particularly nucleic acids and proteins. Brain 

tissue has heightened disposition to development of oxidative stress. Brain cell membranes 

have high concentrations of polyunsaturated fatty acids which are the main substrate of free 

radical reactions [21, 22, 23]. When a free radical appears in membrane chance for its 

interaction with fatty acid is increased as a number of unsaturated links is rised. Unsaturated 

fatty acids provide more fluidity for membranes, therefore their changes caused by more 

active lipoperoxidation lead to increase of their viscosity and injuries of their barrier functions. 

It is known that synapse plasmatic membranes contain higher level of polyunsaturated fatty 

acids than myelin membranes. Many functionally important neuronal proteins are membrane-

bound and depend on lipid environment. Simultaneously, system of antioxidant protection in 

brain has obviously less capacity than in other tissues, and enzymatic components of the 

system in brain are more sensitive to oxidative action [24, 25]. 

The second danger of lipoperoxidative activation in brain lies in the fact that disruption of 

nerve membrane integrity leads to increasing release of “excitotoxic” transmitters, such as 

glutamate, aspartate, etc [15, 16, 26-28].High rate of biogenic amine metabolism in brain 

leads to formation of ROS [29]. For example, monoamine oxidase reaction is linked with 

H2O2 formation. This phenomenon may be an additional source for generation of active 

radical products which are able to initiate lipoperoxidation in the presence of metals with 

variable valence. Dopamine, its precursor L-DOPA, 5-hydroxytraptamine, and 

norepinephrine may generate О2∙- not only, but quinones/semiquinones, too, which may 

decrease GSH level and bound with protein SH-groups. Oxidation can be catalized by 

transitional metal ions. Maximal increase for free radical generation and following 

activation for lipoperoxidation takes place in postischemic time – during recovery of blood 

circulation in brain tissue [30-33]. Nevertheless, possibility for formation of free radicals at 
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earlier stage of brain damage exists during ischemia, too [34]. Enhancement of redox state of 

mitochondrial respiratory chain in these conditions gives an opportunity for oxygen to 

interact with intermediate components of the respiratory chain, for example ubisemiquinone 

[7]. This process takes the path of one-electron reduction of molecular oxygen and leads to 

formation of superoxide-anion. Consequently, heightened formation of free radicals may 

take place in tissues with insufficient blood circulation and decreased partial oxygen 

pressure [35]. Studies in mice and rats with genetic deficiency of superoxide dismutase 

confirmed the important role of free radicals in neuronal death/survival during brain 

ischemia [36, 37].In the postischemic period (during recirculation) when oxygen actively 

absorbs by brain tissue, oxygen radicals generation is caused by activation of enzymatic 

processes, too (arachidonic acid cascade, xantine oxydase system, activation of NADPH-

oxydase in polymorphonuclear leucocytes) [38-40]. 

The fact that ischemia itself is unable to increase level of lipoperoxidation intermediate 

products is not surprising because during hypoxia amount of molecular oxygen is 

insufficient for observable activation of lipoperoxidation in brain tissue. Nevertheless, in 

these conditions the amount of hydroxyperoxides is increased and lag period for 

lipoperoxidation activation becomes shorter, which serves as evidence for decrease of 

antioxidant protection and increased formation of superoxide oxygen anion in brain tissue 

[41]. Herewith level of endogenic antioxidants in brain may be unchanged [42, 43]. For 

example, α-tocoferol level in rat brain is unchanged following 80 min after occlusion of 

middle cerebral artery and subsequent reperfusion. Unchanged levels of antioxidants 

were observed following bilateral occlusion of arteria carotis and reperfusion in gerbils, 

too [44, 45].  

Recently a concept on polyfunctional physiologic role of free radicals in organism and in 

brain especially, is declared [42, 43, 46-48]. On the one hand, they act on key cell enzymes 

and receptors inside cells and cause destructive processes in tissues. On the other hand, they 

play a role of second messengers and may help with cell adaptive reactions to changed 

environmental conditions. Therefore low efficiency of antioxidant therapy by substances 

which bound free radical excess during ischemic injury treatment is not surprising [49, 50, 

51]. In addition, these drugs have low bioavailability and must be used for at least several 

weeks before any effect can be observed [52, 53, 54-56]. 

