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1. Introduction 

About twenty-one percent of the air we breathe is composed of oxygen, and our life will not 

be possible without it. Oxygen is however a toxic, highly reactive molecule which was 

originally released in atmosphere as a waste product of the first photosynthetic organisms. 

Its accumulation on Earth indeed led to a massive extinction of living species. Few 

organisms survived and some developed the ability to use this toxic oxygen to improve the 

production of energy from carbohydrates. This “oxidative metabolism” was however a 

double-edge sword as the use of intracellular oxygen generates deleterious oxidative 

damages. To protect themselves toward this toxicity, those organisms consequently 

developed several “antioxidants” protection mechanisms which helped them maintain a 

balance between oxidative damage and efficient use of oxygen to produce energy. 

When antioxidant defences are reduced and/or oxidative mechanisms increased, 

uncontrolled oxidation of cell targets leads to the accumulation of reactive oxygen species 

(ROS) and a state of “oxidative stress”, often deleterious for the cells. This stress is involved 

in the pathophysiology of several human diseases, and especially in the development of 

metabolic diseases, even if its causative role remains questionable. A definite increase in 

oxidative stress biomarkers can be found in obese and diabetic humans as well as in animal 

model of these diseases. Accumulation of ROS can be deleterious by itself or can induce the 

oxidation of proteins, nucleic acids and lipids, generating secondary by-products. The 

specific reactivity of ROS towards polyunsaturated fatty acids (PUFAs) present in cell 

membranes induces lipid peroxidation, a noxious mechanism producing toxic aldehydes. 

Among them, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) have been 

extensively studied. Originally simple markers of lipid peroxidation, these aldehydes have 

demonstrated causative roles in the impairment of cellular functions: activation of signalling 

pathways, apoptosis, and modification of enzyme function. In addition to being hallmarks 
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of oxidative damage, lipid aldehydes could be mediators of oxidative insults, propagating 

tissue injury and activating cellular stress signalling pathways. Several studies 

demonstrated the association of obesity and diabetes with lipid peroxidation by-products, 

and the role of aldehydes in impairment of insulin function and signalling was recently 

pointed out. 

This chapter aims to review the diverse implications of lipid peroxidation by-products in the 

pathophysiology of metabolic diseases, from evidence of their production during obesity 

and diabetes to the cellular mechanisms of their toxicity and protection against their 

deleterious effects. 

2. Lipid peroxidation by-products 

Under conditions of oxidative stress, excessive production of reactive oxygen species 

promotes the peroxidation of polyunsaturated fatty acids (PUFA). The resulting 

accumulation of hydroperoxides, unstable molecules, leads to their non-enzymatic 

degradation in many compounds, including aldehydes. Quantification of lipid peroxidation 

in biological samples has been extensively performed with the thiobarbituric acid (TBA) test. 

TBA detects malondialdehyde (MDA), an end-product of nonenzymatic PUFA oxidative 

degradation, which has therefore been used for decades as a marker of lipid peroxidation 

(Gutteridge, 1982). Another aldehyde: acrolein, first attracted attention because of its 

formation during tobacco combustion and its ubiquitous presence in the environment (Dong 

& Moldoveanu, 2004). Because of its carcinogenic potential, its role in smoking-related 

diseases has received extensive attention; however, acrolein is also produced endogenously 

though lipid peroxidation and its link with oxidative-associated pathologies is now well 

established. 4-hydroxy-2-alkenals are specific by-products of the oxidation of omega-3 and 

omega-6 fatty acids. 4-hydroxy-2-nonenal (HNE) is derived from the oxidation of 

polyunsaturated fatty acids of the n-6 series, mainly linoleic and arachidonic acids, while 4-

hydroxy-2-hexenal (HHE) results from the peroxidation of polyunsaturated fatty acids of 

the n-3 series (mainly docosahexaenoic, eicosapentaenoic and linolenic acid). The 

peroxidation of arachidonic acid via 12-lipoxygenase leads to the formation of 4-hydroxy-2-

dodecadienal (HDDE) (Guichardant et al., 2006). 

 

Name 

Molecular 

Weight 

(Da) 

Molecular

Formula 
Skeletal Formula 

Acrolein (prop-2-enal) 56.1 C3H4O  
Malondialdehyde (propanedial, MDA) 72.1 C3H4O2  

4-hydroxy-2-hexenal (HHE) 114.1 C6H10O2 
 

4-hydroxy-2-nonenal (HNE) 156.2 C9H16O2 
 

4-hydroxy-2-dodecadienal (HDDE) 196.0 C12H20O2 
 

Table 1. α,β-Unsaturated aldehydes produced during polyunsaturated fatty acids oxidation 
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2.1. Chemistry and reactivity 

Acrolein, MDA and 4-hydroxy-alkenals are α,β-unsaturated aldehydes, a class of 

compounds sharing the general structure C=C−C=O. They are characterised by an 

aldehyde group (C=O) on carbon 1 and a conjugated double bond (C=C) between carbons 

2 and 3 (Table 1). In this structure, the oxygen atom of the carbonyl group increases the 

polarity of the double bond, which makes α,β-unsaturated aldehydes potent electrophiles. 

Acrolein has the simplest structure composed of 3 carbons, MDA is a dicarbonyl 

compound and 4-hydroxy-2-alkenals are characterized by the presence of a hydroxyl 

group on carbon 4. HHE, HNE and HDDE only differ by the length of their carbon chain 

and the presence of an additional double bond for the HDDE. In the case of MDA and 4-

hydroxy-alkenals, the presence of a second oxygen atom makes the double bond even 

more reactive. 

These aldehydes are part of the “reactive electrophile species” able to form covalent adducts 

with the nucleophilic groups present in DNA, proteins and phospholipids. In physiological 

conditions, they spontaneously react with the thiol group of glutathione to form Michael 

adduct by attack of the nucleophilic group of glutathione to the double bond of aldehydes. 

They can also react with thiol groups present on cysteine residues of certain proteins, 

leading to impairment of their biological activity. Under certain conditions, especially 

alkaline pH, aldehydes react with the amine groups present in proteins, nucleic acids and 

aminophospholipids, leading to Michael adducts. On the other hand, the reaction between a 

primary amine group and the carbonyl group of the aldehyde leads to the formation of 

Schiff bases (Schaur, 2003). 

