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1. Introduction 

The resistance of engineering structures, subjected to blast and impact loads, is of great 

interest within the engineering community and government agencies. The interest and 

importance of such material stem from the need for providing protection against possible 

terrorist threats. Development of a light -weight, strong and ductile material capable of 

providing protection of vehicles and occupants against impact and blast, however, is a 

formidable challenge facing the materials community.  

In a blast or an impact, a structure usually undergoes large plastic deformation or break. 

The important characteristics of structural response include: (i) mode of deformation and 

failure, (ii) impulse transfer, and (iii) energy absorption in plastic deformation (Hanssen et 

al., 2002). To characterize cellular materials, the characteristics of the base material of the 

foam, its relative density, type of its cells (open or closed) and the mean cell diameter, all of 

these must be known (Ashby et al, 1997). The characterization and testing of metallic foams 

require special precautions. A cellular material could be characterized by several parameters 

such as: the constituent raw materials, the mean cell diameter, relative density (porosity), 

and cell size and shape etc. The constituents can be analysed by using x-ray tomography, 

optical microscopy and scanning electron microscopy. The easiest way to measure porosity 

(relative density) is to weigh the sample of a known volume. Additionally, metal foam could 

be characterized by its cell topology (open cells, closed-cells). Characterizations of metal 

foam using optical microscopy can be carried out provide that the foam is fully impregnated 

with opaque epoxy resin before polishing. Scanning electron microscopy has been found to 

be most informative for open cells foams rather than for the closed-cell foams (Ashby et al., 

2000). On the other hand, x-ray tomography technique is a good way to investigate the 

deformation modes of cellular solids. It depends on the low overall absorption of x-rays as 

such low absorption allows large specimens to be cut into small pieces. The second 
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advantage of this technique is the fact that the deformation could be monitored non-

destructively (Fazekas et. al, 2003).  

The mechanical properties of cellular materials can be characterized by the compression test. 

The behaviour of the cellular material under static- compression is known to be completely 

different from that of the solid material without any compression. This test is also used for 

the study of the behaviour of material under crushing load. The compression test is useful 

for measuring plastic flow, ductile fracture limit and compressive fracture properties of 

brittle materials. In a compression, several modes of deformation can may occur as 

illustrated in Figure.1. These are as follows: a) buckling mode when the ratio of the sample 

height (h) to its width (w); i.e. (h/w) > 5; b) shearing mode may appear when (h/w)  ~ 2.5; 

and, c) double barrelling when ratio of length (L) and diameter (D) i.e. (L/D) > 2 and friction 

is presented at contact surfaces, d) barrelling mode when (h/w) < 2;  e) a homogenous 

compression mode when the ratio (h/w) lies between 2.0 and 1.5  and finally; f) the 

possibility of compressive instability (Medlin & Kuhn, 2000). 

 

Figure 1. Modes of deformation in a compression test (Medlin & Kuhn, 2000). 

The study of the compressive behaviour of cellular materials offers the benefit of knowledge 

on most of the mechanical properties of the material. The mechanical properties of cellular 

materials are different to its base material due to the difference in structures. The following 

section explains the compressive properties of cellular materials and its relevance to their 

myriad applications. 

Stress-strain curve is used to determine Young’s modulus which, in turn, yields values of 

strength and strain densification. An example of a typical stress-strain curve (Gibson, 2000) 

of cellular material under uni-axial compression test condition is shown in Figure.2. Stress-
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strain curve of metallic foam shows three regimes of material behaviour. As can be seen in 

the graph, initially it is a linear dependence of elasticity (strain) with stress. Such 

dependency is governed by the strength of cell walls of the base material. As is expected, the 

stiffness of the metallic foam will be higher with the increase of strength of the cell wall.  It 

has been observed that the type and grade of metallic alloy as the base material dictate the 

stiffness of the foam structure. It has been found that the metallic alloy which has higher 

yield strength, gives higher stiffness than other alloys. At this stage, the material undergoes 

a non-permanent deformation. Usually, the deformation is in the form of cell face stretching 

and consequently extending and stretching the cell edges. This, in turn, increases the 

stiffness which was driven by the cells edges in closed-cell foam configuration while 

extending and bending deformation mode in open cell foam configuration. 