It is necessary to emphasize that the main defense from excessive amounts of free radicals 

formed within cells is the action of antioxidant protection enzymes, such as selenoproteins, 

but not the action of low molecular wieght antioxidants. Under normal conditions these 

enzymes are sufficient for maintenance of low safe levels of free radicals, but in 

reperfusional conditions their activity is insufficient for maintenance pro- and antioxidant 

balance. Earlier attempts to administer substances of superoxide dismutase and catalase 

enzymes to animals in experimental models were unsuccessful because they poorly 

penetrate blood-brain barrier and cell membranes [51, 53]. 

Further research of neuroprotection in this direction is not very promising because 

activation of lipoperoxidation in phospholipid structures of nerve cell membranes is 
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eliminated by the system of superoxide dismutase – catalase to a small degree [53]. 

Detoxication in these structures is primarily carried by enzymes of glutathione cycle, 

selenium-cystein-comprising glutathione peroxidases [49, 54, 55, 57-59]. 

3. Role of glutathione in mechanisms of antioxidant protection in brain 

Glutathione cycle is the most important antioxidant system in brain cells [59-66]. 

Glutathione protects cells against reactive oxygen, nitrogen and other species. As an 

antioxidant it is involved in the detoxication of malonic dialdehyde, 4-hydroxy-2-nonenal 

and other products of lipoperoxidation. The glutathione couple GSH/GSSG takes part in 

maintaining cellular redox status [67, 68]. Glutathione is presumably a key participant of the 

defense system in brain cell [69-71]. 

Increased level of oxidized form of glutathione and changes of glutathione system activity 

occur at early stages of oxidative stress and may be marks of the severity of oxidative stress 

[71-75]. Hydroxyl radical and nitric oxide or peroxynitrite may interact directly with GSH 

leading to GSSG formation. Hydrogen peroxide may be removed by catalase or by 

glutathione peroxidase [76]. 

GSH is present in cytoplasma, endoplasmatic reticulum, nucleus, and mitochondria. In most 

of the compartments GSH is found predominantly in highly reduced state (about 99% of the 

total level of glutathione). Glutathione peroxidase is localized mainly in cytosol, too, 

whereas catalase is found mostly in peroxisomes. The affinity of glutathione peroxidase for 

H2O2 is one to two orders of magnitude higher than that of catalase, and catalase is less 

active in brain than in other tissues. 

GSH is synthesized from cysteine, glutamate and glycine. Neurones have lower GSH level 

and use a more limited list of substrates for GSH synthesis, but they use glutamine for GSH 

synthesis more effectively than astrocytes because they have glutaminase for formation of 

glutamate from glutamine. Neurones can not absorb cystine but they actively carry off 

cysteine [65], so availability of cysteine influences at the GSH level inside neurones. At the 

same time maximal rate for GSH synthesis within astrocytes is observed in the presence of 

glutamate, cystine and glycine. 

GSSG restores by glutathione reductase into GSH in the presence of NADPH (salvage cycle), 

which originated mainly from pentose phosphate pathway of metabolism. About 3-5% of 

oxygen in brain is consumed this way. 

In physiological conditions GSSG level both in neurones and astrocytes reach no more than 

1% of total content of glutathione in tissue but during oxidative stress it may be about 40% 

of total value of the glutathione in the astrocyte culture. One astrocyte cell may effectively 

protect 20 neurons from peroxides but lack of glucose greatly decreases capacity of 

astrocytes to bind peroxides. It has been shown that pentose phosphate pathway in 

astrocyte culture is very sensitive to peroxide action. 
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Decrease of total glutathione content and decline of GSH/GSSG ratio are indicators of the 

severity of oxidative stress in ischemic brain tissue [67]. It is known that decrease of GSH 

level leads to aggravation of ischemia-induced injuries, while increase of its level leads to 

opposite result. Glutamate may facilitate decrease of GSH level because it inhibits use of 

cysteine which is required for glutathione synthesis by cells [67]. Genetic failure of a cell 

glutathione peroxidase makes rats more susceptible to neurotoxins and brain ischemia [68]. 

Excessive glutathione peroxidase expression in transgenic mice leads to prevention of 

irreversible hypoxia-induced changes. Decline of GSH concentration may weaken the 

stability of an organism to hypoxia both by inactivation of pentose phosphate way enzymes 

as by inhibition of thioenzymes of tissue respiration chain [76, 77]. These disruptions cause 

development of energy deficiency which is the main chain of biochemical mechanism of 

tissue hypoxia. In addition thiol-disulfide metabolism changes may form the basis for 

mechanisms of disconnection of the oxidation and phosphorilation processes [78-80]. As a 

result, use of oxygen in biological oxidation processes may be broken and become a base for 

pathogenetic component of intiation and generalization of oxidative stress. 