Aldehydes produced during lipid peroxidation are precursors of Advanced Lipoxidation 

End products (ALEs). Together with Advanced Glycation End products (AGEs) generated 

during glycoxidation, they accumulate in cells and tissues. The “carbonyl stress” is a result 

of this adduct accumulation, which induces protein dysfunctions and consequent 

pathological events such as inflammation and apoptosis (Negre-Salvayre et al., 2008). 

2.2. Cellular effects 

2.2.1. Cytotoxicity 

Since α,β-unsaturated compounds are strong electrophiles, they exhibit a high cytotoxic 

and mutagenic potential and have consequently been extensively studied for their effects 

on cell viability. HNE, HHE and acrolein indeed induce cell death, but the lethal 

concentration 50 (LC50), concentration that induces the death of 50% of the cells, is subject 

to variation, depending on the aldehyde, exposure duration and cell type (Table 2). The 

LC50 for a long exposure (>16 hours) to HNE or HHE is however consistently found 20-60 

µM in several cell types, including human lymphoma Jurkat cells, lens epithelial cells, 

hamster V79-4 cells and muscle cells (Table 2). For acrolein, the same treatment gives a 

range of LC50 of 5-100 µM in human fibroblasts, human neuroblastoma cells, PC12 

chromaffin cells and lymphocytes. MDA-induced cell death is less documented, even if 
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the LC50 range for MDA is found around 1 mM in cortical, endothelial cells and 

fibroblasts. MDA was also reported to induce cell cycle arrest, which is to relate to cell 

damage and death (Ji et al., 1998). HDDE appears to be the most toxic lipid aldehyde with 

a LC50 in endothelial cells in the submicromolar range. 

 

Name LC50, µM References

Acrolein 

 (prop-2-enal) 
5-100 

Poirier et al., 2002; Luo et al., 2005;  

Jia et al., 2009b, 2009a 

Malondialdehyde 

 (propanedial, MDA) 
600-3000 

Michiels & Remacle, 1991;  

Hipkiss et al., 1997; Cheng et al., 2011 

4-hydroxy-2-hexenal 

 (HHE) 
20-60 

Liu et al., 2000; Choudhary et al., 2002; 

Pillon et al., 2010; Li et al., 2011 

4-hydroxy-2-nonenal 

 (HNE) 
20-60 

Liu et al., 2000; Choudhary et al., 2002; 

Pillon et al., 2010; Li et al., 2011 

4-hydroxy-2-dodecadienal 

 (HDDE) 
0.22 Riahi et al., 2010 

Table 2. Range of lethal concentration 50 for long-term treatment (>16 hours) with α,β-unsaturated 

aldehydes. LC50 values were calculated from the indicated references. 

On the opposite, very little cell death is detectable for short term treatments (<4 hours), 

likely because aldehyde-induced cell death involves apoptosis mechanisms not yet 

occurring during this short period of time. Several studies indeed reported that cell death is 

induced by aldehydes through apoptosis for low concentration and both apoptosis and 

necrosis for high doses (Luo et al., 2005; Liu et al., 2010). Acrolein-induced necrosis was 

described in few studies (Luo et al., 2005), but mitochondrial-driven cell death seems to be 

the canonical road and was widely studied. Acrolein-induced apoptosis was indeed 

confirmed in several cell types through DNA fragmentation, phosphatidylserine 

externalization, poly(ADP-ribose) polymerase cleavage and activation of caspases (Pan et al., 

2009; Roy et al., 2010). Last but not least, hydroxyalkenals are potent activators of apoptosis. 

They both induce DNA fragmentation and activation of caspases in very different cell types 

(Choudhary et al., 2002; Vaillancourt et al., 2008). In addition, HHE has been shown to 

decrease the expression/phosphorylation of Bcl-2, while increasing that of Bax, leading to 

apoptosis of human renal epithelial cells (Bae et al., 2011; Bodur et al., 2012). 

Interestingly, the toxicity of aldehydes is highly correlated to their ability to form covalent 

adducts on proteins. In muscle cells, the lethal concentration 50 (LC50) for 12 different 

aldehydes was calculated, including HHE and HNE (Pillon et al., 2010). This LC50 was 

strongly correlated with their respective potency to form covalent adducts on albumin in 

vitro (Figure 1). This demonstrates that the cytotoxicity and likely other biological effects of 

aldehydes mainly occur through chemical adduction of other biomolecules. 
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Figure 1. Toxicity is correlated to the adduction ability. Viability of muscle cells was measured in 

response to 12 different aldehydes1. The calculated LC50 was then correlated to their ability to form 

covalent adducts on bovine serumalbumin (Pillon et al., 2010).  

2.2.2. Oxidative stress and ROS production 

The classical sequence of events is that oxidative stress triggers lipid peroxidation which in 

turns produces aldehydes by-products. However, an interesting paradigm was pointed out 

by several groups: lipid aldehydes are able to induce the production of ROS, and this is 

thought to be of importance in their deleterious effects. For instance, acrolein treatment 

produces nitric oxide (Misonou et al., 2006) and induces generation of intracellular oxidants 

(Luo et al., 2005; Wang et al., 2011). Similarly, accumulation of intracellular ROS was 

described in cells treated with MDA (Cheng et al., 2011); and unsurprisingly, the 4-

hydroxyalkenals HHE and HNE share the same ability. HHE induces ROS in neurons and 

tubular epithelial cells (Long et al., 2008; Bae et al., 2011) and HNE induces mitochondrial 

oxidative stress in neurons, vascular muscle, liver and skeletal muscle cells (Uchida et al., 

1999; Lee et al., 2006; Pillon et al., 2012). The source of ROS was suggested to be 

mitochondria, as several aldehydes have been shown to induce a significant decrease in 

mitochondrial membrane potential (Uchida et al., 1999; Luo et al., 2005). 