 

Figure 2. A typical stress-strain curve for foam showing linear elastic, stress plateau and densification 

regimes (Gibson, 2000). 

Energy absorption is the ability of the material to convert the kinetic energy into energy of 

some other form such as, heat, viscosity, visco-elasticity, friction etc. The kinetic energy 

must be less than the maximum limit of energy absorption of the material to keep the object 

safe. Also, the energy absorption property must be multi-directional, i.e. allowing 

absorption of the impact from any direction. Cellular materials have better capacity of 

energy absorption than its base materials. Foams have a capability to absorb the kinetic 

energy by bending, buckling or fracture (plastically) of the cell walls depending on the 

characteristics of the base material of the foam (Ashby, 1997). 

Energy absorption capability of foams depends on the stress and strain of the plateau in 

stress-strain curve. Foams have long, flat stress-strain curve where the cell walls collapses 
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plastically to nominal strain εD at a constant stress and the phenomenon is  called, ‘the 

plateau stress up’. The plateau stress must be below the value that causes damage to the 

object. The best energy absorbing material is that which has the longest plateau and absorbs 

the most energy before reaching the densification strain. The material that has a long and 

flat stress-strain curve is considered to be an ideal energy absorber. The energy absorber 

capability of the material is measured by the length and height of the flat stress-strain curve. 

The area under the plateau of the stress-strain curve represents energy per unit volume 

which can be absorbed as illustrated in Figure 3. The area under the flat part of the curves is 

the useful energy per unit volume, Wv that can be absorbed. 

 

Figure 3. A typical stress-strain curve for an energy absorber. 

2. Metal matrix syntactic foam 

Matrix syntactic foams are composite materials consisting of a matrix implanted with 

hollow or porous ceramic particles. These foams are a new class of materials which are 

manufactured by a variety of metal or polymer matrices and micro-spheres ceramics. It 

consists of a metal matrix and micro-spheres ceramics, embedded in the matrix. A metal 

matrix could be of aluminium, steel, titanium or magnesium. Ceramic micro-sphere could 

be a porous or hollow structure, but hollow metal spheres are rarely used. 

The size of the hollow ceramics micro-sphere determines the porosity of the matrix syntactic 

foam. In addition, it has an effect on the strength of the syntactic foam. Therefore, the matrix 

syntactic foam has different physical and mechanical properties than other cellular 

materials. Matrix syntactic foam is considered as a light material having high energy 

absorption capacity. It has been used in automotive, naval, aerospace and other industries 
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where ‘light-weight’ property is an essential requirement. In addition to that it could be 

used for reducing shock loadings associated with mine blast on military vehicles where the 

high energy absorption capability and light weight property are needed. 

2.1. Fabrication process 

Metal matrix syntactic foams consist of a combination of ceramic micro-sphere and metal 

matrix. Most metal matrices should be light metals like aluminium, magnesium, titanium 

etc. Two types of micro-sphere in common use have either porous or hollow structures. 

Four types of cellular spheres have so far been used to fabricate metal matrix syntactic foam 

as follows: (i). amorphous silica, (ii). Al2O3 spheres, (iii). CMs of crystalline mullite and (vi). 

steel spheres (Tao, 2010). 

There are two main ways to fabricate metal matrix syntactic foams as follows: i) stir casting 

with spray processes, and ii) infiltration casting using liquid state.  In stir casting, metal 

matrix syntactic foams are fabricated by mixing a liquid of metal matrix with the ceramic 

particles followed by casting. This method is very simple and cheap, but inhomogeneous 

structure of syntactic foam has been found to appear due to float of ceramic spheres to the 

top of the melt. In infiltration casting, the metal matrix is placed above the ceramic spheres 

and is pressed to infiltrate into the ceramic sphere where it is solidified to produce metal 

matrix syntactic foam. The infiltration casting can be conducted by gas pressure or die 

casting. This method has the advantage that the matrix and ceramic spheres are well bonded 

and the micro-spheres are usually uniformly distributed.  

2.2. Porosity 

There are two classifications for porosity: open or closed types. The open porosity is defined 

by the ratio of the volume of void space that is accessible from exterior to bulk volume. 