4. Role of energy metabolism changes in mechanisms of brain tissue 

ischemia-induced injuries 

Brain is very sensitive to disruptions of energy metabolism processes beacause brain tissue 

requires constant supply of energy substrates whereas sources for energy formation in brain 

are rather limited, turnover of metabolism is high, and metabolism is dependent on aerobic 

oxidation of glucose and constant supply of oxygen in a great extent [81, 82] Maintenance 

for electric neuron activity and rate of impulse passage depend directly on presence and 

availability of energy substrates, too [83, 84]. 

Brain tissue cannot metabolize fatty acids therefore the main source for energy formation in 

brain is glucose. Nevertheless, during focal brain ischemia, increase of glucose level does not 

help cells to prevent ischemic injuries and also promotes their structural and functional 

damage [85]. Mechanisms of these changes include shift of pH to an acid side inside cell, 

increase of permeability of blood-brain barrier, infiltration of brain parenchyma by 

neutrophiles, accumulation of extracellular glutamate, and unfavorable corticosterone 

action. Intensive metabolism of glucose in the penumbra region may promote increasing 

acidic reaction of the medium, promote attraction of neutrophiles in the region. 

Limitation of metabolic consumption of glucose in ischemic brain tissue may have 

protective effect, especially in such conditions when its metabolism will be faster or other 

source of fuel will be used. Possibilities for replacement of glucose in brain tissue are rather 

limited [86-89]. Lactic acid may be an alternative source for energy formation in brain in 

certain conditions because the glucose is metabolized presumably in glial cells whereas in 

neurones energy metabolism is based presumably on lactate oxidation [90, 91]. There is 

some evidence that the process is particularly important for maintenance of vital functions 

during postischemic time. For example, decrease of lactate transfer through plasmatic 

mebrane in brain following preliminary whole ischemia causes neurone injuries. From clinic 
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practice it is known that consumption of lactate or pyruvate during brain ischemia show 

neuroprotective actions of the substances [90, 91]. Presence of adequate concentrations of 

pyruvate facilitate for maintenance of stable level of membrane potentials and proton 

gradient on vesicular membranes [87, 92]. 

Brain ischemia is different from other types of ischemia because oxygen deficiency causes 

significant changes in the oxidating process of energy substrates which are present in brain 

in suffucient quantities [20, 42]. Anaerobic glycolisis as alternative way for energy supply is 

not substantial for supporting ATP stock in nerve tissue during compensated and 

decompensated stages of hypoxia [11]. 

Aerobic energy formation is the basic process for nerve tissue, but starts to fail before 

oxygen concentration falls below critical level, because hypoxia influences kinetic properties 

of respiratory chain enzymes. During early stages of ischemia energy functions of 

mitochondria already start changing: conjugacy of oxidative phosphorilation process and 

regulatory control by ATP becomes weaker, rate of inphosphorilated respiration increases. 

Shift of ratio NAD/NADH occurs to the side of NADH, as a result final stages of the Krebs’ 

cycle are inhibited, and activation of succinate oxidase stage takes place. This way allows to 

maintain oxidative phosphorilation and respectively macroergic substance production at 

sufficient level for some time. “Oxygen hunger” already at early stages of hypoxia leads to 

beginning of relative “substrate hunger” - energy substrates are not being oxydated while 

they are still available. This is a characteristic property for ischemia [93]. 

There are only 2 ways of restoration of brain metabolism after stroke and hypoxia – 

restoration of NAD-dependent part of the Krebs’ cycle and stimulation of alternative path of 

metabolism, succinate oxidation. 

Succinic acid is an intermediate of the cytric cycle which supports formation of macroergic 

phosphates and reductive equivalents in the conditions with physical loadings and stress 

[94-97]. Oxidation of succinic acid is the most potent energy process inside mitochondria, 

and during stress this process becomes even more important due to succinate 

dehydrogenase activation. Depletion of endogenic succinic acid may be a reason explaining 

inability of tissue to maintain reaction of activation of energy processes for a long time [98]. 

If NADH and СО2 are present in excess, conversion of reactions of second part of the cytrate 

cycle in which NADH is consumed takes place - from oxaloacetate to succinate, and that fact 

supports reactions of the first part of the cytrate cycle reactions which require oxidized NAD 

and promote for additional accumulation of succinate. 