 

Figure 2. The vicious circle linking ROS and lipid aldehyde production 

                                                                 
1 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal, 4-hydroxy-2-dodecenal, 4-hydroxy-2-hexenal 

dimethylacetal, 4-hydroxy-2-nonenal dimethylacetal, 4-hydroxy-2-dodecenal dimethylacetal, trans-2-

hexenal, trans-2-nonenal, trans-2-dodecenal, hexanal, nonanal, dodecanal 
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This concept is reinforced by the fact that an increase in glutathione pool can prevent the 

deleterious effects of HNE on both adduct formation and ROS production (Pillon et al., 2012) 

and that dysfunction of glutathione S-transferase, a major enzyme for aldehyde 

detoxification, leads to excess 4-hydroxy-2-nonenal and oxidative stress (Kostyuk et al., 2010; 

Curtis et al., 2010). Based on this body of evidence, lipid by-products can be seen as parts of 

a vicious circle in which increased ROS production generates aldehydes which further 

amplify the generation of oxidative species and so on (Figure 2). 

2.2.3. Signalling pathways and transcription factors 

Consistent with the extensive work done on cytotoxicity, the stress signalling pathways 

have been primarily pointed out as the main intracellular route activated by aldehydes. The 

mitogen-activated protein kinases (MAPKs) are indeed activated by several aldehydes 

including MDA, acrolein and HNE. MDA activates c-Jun N-terminal kinases (JNK) and 

extracellular signal-regulated kinases (ERK) (Cheng et al., 2011) and acrolein-induced 

apoptosis occurs through activation of p38 and ERK (Tanel & Averill-Bates, 2007). The 

activation of these three MAPK has also been described following treatment with HNE 

(Uchida et al., 1999; Zarrouki et al., 2007; Pillon et al., 2012) and HHE (Je et al., 2004; Bae et al., 

2011). Overall, most studies investigated the cytotoxic effects of aldehydes and thus focused 

on cellular stress pathways; therefore, very little data is available regarding their potential 

effects on other pathways. Only very recent work shows that HNE interfere with insulin 

signalling pathway through oxidative stress and adduction of IRS1 and Akt (Demozay et al., 

2008; Shearn et al., 2011; Pillon et al., 2012). 

Aldehydes regulate gene expression by activating the signalling pathways described above, 

or by direct modification of transcription factors. Unsurprisingly, aldehyde production 

regulates the expression of several antioxidant enzymes such as NAD(P)H quinone 

oxidoreductase-1, Heme oxygenase-1 and glutathione S-transferase (GST). This occurs 

through the activation of the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which drives 

the expression of these antioxidant enzymes. Aldehyde-induced Heme Oxygenase-1 

expression is indeed mediated by the Nrf2 pathway in HUVECs (Lee et al., 2011) and Nrf2 

silencing significantly attenuates the induction of this same gene by acrolein (Zhang & 

Forman, 2008).  

Beyond the expression of antioxidant enzymes, cellular growth, apoptosis and inflammatory 

responses can be induced by aldehydes, involving the activation of the nuclear factor kappa 

B (NF-κB) family. The effects of acrolein on NF-κB activation are controversial, but its 

activation by HNE and HHE is well documented. HHE and HNE induce NF-kappaB 

activation through IKK/NIK pathway, leading to IκB phosphorylation and subsequent 

proteolysis (Page et al., 1999; Je et al., 2004; Lee et al., 2004). HNE has moreover been shown 

to induce DNA-binding of NF-κB in vascular smooth muscle cells (Ruef et al., 2001).  

The peroxisome proliferator-activated receptor (PPAR) family regulate the expression of 

genes that encode proteins involved in energy balance. They act as ligand-activated 
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transcription factors and are responsive to the lipid status of the cell, therefore important 

during high fat diets and obesity. HNE is an intracellular agonist of PPARβ/δ while HHE do 

not activate this receptor (Coleman et al., 2007). Through this pathway, HNE significantly 

elevates adiponectin gene expression, concomitant with increased PPAR-γ gene expression 

and transactivity. Meanwhile, HDDE acts through PPARδ signalling pathways to regulate 

glucose transport in vascular endothelial cells subjected to hyperglycemia (Riahi et al., 2010) 

and HNE stimulates insulin secretion from Beta cells through interaction with PPARδ 

(Cohen et al., 2011). 

2.3. Concentration in plasma and tissues 

Little data is available concerning aldehydes levels in biological fluids, except for MDA and 

HNE which have been widely used as lipid peroxidation markers. The concentration of 

MDA in the plasma of healthy subjects is around 2-5 µM and increases up to 2-fold in type 2 

diabetic patients (Figure 4). In the specific context of metabolic diseases, MDA is positively 

correlated with BMI and waist circumference in obese patients (Furukawa et al., 2004). 

Depending on the study, HNE concentration has been found to range from 50 nM to 10 µM 

under normal conditions. This significant variability in concentration according to the 

authors could be explained partly by the method used (LC/MS, GC/MS ...) and also by the 

difficulty to measure such reactive derivatives. If HNE has been widely studied, there is 

however scarce data in the literature regarding the pathophysiological concentrations of 

HHE and HDDE. Plasma HHE concentration was however found to be around 9 nM in 

human, and dramatically increases to reach 90 nM after several weeks of a diet rich in 

omega-3 fatty acids (Calzada et al., 2010). Our group recently showed that HHE 

concentration was 20 nM in humans and 7 nM in rats and that it increases in both type-2 

diabetes patients and type-1 diabetic rats, reinforcing existing evidence for a role of lipid 

aldehydes in metabolic diseases. 