Meanwhile, the closed porosity is defined by the ratio of the volume of void space that is not 

accessible from exterior to bulk volume. The porosity of foams depends on the shape and 

size of the pores. The porosity of metallic syntactic foams, however, is determined by the 

porosity of the cellular spheres. The strength of the micro-sphere of syntactic foam could be 

tailored through the appropriate selection of the wall thickness and the radius of micro-

spheres (Kiser, 1999). The porosity of cellular materials controls the plateau strength and 

energy absorption capacity of the foams. In general, the strength of porous materials 

increases with the reduction of porosity.  

The main parameter that has the most significant effect on the porosity of the metal matrix 

syntactic foam is the porosity of the ceramics micro-spheres. The radius, shell thickness and 

the volume fraction of the hollow spheres are the parameters that control the porosity of 

hollow spheres. The porosity of a ceramic sphere could be estimated by the following 

equation (Kiser et. al, 1999): 

 θୱ = (1 − ஡౩஡౥	)  (1) 
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Where, θs is the porosity of ceramic material, ρs is its effective density and ρ0 is the density 

of the solid part of the spheres. In principle the porosity of metal matrix syntactic foam may 

be calculated using the formula below (Zhang& Zhao, 2007):  

 θ୤ = (1 − fୟ୪	)θୱ     (2) 

Where, θf is the porosity of syntactic foam and ƒal is the volume fraction of metal matrix. The 

authors have developed a general formula that has been widely used to calculate the 

porosity of metallic syntactic foam for all types of spheres and is given below: 

       θୱ	 =	 ஡ౣି஡౜	஡ౣ஡౩ ቀ1 − ஡౩	஡౥ቁ     (3) 

Where, ρm, ρf are ρ0 are the density of metal matrix, syntactic foam and solid part of cellular 

spheres respectively, and ρs is the effective density of the cellular spheres (Tao, 2010). It was 

reported earlier (Kiser et. al, 1999) that the thickness and the radius of the shell of the hollow 

sphere and the micro-balloon do control the composite porosity ρ0 and developed a formula 

to calculate the porosity of syntactic foams with hollow spheres as follows: 

 										ρ୭ = f(1 − ୲ୖ)ଷ																				  (4) 

Where, ρ0 is the porosity, ƒ is the volume percentage of the hollow spheres, and t is the shell 

thickness and, R is the radius of the hollow spheres. It was also reported [Kiser et.al, 1999] 

that the strength of the micro-balloon could be tailored through appropriate selection of the 

parameter, [t/R], having the strength increasing with increasing factor, [t/R].   

2.3. Compressive strength of metallic matrix syntactic foam 

The compressive strength of metallic matrix syntactic foam is controlled by the strength of 

metal matrix and the ceramic particles. The parameters such as: volume fraction, structure 

and distribution of the ceramics particles have considerable effect on the properties of 

syntactic foams (Zhao& Tao, 2009). It has been reported (Rohatgi et. al, 2006) that the 

compressive strength of the metallic syntactic foams decreases with the increase in volume 

fraction of the micro-spheres ceramics. In fact, the compressive strength of metal matrix has 

been found to be higher than that of the micro-spheres ceramics. Consequently the strength 

of the metallic matrix syntactic foam decreases with the increase in the volume fraction of 

ceramics particles. 

It has been reported that the yield strength of metallic foam decreases with the decrease of 

the size of micro-spheres ceramic (Rohatgi et. al, 2006). Moreover, it has been noted 

(Altenaiji et.al, 2011) that the smaller the size of the micro-sphere ceramic, the weaker is the 

strength of metal matrix syntactic foam. There are also other parameters, such as the 

strength of the metal matrix, which effect the strength of metal matrix syntactic foam as 

illustrated in Figure 4 and Figure 5. 

In contrast, Palmer reported (Palmer et. al, 2007) that, the lower compressive strength of 

metallic syntactic foams is associated with larger micro-spheres. It was however predicted 
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(Zhao& Tao, 2009) that there should be a difference in the compressive strength of different 

void contents in different sized ceramic spheres. It was also predicted (Sun et.al, 2007) that 

the thickness and the radius of micro-spheres ceramics have an effect on the compressive 

strength of metallic syntactic foams. The micro-sphere ceramics which have higher wall 

thickness to radius ratios (t/r) were found to have higher compressive strength of the 

resultant. Earlier reports (Kiser et. al, 1999) indicated that the compressive strength of metal 

matrix syntactic foam increased from 70 to 230 MPa with the increase of the factor, (t/r) from 

0.12 to 0.48, i.e. an increase by a factor of 3 for a similar factor of increase in the pressure. 