Another important result of the bioenergic hypoxia is damage of ion pump action and ion 

imbalance in the form of excessive accumulation of intracellular calcium, sodium, chlorine 

[99]. The intracellular calcium excess leads to activation of phospholipase A, damage of cell 

membranes and release of arachidonic acid take place. As a result, lipoperoxidation 

activates and causes following cell membrane damages, neuron depolarization and release 

of excitotoxic amino acids, especially glutamate, in extracellular space [99]. 
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Thereby adaptive effects of succinate derivatives are related to their property to induce 

compensatory metabolic flows in mitochondrial respiratory chain (“succinate oxidase” way) 

in extreme conditions, to provide replenishment for cytoplasmatic pool by reduced forms of 

NAD and NADP, to accelerate ATP formation, change over energy formation from NAD-

dependent to FAD-dependent way, eliminate an excess of acetyl-CoA, support activity of 

the Krebs’ cycle in hypoxic conditions, stabilize membrane potential of mitochondria and 

cell membranes. Advantage of succinate oxidase way versus NAD-dependent substrates in 

competition for respiratory chain is amplified in the hypoxia conditions because flavines 

(flavoproteins) continue in oxygenated form longer than pyridine nucleotides. 

Disruption of energy metabolism can be mainly observed at the stage of succinate 

formation. That may be caused by oxidative stress-induced changes of stable state of 

plasmatic and mitochondrial membranes and changes in activity of membrane-bound 

enzymes of the Krebs cycle and GABA bypass [100, 101]. Significant activation of the GABA 

bypass enzymes takes place during ischemia-reperfusion which not only causes raise of 

succinate formation, but also leads to increasing formation of gamma-hydroxybutyric acid 

through reductase reaction. GHBA has protective effect against changes of energy formation 

processes in brain tissue during hypoxia [102]. As activity of glutamate dehydrogenase in 

brain is rather low compared with other tissues, GABA bypass plays a key role in 

compensatory maintenance of succinate level sufficient for adequate metabolism in 

“succinate oxidase” way in different extremal situations, for example in brain ischemia-

reperfusion conditions. 

Succinic acid derivatives are effective modern antioxidants in the brain because succinate 

regulates activity of SDH in the Krebs’ cycle and restores activity of respiratory 

mitochondrial chain not only, but increases microcirculation in tissues. 

5. Role of CoA in mechanisms of neuroprotection in brain ischemia-

reperfusion conditions 

Beneficial effects of precursors of CoA biosynthesis, such as pantothenic acid and its 

derivatives, include protection from lipoperoxidation and supporting membrane structure, 

and these effects have been observed in radiation injury, miocard ischemia, diabetes 

mellitus, CCl4 -intoxication, heavy hypothermia, etc [103-106]. Protective action of 

pantothenate derivatives have been reported in situations accompanied by oxidative stress, 

for example, in experimental ischemia-reperfusion of myocardium. It has been shown that 

antioxidative and membrane-protective effects of the pantothenate derivatives are 

accompanied by an activation of biosynthesis CoA system and increasing of intracellular 

level of a free CoA [108, 109]. Presumably, the mechanism of cell protection is CoA-

dependent or realized through CoA-(acyl-CoA)-dependent biochemical reactions, including 

rise of intracellular glutathione level and maintenance of its redox status. 

It is believed that the physiological function of CoA system is participation in formation of 

redox potential of glutathione and proteins, redox signaling and maintenance of biological 

membrane stability, especially in brain tissue [104, 105, 106]. 
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The CoA biosynthesis system is a group of very stable continuously active self-regulated 

processes focused on maintaining stability of intramitochondrial CoA-SH (up 70-80% of the 

total cell value). This function maintains constant flow of oxidative substrates and their 

effective using for ATP formation in the citric acid cycle [109, 110, 111]. 

The lesser CoA pool in cytosol where acyl-CoA is used in biosynthetic processes 

(biosynthesis of phospholipids, fatty acids) is studied to a lesser extent. “Turnover” pool of 

the coenzyme takes part in reactions of carnitine-dependent transfer of fatty acid residues 

and acetate through mitochondrial membranes [105]. The main events for interrelations 

between specifically bound cytosolic CoA-S-S-protein, CoA-S-S-glutathione, free and 

proteidized glutathione take place within cytosolic compartment (including endoplasmatic 

reticulum) presumably due to thiol-disulfide-exchange reactions which provide stability 

during limited variations of redox potential and support a realization of redox sygnaling. 