 

Tissue Aldehyde 
Concentration

(µM) 
References 

Plasma 

MDA 1 – 6 See figure 4 

HHE 0.006 – 0.090 
(Calzada et al., 2010;  

Pillon et al, unpublished) 

HNE 0.007 – 11 
(McGrath et al., 2001; Selley, 

2004; Syslova et al., 2009) 

Exhaled breath condensate 

HNE 0.25 - 5 
(Syslova et al., 2009;  

Manini et al., 2010) 

MDA 0.63 - 14 
(Syslova et al., 2009;  

Manini et al., 2010) 

Ventricular Fluid HNE 0.2 - 120 (Lovell et al., 1997) 

Pancreatic Islets HNE 23 – 35 (Miwa et al., 2000) 

Table 3. Concentration range of aldehydes in healthy plasma and tissues 
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One should keep in mind that all current quantification methods (HPLC, GC) only assay the 

free fraction (i.e. unreacted) of lipid aldehydes present in samples. Being very reactive, this is 

certainly not representative of the amount indeed produced from lipid peroxidation, which 

rapidly react with neighbour targets to form covalent adducts and thus, other non-

quantitative methods estimating the amount of HNE have been used. For example, 

detection of protein adducts by immunohistochemistry has shown a significant increase in 

HHE and HNE proteins adducts in Parkinson's disease and in chronic liver disease 

(Yoritaka et al., 1996; Paradis et al., 1997). Of particular interest for this chapter, HNE adducts 

on plasma albumin are increased in type 2 diabetes (Toyokuni et al., 2000).  

3. Insulin secretion and type-1 diabetes  

3.1. Lipid aldehydes and insulin secretion 

Oxidative stress associated with hyperglycemia is suspected to participate in beta cell 

dysfunction in terms of insulin synthesis and/or secretion. Diabetic animals display 

increased levels of lipoperoxidation in pancreas, and HNE concentration was reported to 

reach up to 35 µM in pancreatic islets of diabetic rats (Miwa et al., 2000). In addition, HNE-

modified proteins are increased in the pancreatic beta-cells of Goto-Kakizaki rats, a genetic 

model of non obese type 2 diabetes (Ihara et al., 1999), as well as in type 2 diabetic patients 

(Sakuraba et al., 2002). HNE and other lipid peroxidation by-products such as 2-hexenal and 

2-butenal inhibit glucose-induced insulin secretion in isolated rat islets. Both glucose 

utilization and glucose oxidation are blunted in islets after treatment with aldehydes 

suggesting that they impair glucose-induced insulin secretion through an interference with 

glycolytic pathway and citric acid cycle (Miwa et al., 2000). Another piece of evidence comes 

from the exposure of beta cells to NO donors and to interleukin-1 beta, which leads to 

generation of oxidative stress and lipoperoxidation by-products. MDA and HNE produced 

under this condition are involved in the activation of an apoptotic program, contributing to 

the reduction in the beta cell mass (Cahuana et al., 2003). Peroxynitrite indeed triggers 

lipoperoxidation in the beta-cell line RIN-5-F, and the resulting protein carbonylation is a 

key factor linking NO-dependent lipoperoxidation and apoptosis (Cahuana et al., 2003). 

Alloxan, a toxic glucose analogue, has been widely used to generate rodent models of type-1 

diabetes, as it selectively destroys insulin-producing cells in the pancreas. Alloxan-induced 

diabetic rats exhibit increased lipid peroxidation associated with defects in insulin secretion, 

which can be prevented by the antioxidant S-allyl cysteine therefore restoring insulin 

secretion and ameliorating the glycaemic control (Augusti & Sheela, 1996).  

3.2. Lipid aldehydes and the beta cells: Doctor Jeckyll or Mr Hyde? 

HNE was shown to elicit various physiological or physiopathological responses: high 

concentrations elicit beta cell death and defect in insulin secretion, while lower 

concentrations act as signalling mediators. In INS-1E beta-cells, elevated glucose levels 

increase the release of arachidonic acid and linoleic acid from membrane phospholipids and 
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promote their peroxidation to HNE. At non cytotoxic concentrations, HNE behaves as an 

endogenous ligand for nuclear receptor PPAR-δ, stimulating insulin secretion in beta-cells 

(Cohen et al., 2011). In rat islet beta-cell-derived RINm5F cells, a recent report demonstrates 

the involvement of the transient receptor potential (TRP) cation channels in the HNE-

induced insulin secretion. Short-term (1h) exposure to HNE induces a transient increase in 

intracellular calcium concentration and triggers insulin secretion. HNE induces calcium 

influx through activation of TRP channels (amongst which TRPA1) which appears to be 

coupled with the L-type voltage-dependent calcium channel, and ultimately insulin 

secretion (Numazawa et al., 2012). Lipid aldehydes should therefore be considered either as 

detrimental (>10 µM) or as beneficial (sub micromolar range) depending on their actual 

tissue concentration. 

3.3. Direct adduction of the insulin polypeptide 

Under conditions of oxidative stress, insulin, a polypeptidic hormone composed of 51 amino 

acid residues, is exposed to direct oxidative insult or to modification by lipoperoxidation by-

products. Several amino acids are putative sites of adduction, and thus, covalent binding of 

lipid aldehydes affect the biological actions of this hormone. This applies to acrolein and 

methylglyoxal, whose fixation on insulin has been shown to reduce both hypoglycemic 

effects in rats and glucose uptake in 3T3-L1 adipocytes (Jia et al., 2006; Medina-Navarro et 

al., 2007). HHE and HNE, toxic aldehydes generated during lipid peroxidation, also modify 

the B-chain of human insulin in vitro, predominantly at the His B5 and His B10 residues via 

Michael adduction (Figure 3). Adduct formation affects the biological activity of insulin in 

vivo, decreasing its hypoglycemic effect in mice and stimulation of glucose uptake in 

adipose and muscle cells (Pillon et al., 2011). 

 

Figure 3. Structure of insulin monomer displaying two HHE adducts on histidine residues. From Pillon 

et al, 2011. 