 

Figure 4. Comparison of stress-strain curve of aluminium syntactic foam with different ceramic micro-

sphere size. 

 

Figure 5. Comparison of stress-strain curve of aluminium syntactic foam with different aluminium 

matrix. 
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The compressive strength of metallic matrix foams is also affected by the types of micro-

spheres ceramics. It has been found that metallic matrix foam containing hollow ceramics 

spheres have much higher compressive strength than those containing porous ceramics 

spheres (Tao et.al, 2009). The compressive behaviour of metal matrix syntactic foams with 

hollow steel spheres of same thickness but different composition was studied (Vendra & 

Rabiei, 2007). It was observed that the metal matrix, containing low carbon steel spheres had 

much lower compressive strength than the ones which had stainless steel spheres. 

It has been reported that the compressive strength of the metal matrix syntactic foams is also 

affected by the type of metal matrix. Studies on the compressive behaviour of syntactic 

foams with same ceramics micro-sphere but different aluminium matrix had been 

conducted. It was found that the compressive strength of al7075-t is double that of al 6082-T 

with same method of processing. It was also indicated that when the aluminium matrix was 

replaced by another metal matrix the compressive strength of metallic matrix syntactic 

foams changed. When the al 7075 was used the compressive strength of metallic matrix 

syntactic foams had increased to approximately double than that containing pure 

aluminium (Balch& Dunand, 2006). 

2.4. Failure of metallic matrix syntactic foam under compressive loading 

As is illustrated in Figure.2, metallic matrix syntactic foam behaved like any foam under 

compression loading. It has three regimes of behaviour under compression loading. Initially 

it starts with a linear elasticity and then follows by plateau strength and finally, ends by the 

densification strain. But, the failure behaviour of metal matrix syntactic foams is different 

due to it compositions. Its failure is controlled by different plastic characteristics. It can be 

either ductile, susceptible to collapse under crushing of micro-spheres ceramics or brittle, 

susceptible to shear failure (Balch et.al, 2005). 

It was reported (Zhao& Tao, 2009) that the three factors that affect the failure behaviour of 

metal matrix foam are: i) ductility of metal matrix, ii) structure of micro-spheres ceramic 

and, iii) volume fraction of micro-spheres ceramic and metal matrix. It is also reported that 

the behaviour of ‘metal matrix syntactic’ foams’ performance failure depends on the type of 

the metal matrix. It was found that the aluminium alloy-T6 had two localized deformation 

bands of crushed materials while, the CP-Al (commercial purity aluminium) exhibited 

transition into densification plateau, showing extensive barrelling and pore deformation 

over a large volume of the material. Additionally, the damages of these two foams were 

reported to be different. In the alloy-T6, damage was concentrated in two much thicker 

crush band where the strain was very high. In contrast, in the CP-Al foams’ damage was 

spread over a big volume of the material, resulting in plastic deformation of the matrix 

along with sphere fracture (Balch et.al, 2005). 

It has been reported (Tao & Zhao, 2009) that the compressive failure of metallic matrix 

syntactic foam is affected by the volume fraction of metal matrix micro-spheres ceramic. 

High volume of metal matrix causes ductile failure in the form of collapse of the material. In 

contrast, low volume of the metal matrix tends to cause brittle failure in the form of shear. 
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As mentioned previously, the thickness and the radius of micro-spheres ceramics have an 

effect on the compressive strength of metallic syntactic foams. The micro-sphere ceramics 

with higher wall thickness-to-radius ratios, (t/r) were found to have higher compressive 

strength for the resultant (Sun et.al, 2007). The syntactic foam metal matrix with low values 

of the ratio, (t/r)  failed as brittle failure form while those with higher values failed as ductile 

failure form also known as crushing or collapse failure form (Kiser et.al,1999) . In contrast, 

another report (Sun et.al, 2007) stipulated that the metal matrix syntactic foam with low values 

of the ratio, (t/r), failed as ductile in the form of crushing or collapse failure while that had 

higher values failed as brittle in the form of shear failure. It was, however, reported earlier 