Based on this hypothesis, the capability of CoA biosynthesis precursors in low 

concentrations (0.1-1 мМ) or in vivo experiments prevents lipoperoxidation activation, 

damages of membrane integrity initiated by different physical or chemical factors. The 

obligatory condition of the above-mentioned defensive effect is biotransformation of 

pantothenate derivatives into CoA and significant increase of intracellular GSH level. The 

process is highly specific because homopantothenic acid which is similar to pantothenic one 

in terms physical and chemical properties can not transform into CoA, does not increase 

intracellular glutathione level and does not protect plasmatic membrane stability in cell 

culture [112]. 

Additional effects of the CoA precursors in defense of lipoperoxidative activation have also 

been observed. These include rapid initiation of lipid biosynthesis from labeled precursors, 

positive influence on mitochondrial energy parameters, as well as protection against 

apoptosis activation caused by free radical oxidation products [113, 114]. Redox sygnaling 

process controls the initiation and direction of these processes. The redox potential is 

determined by the glutathione system predominantly [105, 115]. This data may confirm that 

the CoA biosynthesis system is the most important factor of intracellular stability of GSH 

level [103, 105]. 

Maintenance of sufficiently high CoA biosynthesis activity has an important role in brain 

because acetyl-CoA is used not only as the main way for glucose intake into the Krebs cycle 

but is also a substrate for acetylcholine synthesis. The relationship between ability for CoA 

biosynthesis and activity of acetylcholine metabolism within cholinergic neurones may be 

an important factor in modulation of their sensitivity to damaging influences [103]. 

Among the necessary conditions for successful biosynthesis of acetyl-CoA, are presence of 

CoA precursors inside mitochondria, and also the presence of carnitine which transfers 

acetyl radicals into mitochondria. Under oxidative stress conditions when a lot of 

lipoperoxide products are released from membranes as a result of phospholipase activation, 

the potential for CoA sequestration increases, which includes appearance of hard to 

metabolize acyl-CoA derivatives. Under these conditions the role of carnitine increases. СоА 

and L-carnitine are among the key factors of intramitochondrial metabolism of fatty and 
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organic acids, and relationship between their levels represents an essential mechanism for 

cytosol-mitochondrial process of acyl residue activation and transfer [110, 116]. Based on the 

main localization of a total CoA within mitochondrial matrix, while carnitine is located in 

cytosol, the molar ratio of CoA/carnitine may have significant functional role for decrease of 

long-chain acyl-CoA in cytosol and their accelerated utilization in a β-oxidation process. 

Generation and use of succinyl-CoA in mitochondria have a special role for mitochondrial 

oxidation regulation during oxidative stress caused by ischemia-reperfusion [107, 108]. 

Chances for alternative succinyl-CoA biosynthesis increase significantly when CoA 

biosynthesis processes are activated in cytosol. In view of this, data on the effects of 

carnitine on the activity of the key enzyme of CoA biosynthesis, namely patothenate kinase, 

has high significance. It has been shown that L-carnitine cancels out inhibitory action of 

physiological concentrations of dephospho-CoA, CoA-SH, and acetyl-CoA on pantothenate 

kinase. This enables directed regulation of CoA-dependent metabolic processes following 

simultaneous injection of carnitine substances and pantothenate derivatives - precursors of 

CoA biosynthesis - namely, panthenol [117, 118]. 

Study of changes of CoA level during ischemia or ischemia-reperfusion showed markedly 

stable ratio and levels of free CoA, short-chain acyl-CoA, and on the whole the acid-soluble 

fraction of CoA, in hemispheres during ischemic damage [117]. Following 2-3 h of brain 

ischemia, the free CoA level declines. This diminishment with simultaneous decrease of the 

acid-soluble CoA fraction achieves maximal reduction within 24 h under continued 

conditions of reperfusion (reoxygenation). These results confirm significance of the CoA 

system in pathogenic mechanisms of reoxygenation-reperfusion syndrome development. 

CoA is one of the fundamental metabolism factors, and its biosynthesis and catabolism are 

subject to rigid control on the cell level. Therefore, as a rule, changes of particular CoA 

forms may happen only under extreme conditions and after prolonged period of time, 

sufficient to cause imbalance in metabolism regulation systems in the cell. Such imbalance 

starts to influence the CoA system during ischemia no earlier than one hour after occlusion 

of arteria carotis. 