4. Obesity, insulin resistance and type-2 diabetes 

4.1. Lipid peroxidation by-products association with obesity  

Obesity is a major factor in the development of metabolic syndrome. After consumption of 

an energy-dense (i.e. high-fat) diet, plasma HNE levels increase rapidly and significantly 

within minutes (Devaraj et al., 2008). When consumed regularly, this diet promotes obesity, 

which suggests a role for HNE very early in the development of obesity. On the other hand, 

levels of circulating HNE tend to decrease when obese people are maintained on calorie 
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restriction (Johnson et al., 2007), demonstrating that lipid peroxidation is tightly linked to 

high fat diet and obesity. Furukawa et al. reported that increased oxidative stress in 

accumulated fat is an important pathogenic mechanism of obesity-associated metabolic 

syndrome. Production of ROS is indeed selectively increased in white adipose tissue of 

obese mice and associated with a blunted expression of antioxidant enzymes. In good 

agreement, fat accumulation correlates with systemic lipid peroxidation in humans 

(Furukawa et al., 2004), and the plasma concentration of MDA is 1.8 fold higher in subjects 

with a BMI above 40 kg/m2 compared to lean individuals (Olusi, 2002). Diet-induced obesity 

increases tissue and plasma accumulation of ALEs (protein–acrolein and protein–HNE 

adducts for example), suggesting that obesity is associated with an increase in the formation 

of lipid peroxidation-derived aldehydes (Baba et al., 2011). A significant accumulation of 

HNE was noticed in the white adipose tissue of obese mice, where the adipocyte fatty acid 

binding protein (AFABP also known as aP2) is the soluble protein most highly modified by 

HNE in this tissue (Grimsrud et al., 2007). In obese mice roughly 7% of the AFABP in 

adipose tissue is covalently modified by HNE resulting in a decreased binding affinity for 

fatty acids. Lipid peroxidation is however not restricted to adipose tissue since HNE is also 

elevated in skeletal muscles of Otsuka Long-Evans Tokushima fatty (OLETF) rat, a model 

for hyperphagic obesity (Morris et al., 2008). Intracellular triglyacylglycerols accumulate in 

the muscle of obese humans where it is considered as a pathogenic factor in the 

development of insulin resistance. In obese compared to endurance-trained subjects, the 

lipid peroxidation to intracellular triacylglycerols ratio was 4-fold higher suggesting that 

obesity is associated with increased muscle lipid peroxidation (Russell et al., 2003; Vincent et 

al., 2006).  

Chronic, low grade inflammation of white adipose tissue is a hallmark of obesity and a 

major contributor to oxidative stress and lipid peroxidation (Wellen & Hotamisligil, 2003). 

In the expanding adipose tissue, hypertrophied adipocytes contribute to the inflammation 

by up-regulating the expression and release of pro-inflammatory cytokines. In 3T3-L1 

adipocytes, HNE can dose-dependently increase the expression of the inducible 

cyclooxygenase (COX-2) (Zarrouki et al., 2007) and that of the plasminogen activator 

inhibitor-1 (PAI-1). In the meantime, HNE decreases the expression of the anti-

inflammatory, insulin-sensitizing hormone adiponectin (Soares et al., 2005; Wang et al., 

2012), therefore linking lipid peroxidation by-products and chronic inflammation. 

4.2. Lipid peroxidation by-products association with type-2 diabetes 

Epidemiological studies demonstrates that fasting glycemia is positively correlated with 

oxidative stress markers such as 8-epi-PGF2α and TBARs and negatively correlated with 

plasma glutathione (Trevisan et al., 2001; Menon et al., 2004). In type-2 diabetic individuals, 

8-epi-PGF2α is positively correlated to the HOMA index for insulin resistance (Gopaul et al., 

2001) and urinary acrolein correlates with glycated haemoglobin HbA1c (Daimon et al., 

2003). This was confirmed in animal models of insulin resistance which exhibit increased 

markers of oxidative stress, such as plasma F2-isoprostanes (Laight et al., 1999a). In parallel, 
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antioxidant defences are reduced during an oral glucose tolerance test in normal and non-

insulin-dependent diabetic subjects (Ceriello et al., 1998), and diabetes is associated with 

decreased vitamin C and glutathione (Maxwell et al., 1997; Dierckx et al., 2003). Reciprocally, 

an intensive treatment of diabetes improves circulating levels of H2O2 and MDA (Wierusz-

Wysocka et al., 1995); and improved insulin sensitivity resulting from exercise and/or 

dietary restriction is associated with reduced levels of lipid peroxidation products 

(Reviewed by Vincent et al., 2007). On the other hand, insulin sensitivity can be improved 

through antioxidant or carbonyl scavenging treatment (Kamenova, 2006; Vincent et al., 

2009), demonstrating the tight link existing between oxidative stress, oxidation by-products 

and insulin resistance. 

 

Figure 4. Plasma MDA concentration (µM) and blood GSH content (mmol/g haemoglobin) in healthy 

and type-2 diabetic (T2D) individuals. Results are a meta-analysis from 23 different publications;  

one dot represents the mean value obtained in one study2. In average, MDA is significantly increased  

by 60% while GSH is decreased by 25% in T2D compared to healthy subjects  

(paired student t-test, n=21). 

Among α,β-unsaturated aldehydes, only MDA and to some extend HNE have been studied 

as oxidative stress biomarkers in diabetes, and they are indeed both increased up to 2-fold in 

both human (Figure 4) and animal models of type-2 diabetes (Wierusz-Wysocka et al., 1995; 

Dierckx et al., 2003). It has moreover been demonstrated that Type-2 diabetes duration is 

independently associated with increased levels of lipid peroxidation (Nakhjavani et al., 

2010), and our group recently showed an increase in HHE concentration in type-2 diabetes 

patients, reinforcing existing evidence for the specific role of lipid aldehydes in insulin 

resistance.  