(Gupta et.al, 2004) that different types of syntactic foams in which the matrix materials and the 

radius of micro-spheres were fixed while the wall thickness of the micro-spheres was varied. It 

had been found that failure type of different matrix syntactic foams was similar. In general, 

therefore, it may be concluded from the present up-to-date  literature review that the  value of 

the wall thickness to radius ratio (t/r) dictates the form of the compressive failure of metal 

matrix syntactic foams while the value of the ratio is dependent upon the factor that affect the 

compressive failure. Furthermore, the strength of the micro-spheres ceramic has an effect on 

the strength of metal matrix syntactic foams. 

3. Dynamic compressive testing of matrix syntactic foam 

Metal matrix syntactic foams have been compressive tested under dynamic loading. Such 

loadings can be carried out through, either low or high speed impact. It has been studied 

under drop weight and split pressure Hopkinson bar test methods. It has been observed 

(Dou et.al, 2007) that the dynamic stress-strain curve has three regimes as the quasi-static 

stress strain curve. Meanwhile, the yield strength of metal matrix syntactic foams under 

dynamic loading is ~ 45-60% higher than that of quasi static compression. Moreover, Zhang  

investigated (Zhang& Zhao,2007) four samples of aluminium matrix syntactic foams under 

impact and reported that many oscillations appeared at the beginning of stress strain curve 

where the strain is low due to the high vertical vibration of the drop hammer. In addition, it 

was found that, out of four samples tested two had 10%-30% higher plateau stress than that 

of a quasi-static compression but the other two had lower plateau stress than that of the 

quasi-static compression. Therefore, the plateau strength is mostly determined by the 

volume fraction of metal matrix in the metallic syntactic foam. It was evaluated from the 

behaviour of aluminium matrix syntactic foams under high impact loading (Balch et al., 

2005). Split pressure Hopkinson bar technique was used to characterize the material under 

dynamic loading. It was concluded that, the behaviour of aluminium matrix syntactic foams 

at high strain had higher peak strength and plateau stress than those measured during 

quasi-static testing. In addition, the peak strength of the stress strain curve has been found 

to have shifted slightly at higher strain value. 

3.1. Low velocity dynamic loading 

Low velocity dynamic loading has been conducted by using many facilities that include the 

Charpy and Izod pendulums, the drop weight fixture such as the Gardner as well as 
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hydraulic machines, designed to conduct both in plane and out of plane testing at velocities 

up to 10 m s-1(Cantwell& Morton, 1991) The Charpy pendulum is simple to use and its 

design scheme is presented in Figure. 6. Usually, thick beam specimen is used which has a 

notch in the middle. The notch must be fixed opposite to the impact of the swing pendulum. 

The energy dissipated during impact is calculated by multiplication of the weight of the 

pendulum and the difference of the pendulum height in each side. The disadvantage of this 

test is that the high frequency oscillation on ‘load versus time’ curves due to natural 

frequency of the hammer does introduce error. 

 

Figure 6. Schematic of the Charpy pendulum-type tester. 

Comparatively, the Izod test is similar to the Charpy pendulum test except that the notch is 

located at the end of the specimen and the hammer impacts at the free end (Ellis, 1996). 

Cantwell and Morton suggested that Chapy and Izod tests both are suitable for evaluating 

the impact performance of the materials and a step in determining the dynamic toughness of 

the materials. In addition, drop-weight impact test have been used to conduct low velocity 

dynamics compressive testing of composites at strain rates ranging from 10 to several 

hundred per seconds (Hsiao et.al, 1998a, 1998b). 

The heavy weight is guided by two smooth steel rails and fall from a height to strike the 

specimen (Fanjing, 2010). The impact of falling weight does not cause destruction of the test 

specimen but rebounds where the residual energy could be determined (Cantwell& Morton, 

1991) as shown in Figure.7. 