Data on the key role of the CoA biosynthesis system in maintaining redox potential of the 

glutathione system, neuronal membrane stability and defense of nitroperoxide acyl-CoA 

gives rationale to the use of CoA precursors in treatment of ischemia and ischemia-

reperfusion-induced damages in the brain tissue. 

6. Role of selenium in mechanisms of antioxidant protection for brain 

Selenium is an essential microelement in different brain functions [119-124]. 

Neuroprotective potential of selenium is realized through the expression of selenoproteins: 

glutathione peroxidase, thioredoxine reductases, methionine sulfoxide reductases, 

selenoproteins P and R, which participate in regulation of the oxidation-reduction state of 

the neurones and glial cells under both physiologic conditions, and during oxidation stress 

[125, 126, 128]. Selenium regulates antioxidative processes in the CNS, protects brain tissue 
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from neurodegenerative injuries during Alzheimer and Parkinson diseases, prione diseases, 

has antiischemic and angiogenic actions, etc. Insufficient level of selenium intensifies 

damages of neuron functions and structure caused by different endogenic and exogenic 

affections and leads to some neurodegenerative pathologies [122, 129-132]. 

The biological role of selenium is explained by the selenium presence in active sites of 

selenium-related enzymes [121, 133], which protect brain tissue during oxidative stress. 

Expression extremely diverse Se-containig proteins is observed in the brain. Selenoprotein P 

is required for transfer of selenium into the brain, and the brain selenium level is strictly 

dependent from an expression of selenoprotein [129]. Activity of Se-dependent enzymes in 

the brain is maintained at rather stable levels even during profound selenium deficiency, 

owing to the presence of unique Se-transport system in the brain (proteins containing 

selenium-cysteine, Se-transported protein of a Golgi apparatus). This system achieves its 

maximum value in hypothalamus. 

Injections of selenium-containing compounds lead to an increase of activities of glutathione 

peroxidase and thioredoxin reductase, decrease of lipoperoxidation processes, cell defense 

from apoptosis [122, 126, 127]. Selenium ions activate oxidative-reductive enzymes of 

mitochondria and microsomes, take part in ATP synthesis, in electron transfer from 

hemoglobin to oxygen, maintain cysteine turnover, enhance α-tocoferol action. 

7. Metabolic approaches to correction for brain ischemia-reperfusion-

caused injuries 

Steady advances in the neurosciences have elicidated the pathophysiological mechanisms of 

brain ischemia and have suggested many therapeutic approaches to achieve 

neuroprotection in the acutely ischemic brain that are directed at specific injury mechanisms 

[134-136]. Nevertheless, methods of protection of ischemia and reperfusion-induced 

damages are still lacking [ 51, 137, 138]. Search for new ways of neurodefense during brain 

ischemia-reperfusion is necessary due to the absence of sufficient protective activity in the 

most substances with specific focus in clinical conditions: controlling excitotoxic effects of 

neurotransmitter amino acids (modulators of glutamic acid receptor activity and Ca-

channels), regulating redox status of cells, as well as presence of high toxicity in the most 

anti-ischemic medicines [51, 139-141]. In the past two decades, numerous attempts were 

made to use different substances with the effect on Ca level in a cell and glutamate 

extracellular level, aiming to apply these as drugs for ischemia-induced injuries treatment, 

but they have not been successful in men [51, 139-141]. For example, in experimental 

models, blockators of NMDA- and AMPA-receptors of glutamate exhibit high protective 

action, but they have strong side-effects and weak protective effects in humans, especially 

blockators of NMDA-receptors. The role of glutamate in neurotoxic phenomena during 

ischemia is known to be significant, but usage of glutamate receptor antagonists is rather 

problematic [51]. There are ongoing studies of Mg substances which block NMDA-

receptors, as well as with blockators of AMPA-receptors. There have been recent proposals 

to combine usage of several drugs with different mechanisms of action. All of the above 
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drugs have a common property – rather high toxicity. Therefore, usually a certain 

combination of drugs is applied in order to minimize their toxicity and maximize 

effectiveness [140]. 

Substances for metabolic therapy may be particularly useful during treatment of brain blood 

circulation injuries in the case of their simultaneous application with specific medicines 

because they have no toxic effects and may be used safely for prolonged period [51, 142, 

143]. Apart from these drugs, compounds for so-called restoration therapy may be used. 