                                                                 
2 Results from Wierusz-Wysocka et al., 1995; Vijayalingam et al., 1996; Feillet-Coudray et al., 1999; 

Rábago-Velasco et al., 2000; Rizvi & Zaid, 2001; Seghrouchni et al., 2002; Dinçer et al., 2002; Dierckx et 

al., 2003; Duman et al., 2003; Pasaoglu et al., 2004; Memişoğullari & Bakan, 2004; Skrha et al., 2005; 

Kurtul et al., 2005; Ozdemir et al., 2005; Mahboob et al., 2005; Saxena et al., 2005; Sampathkumar et al., 

2005; Kuppusamy et al., 2005; Lapolla et al., 2007; Sathiyapriya et al., 2007; Singhania et al., 2008; Jain et 

al., 2009; Nakhjavani et al., 2010; Narasimhan et al., 2010; Shinde et al., 2011; Huang et al., 2011; 

Bahadoran et al., 2011; Zhang et al., 2011; Pácal et al., 2011; Calabrese et al., 2011 and Rasic-Milutinovic 

et al., 2012 
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Aldehydes concentration is increased in several tissues during diabetes, as revealed by 

increased levels of HNE in pancreas, liver, brain and heart. Pancreatic islets from type-2 

diabetic patients are positively stained with HNE, suggesting that oxidative stress through 

lipid peroxidation could contribute to the reduced beta-cell mass and islet-cell injury 

(Sakuraba et al., 2002). An increased level of HNE-modified proteins is reported in the 

pancreatic beta cells of Goto Kakizaki rats as a result of hyperglycaemia (Ihara et al., 1999); 

and accumulation of HNE is observed in liver of diabetic rats due to the impairment of 

HNE-metabolizing enzymes (Traverso et al., 1998, 2002). Diabetic mice under a high fat diet 

exhibit increased HNE adducts levels in temporal lobes relative to control (Lyn-Cook et al., 

2009), and HNE conjugation of GLUT3, the glucose transporter present in neurons, is 

increased in the hippocampus of diabetic rats subjected to stress (Reagan et al., 2000). When 

db/db obese mice are fed a Western diet containing 21% fat and 0.15% cholesterol, they 

develop obesity, hyperglycemia, and insulin resistance. In this situation, HNE is 

significantly elevated in the left ventricular myocardium of diabetic mice compared to their 

lean littermates (Yamashita et al., 2010). Finally, hyperglycemic Zucker Diabetic Fatty (ZDF) 

rats exhibited a 8-fold increase in plasma HDDE concentration compared to their lean non 

diabetic counterparts (Riahi et al., 2010). 

4.3. Causative role for lipid peroxidation by-products in the metabolic syndrome 

This body of evidence linking oxidative stress with the metabolic syndrome is however only 

based on correlations and do not decipher the mechanisms and/or the causative role of 

oxidative stress in diabetes. There are consequently two main hypotheses: 

1. First is chronic hyperglycemia which then leads to oxidative stress. In this case, lipid 

peroxidation products would be by-products of this oxidative stress and a consequence 

of diabetes, even if contributing to the progression of the disease and its complications. 

2. First is oxidative stress which precedes the development of diabetes and plays a 

causative role in its development. In this hypothesis, deregulation of antioxidant 

defences and increased oxidative stress would lead to accumulation of secondary by-

products consequently inducing insulin resistance. 

We will focus in this chapter on the second hypothesis for which evidences have been 

recently accumulating from human, animal and cell culture studies. 

Oxidative stress, through reactive oxygen species can positively and negatively regulate 

insulin signalling, depending on time, dose, model and free radical used (for review, see 

Bashan et al., 2009). It is however admitted that prolonged oxidative stress impairs insulin 

signalling, insulin-induced GLUT4 translocation and glucose uptake. This occurs through 

several mechanisms including, but not limited to IRS inhibitory phosphorylation, MAPK 

activation and endoplasmic reticulum stress. This body of evidence for the role of oxidative 

stress in insulin resistance has been demonstrated in adipocytes, muscle, liver and cardiac 

cells (Rudich et al., 1998; Bloch-Damti et al., 2006; JeBailey et al., 2007; Singh et al., 2008a; 

Shibata et al., 2010; Tan et al., 2011). Even in vivo, a pro-oxidant challenge provokes the onset 

of type-2 diabetes in insulin resistant rats (Laight et al., 1999b) and chronic methylglyoxal 
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infusion by minipump causes pancreatic beta-cell dysfunction and induces type-2 diabetes 

in Sprague-Dawley rats (Dhar et al., 2011). 

The role of lipid aldehydes in vivo during metabolic diseases is often indirectly assessed, and 

the most compelling evidence for a causative role of aldehydes comes from polymorphisms 

in the glutathione-S-transferase (GST) gene. This family of enzymes is responsible for the 

detoxification of aldehydes through conjugation to glutathione; and several deletion 

polymorphisms leading to blunted enzyme activity have been described. Patients carrying 

certain null GST polymorphisms had up to 3-fold increased incidence of type-2 diabetes 

mellitus compared to those with normal genotypes (Amer et al., 2011). Accordingly, the 

expression of the GST4A is blunted in the adipose tissue of obese insulin resistant subjects 

(Curtis et al., 2010). 

 

Figure 5. The obesity – lipid peroxidation vicious circle 

This same observation was made in animals model, were it has been suggested that 

excessive production of HNE might be sufficient to cause obesity and the metabolic 

syndrome. Mice lacking the gene encoding the HNE-conjugating enzyme mGSTA4-4 

develop obesity and insulin resistance, unsurprisingly associated with HNE accumulation in 

multiple tissues (Singh et al., 2008b). Cell culture work further shows that dysfunction of 

glutathione S-transferase or its ablation by siRNA leads to excess HNE accumulation, 

increased protein carbonylation, oxidative stress, and mitochondrial dysfunction (Kostyuk 

et al., 2010; Curtis et al., 2010). On the other hand, overexpression of glutathione-S-

transferase A4-4 protects against oxidative stress and HNE-induced apoptosis (Vaillancourt 

et al., 2008). Additional findings suggest that HNE causes fat accumulation by promoting 

fatty acid synthesis and suppressing fatty acid beta-oxidation. Interestingly, the phenotype 

of mGSTA4-4 null mice is strain dependent: mGSTA4-4 null mice with 129/sv genetic 

background exhibit both increased accumulation of HNE and obesity while those with 

C57Bl6 genetic background are lean and HNE is unchanged (Singh et al., 2008b). In good 

agreement, silencing of the mGSTA4-4 gene in the nematode Caenorhabditis elegans also 

results in an accumulation of lipid peroxidation by-products and a fatty phenotype (Singh et 
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al., 2009). When HNE is experimentally increased in the nematode, either by genetic deletion 

or through direct exposure, it promotes fat accumulation. The mechanism involves HNE 

inhibition of mitochondrial aconitase leading to an accumulation of malonyl CoA, precursor 

of fatty acid synthesis (Zimniak, 2010). Taken together, these data suggest that accumulation 

of lipid aldehydes and fat deposition could be mutually inductive leading to a vicious circle 

promoting fat accretion (Figure 5). 