Their effects include restoration of metabolism and blood flow in damaged region. 

Application of the metabolic substances that help to maintain energy metabolism and redox 

status of glutathione system may be useful for remedying damages to the brain after 

ischemia-reperfusion [51, 143]. Previously we have shown high efficacy of pantothenic acid 

derivatives – CoA precursors, as a means of protecting cell membranes from different types 

of oxidative stress [117, 118, 144]. D-panthenol presents an important substance in this 

respect because it penetrates into the brain through blood-brain barrier easily and is 

converted into pantothenic acid, 4-phosphopantothenic acid, CoA, and after that into acyl-

CoA (acetyl-, malonyl-, succinyl-CoA), which have high metabolic activity. These effects 

create the preconditions for stabilization of CoA-dependent processes of membrane 

phospholipid biosynthesis, neurotransmitter biosynthesis, regulation of energic processes, 

etc [118]. 

The efficacy of panthenol as a neuroprotector within a stroke model in rats has been 

demonstrated [117, 118, 144]. Panthenol not only decreased the volume of infarction, but 

also diminished neurological deficiency in animals [103]. Fairly high protector activity of D-

panthenol was observed in respect to changes of energic metabolism and glutathione system 

activity during brain ischemia-reperfusion. Protective effects of pantothenic derivatives is 

not related to their action as free radical scavengers, however. They act primarily as CoA 

precursors, whereas CoA accelerates various metabolic pathways, such as biosynthesis of 

glutathione, which constitutes one of the main systems of cell protection against oxidative 

stress. 

Succinic acid is essential for keeping energy formation processes stable in the brain under 

extreme conditions [94-97]. Consequently, injections of panthenol and succinate following 

brain ishemia-reperfusion stabilize levels of lipoperoxidation in blood and in brain 

hemispheres, stabilize levels of protein SH-groups in blood, lead to significant decrease of 

the GSSG level and normalization of glutathione enzyme activities, as well as glutamate and 

glutamine metabolism in the brain to control values [118]. D-panthenol and succinate 

ammonium injection served to partially remedy the injuries and restore these parameters to 

their normal levels, especially if administered together. These effects are likely linked to 

activation of succinyl-CoA biosynthesis. 

Attempts were made to use selenium-containing compounds for prevention of ischemia-

indused injuries, such as ebselen (2-phenyl-1,2-benzisoselenozol-3), which imitated 

glutathione peroxidase activity [146-148]. However, under clinical conditions the ebselen 

was not effective. Di-(3-methylpyrazolil-4)-selenide (selecor) imitates effects of 



 

Lipid Peroxidation 504 

selenoproteins, has low toxicity, and satisfactory bioavailability. Additional injections of 

selecor increase effects of the panthenol and succinate, especially on the lipoperoxidation 

parameters and activities of glutathione system and selenium-bound enzymes, on ischemia-

reperfusion- induced injuries [149]. 

Effects of D-panthenol and succinate on decrease of lipoperoxidation activities contribute to 

the overall protective effects of the composition. However, it is evident that metabolic 

actions of the substances are related to their capasity for regulation of energy metabolism 

and mitochondrial respiration activity, restoration of the CoA-SH level and cell redox status, 

membrane-protective activity of the panthenol [118]. Addition of di-(3-methylpyrazolil-4)-

selenide (selecor) to D-panthenol and succinate does has limited effect on protective 

antioxidant properties of the composition. It is likely that this provides additional evidence 

for significance of specifically metabolic effects of the composition. Increase of selenium 

level in blood plasma, which may contribute in maintaining of antioxidant activity of 

glutathione system, takes place in the absence of selenoprotein substrates, after injections of 

panthenol and succinate. Nevertheless, addition of a selenium source to panthenol and 

succinate strengthened protective potential of the substances with respect to changes for 

enzyme activities of glutamate and glutamine which play an important role in maintaining 

of energy supply and detoxication in ischemic brain tissue and confirms the antiischemic 

effect of the substances. Effects of di-(3-methylpyrazolil-4)-selenide may be explained less by 

selenium supply as a selenoprotein component rather than by its modeling of selenoprotein 

activity, as is known to be the case with ebselen [146-148]. 

Therefore it is expected that the tested substances, such as panthenol, succinic acid, selecor, 

and potentially other metabolic therapy drugs may have high efficacy as neuroprotectors in 

brain ischemia and reperfusion-induced damages. 
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