The direct causative role of lipid peroxidation by-products in insulin resistance has also 

been recently evidenced in cell cultures studies. A first study identified that methylglyoxal, 

an aldehyde by-product of glucose oxidation, can impair the insulin signalling pathways 

independently of the formation of intracellular reactive oxygen species (Riboulet-Chavey et 

al., 2006). Then, focusing on lipid peroxidation products, two studies demonstrated that 

HNE can induce insulin resistance in adipocytes and muscle cell through inhibition of IRS 

and Akt signalling, as well as insulin-induced glucose uptake (Demozay et al., 2008; Pillon et 

al., 2012). These two studies identified carbonyl stress (notably IRS1 adduction) and ROS 

production as the possible mechanisms responsible for HNE effects; a third one being 

possibly the adduction of Akt2, which inhibits insulin-dependent Akt signalling in HepG2 

cells (Shearn et al., 2011). Altogether, these studies strongly suggest that excessive 

production of aldehydes might be sufficient to cause obesity, diabetes and the metabolic 

syndrome. 

5. Preventing the deleterious effects of aldehydes 

It has been known for decades that supplementation in α-lipoic acid in type-2 diabetic 

subject improves glucose tolerance and insulin sensitivity (Jacob et al., 1996). Similarly, 

increased intake of Vitamin E in obese and insulin resistant patients reduces fasting 

glycemia and the HOMA index for insulin resistance, and this is correlated with a 

decrease in the concentration of peroxides in plasma (Manning et al., 2004). This adds 

further evidence for a causative role of oxidative stress in the metabolic syndrome, and 

opens new therapeutic perspectives using antioxidant and/or scavenging of toxic 

aldehydes. 

5.1. Glutathione and enzymatic detoxification 

Glutathione (GSH) is a tripeptide (L-γ-glutamyl-L-cysteinyl-glycine) which is present in 

high concentration in the cytoplasm of living cells: 5-50 nmol/mg proteins (Jungas et al., 

2002; Dominy et al., 2007). GSH is an important coenzyme of several enzymatic reactions, 

and exerts its antioxidant activity mainly through regeneration of vitamin E, and also 

through direct interaction with free radical and aldehydes. GSH is obviously necessary for 

the activity of glutathione-S-transferases (GSTs), a family of enzymes responsible for 

detoxification of electrophile by-products, such as the ones derived from lipid peroxidation, 

and GSH exhibits indeed a high reactivity for HNE. Though HNE is electrophile enough to 

spontaneously react with GSH, this reaction is dramatically accelerated via the conjugation 

process catalyzed by GSTs (Alin et al., 1985). As described above, mice lacking GSTs develop 
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obesity and insulin resistance (Singh et al., 2008b), and humans carrying null polymorphisms 

for GST have a 3-fold increased risk of having type-2 diabetes (Amer et al., 2011), pointing 

out the important role of GSH in the metabolic syndrome. As addition reaction to GSH 

contributes to the detoxification of aldehydes, pharmacological strategies to increase 

glutathione pools or GST activity should be protective against aldehydes. Several studies 

were indeed successful in protecting cultured cells from the deleterious effects of oxidative 

stress through an increase in intracellular pools of reduced glutathione. This strategy was 

particularly efficient to protect the cells against the deleterious effects of HNE (Yadav et al., 

2008; Jia et al., 2009b; Pillon et al., 2012).  

In addition to glutathione-S-transferases, several enzymes are also responsible for the 

detoxification of aldehydes: aldehyde dehydrogenase, alcohol dehydrogenase (Hartley et al., 

1995), aldose reductase (Srivastava et al., 2000) and fatty aldehyde dehydrogenase (Demozay 

et al., 2008). These enzymes however participate to a lower extent in the metabolism of 

aldehydes, compared to glutathione and GST. Recent data indicate that if HHE and HNE 

are both metabolized via glutathione, the effectiveness of detoxification differs for these two 

molecules. By extension, aldehydes may be metabolized with different affinities and 

efficiencies by detoxification enzymes, which could explain some differences in their 

respective toxicities (Long et al., 2010).  

5.2. Scavenging 

In chemistry, a scavenger is a chemical substance able to remove or inactivate impurities or 

unwanted reaction products. In living cells, a scavenger is, by extension, a molecule able to 

inactivate toxic compounds such as ROS and aldehydes, therefore preventing their 

deleterious effects. In the case of aldehydes, a scavenger would be a strong nucleophile 

molecule on which HHE, HNE or any other aldehyde would form a covalent adduct. 

Consequently, most of the aldehyde scavengers are amino- or sulphur-containing drugs 

such as N-acetyl-cysteine (NAC), hydralazine, S-adenosyl-methionine (SAM) 

aminoguanidine (AGD) and α-lipoic acid, the latter being tested in several human studies 

for treatment of type-2 diabetes. 

5.2.1. α-lipoic acid 

α-lipoic acid is a natural compound found in many foodstuffs (such as potatoes, broccoli 

and meat), but in rather low amount. The effect of lipoic acid was demonstrated in animal 

models, where it enhances insulin-stimulated glucose metabolism in skeletal muscle from 

insulin-resistant rat (Jacob et al., 1996). It was rapidly tested in several clinical studies which 

demonstrated its beneficial effects in type-2 diabetes through a decrease in fasted blood 

glucose, enhancement of glucose disposal, improved insulin sensitivity and decreased 

insulin resistance (Jacob et al., 1995). These results were confirmed in vitro, where α-lipoic 

acid prevents the development of glucose-induced insulin resistance in adipocytes (Greene 

et al., 2001) and were reproduced by many independent studies. Treatment with lipoic acid 

decreases oxidative stress in both adipocytes and muscle cells (Rudich et al., 1999; Maddux 
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et al., 2001) and also decreases lipid peroxidation markers in insulin resistant rats 

(Thirunavukkarasu & Anuradha, 2004), suggesting that the improvement of insulin 

sensitivity is due to its antioxidant properties. Hence, the current literature supports the use 

of alpha lipoic acid for the treatment of diabetes complications and it consequently became 

the first antioxidant supplement used for the treatment of diabetes complications, being 

already approved in Germany for the treatment of diabetic neuropathy. 

5.2.2. N-acetylcysteine (NAC) 

N-acetylcysteine is a cysteine derivative and a potent antioxidant. Its properties are mainly 

due to its thiol group able to reduce free radicals as well as its role as a precursor in the 

formation of glutathione (Zafarullah et al., 2003). NAC exhibits highly protective scavenging 

properties against aldehydes and protects against MDA increase and GSH decrease in 

animal models of insulin resistance. NAC is able to improve insulin sensitivity in healthy 

rats (Figure 6) and reverses insulin resistance and aldehyde-induced hypertension in rats 

(Haber et al., 2003). In cell culture studies, NAC can prevent the insulin resistance induced 

by HNE in muscle cells (Pillon et al., 2012), as well as the one induced by advanced glycation 

end products in adipocytes (Unoki et al., 2007), thus confirming the important role NAC can 

play in improving both oxidative stress parameters and insulin resistance. 

 

 

Figure 6. Insulin sensitizing effect of N-acetylcysteine. Wistar rats were given NAC in drinking water 

for one week (total intake was 225 mg.kg-1.day-1). Insulin sensitivity was calculated using a standard 

insulin tolerance test3. Results are average ± SEM from 5 different animals per group, expressed as 

percent of basal glycemia. From Pillon et al. unpublished results. 

                                                                 
3 Animals fasted overnight were then injected intraperitoneally with 0.5 UI/kg body weight of insulin. 

Plasma glucose was measured from tail vein blood using a glucometer at 0, 20, 40, 60, and 120 min 

following the injection. Glucose disappearance rate for ITT (KITT; %/min) was calculated as: 

KITT=(0.693x100)/t1/2, where t1/2 was calculated from the slope of the plasma glucose concentration, 

considering an exponential decrement of glucose concentration during the 20 min after insulin 

administration. Higher insulin sensitivity index (KITT) scores mean higher response of tissues to insulin. 
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Results from clinical trials in type-2 diabetic subjects show that NAC is able to decrease 

oxidative stress parameters, increase GSH and decrease plasma VCAM-1 (De Mattia et al., 

1998); moreover, long-term N-acetylcysteine administration reduces endothelial activation 

and is proposed as a potential antiatherogenic therapy (Martina et al., 2008). Despite the fact 

that NAC can improve insulin sensitivity in women with polycystic ovary syndrome 

(Fulghesu et al., 2002) and this body of evidence suggesting that NAC may slow down the 

progression of diabetic complications, to date no clinical trial demonstrated any significant 

benefit of its supplementation in diabetes. 

5.2.3. Aminoguanidine (AGD) 

Aminoguanidine is a highly nucleophilic agent which reacts in vitro and in vivo with 

aldehydes, therefore protecting against the deleterious effects of ALE precursors (Peyroux & 

Sternberg, 2006). It is also an antioxidant able to quench hydroxyl radicals and in vivo. AGD 

in drinking water decreases lipid peroxidation in type-1 diabetic rats and rabbits (Ihm et al., 

1999). In experimental animal models of diabetes, AGD demonstrates significant effects in 

protecting against pathological complications, such as diabetic nephropathies, 

atherosclerosis and neurovascular complications (El Shazly et al., 2009). Consequently, 

several clinical trials in humans have been designed to evaluate AGD efficiency but they 

demonstrate only mild effects and were not conclusive, partly because of side-effects, and of 

weak carbonyl scavenger effects in human vascular tissues (Bolton et al., 2004). 

5.2.4. Hydralazine 

Primarily used as an antihypertensive drug, hydralazine exhibits a pronounced 

nucleophilicity and is consequently very efficient in scavenging several aldehydes (acrolein, 

HNE) and ketones, as well as aldehyde-adducted proteins (Burcham et al., 2002). It is also a 

powerful antioxidant, able to inhibit the generation of ROS (Münzel et al., 1996). Its 

scavenging activity in vivo was demonstrated by its ability to reverse the formation of HNE 

and acrolein adducts on tissue proteins in atherosclerotic aortas of hypercholesterolemic 

animals (Vindis et al., 2006), but its effects on insulin resistance and diabetes are to date 

uncharacterized. 

5.2.5. S-adenosyl-methionine (SAM) 

In living organisms, SAM is endogenously synthesized from methionine in every cell, but 

the liver is the major site of its synthesis and degradation. SAM is an important precursor 

for cysteine and glutathione production (Lu, 2000) and its involvement in several metabolic 

pathways makes it essential for a wide spectrum of cellular processes. SAM inhibits both 

HNE production and adducts formation and efficiently prevents high-fat diet-induced non-

alcoholic steatohepatitis in rats (Lieber et al., 2007), even if its direct effects on insulin 

resistance are still unknown. 
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6. Conclusion 

Lipid peroxidation by-products are associated with metabolic diseases, but their primary 

role during obesity and diabetes is subject to debate. In vitro and in vivo animal studies 

highlighted that an aldehyde challenge, through a state of carbonyl stress, affects several 

steps involved in the development of obesity and type-2 diabetes (Figure 7). On insulin-

sensitive tissues (muscle, adipose tissue), aldehydes lead to insulin resistance, while in 

pancreas, aldehydes impair insulin secretion. Together with the carbonylation of the insulin 

peptide itself, aldehydes could contribute to the defects in insulin action, leading to the 

metabolic syndrome. 

 

Figure 7. Lipid aldehydes effects leading to the metabolic syndrome. 

Despite this evidence, the role of aldehydes is mitigated by the mild effect obtained with 

antioxidants and/or aldehyde scavengers in the treatment of diabetic complications in 
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human. “Oxidative stress” and its derivatives are nevertheless important in the metabolic 

syndrome, and prevention or treatment of some of its associated complications could be 

accessed through reduction of both ROS and toxic aldehydes by-products, as it is the case 

with lipoic acid. 
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