A piezoelectric load cell is used to measure the variation of load with time during impact. It 

is located underneath the base on the test rig (Yiou, 2009). While, the incident velocity of the 

impactor can be determined from the equation of motion as follows:  



 
Characterisation of Aluminium Matrix Syntactic Foams Under Static and Dynamic Loading 447 

 

Figure 7. Schematic of the drop- hammer weight rig. 

  v=√ (2 g h)   (5) 

    
ୟ୥ =	 ஝ன୥ୈ     (6) 

where V, w and D are the weight velocity, natural frequency and dynamic load factor 

(usually equal to 1.77) respectively (Rajendran et.al, 2008). 

And predicted deflection is given as: 

 δ = 
୫୥୦஢ಙౢ			୅     (7) 

where, m, h, g, σρl and A are the weight mass, height of drop weight, gravitational force 

,plateau stress and cross section area of sample respectively. The advantage of the drop-

weight impact test with respect to Chapy and Izod test is that a wider range of sample 

geometries can be tested by changing the support size and shape. However, the stress wave 

reflection effect on the stress-time response of the specimen is observed in this method. 

Also, the limitation of strain rate which depends on the speed of falling weight was found to 

be directly linked to the drop height (Barre et.al, 1996). Furthermore, hydraulic test 

machines have been used to characterise the deformation and failure of the materials at high 

strain rate (Beguefin & Barbezat, 1989). One advantage of this type of testing machine is that 

it practically removes the problem of vibration noise that appears when using the drop 
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weight test. Additionally, the limitation of the strain rate is extended up to a value of  50 s-1 

from the static strain rate value. However, caution should be exercised to ensure that mass 

of the load cell is as low as possible to avoid the concealment of the true material response 

(Beguefin & Barbezat, 1989). 

3.2. Medium and high velocity dynamics loading 

Medium and high velocity dynamics loading has been conducted by using many facilities 

that include Hopkinson bar and Gas gun. In the Hopkinson bar technique, the induced 

wave propagation in a long elastic metallic bar has been used to measure the pressure 

produced during dynamic events (Kolsky, 1949). The Hopkinson bar test was used to 

measure the dynamic stress-strain response of materials. A high precision strain gages, 

signal conditioners, and high speed digital oscilloscopes are used in Hopkinson bar with 

high sensitivity and accuracy. The sensitivity of the pressure bar is determined by the 

properties of the material of the bar such as the density and the elastic wave impedance 

(Ramesh, 2008). In addition, the type of stain gages and the characteristics of the associated 

instrumentations have an effect on the sensitivity. 

To determine the properties of the material under dynamics loading the procedures for the 

Hopkinson bar technique is similar to that of the dynamic technique mentioned earlier. 

These are used to provide complete stress strain data as a function of strain rate. This 

technique has been used to determine the dynamic properties of numerous engineering 

materials like ferrous and non-ferrous alloys, polymers, ceramics, and concrete (Tan et.al, 

2005). Additionally, it has been used to characterise soft materials and metal foams that have 

low mechanical impedance, required for increasing the sensitivity of testing device (Dung 

et.al, 2011; Gay III et.al, 2000; Chen et.al, 1997). Split Hopkinson pressure bar has been used 

to measure the compressive mechanical behaviour of materials, to load samples with uni-

axial tension (Klepaczco et.al, 1997) and to measure compression torsion (Gilchrist, 2009). 

Also, it has been designed to measure the fracture toughness of an impact loaded material 

(Krauthauser, 2003). 

 

Figure 8. Schematic SHPB (Split Hopkinson pressure bar) setup for high strain rate compression testing 

Before providing impact in an SHPB device the velocity of the striker was measured using 

an electronic velocity measurement unit. The gas gun pressure was varying that cause the 
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variant impact velocities. The incident and transmitter bars in the device are made of steel 

having a length of 1000 mm and a diameter of 20 mm. The bar’s mechanical properties are: 

Young’s modulus, 207 GPa, elastic wave speed, 5890 m/s and Poisson’s ratio, 0.29. 

In the Hopkinson bar technique, the induced wave propagation in a long elastic metallic bar 

has been used to measure the pressure produced during dynamic events (Dung et.al, 2011). 

The Hopkinson device is used to measure the dynamic stress-strain response of materials. A 

high precision strain gage, signal conditioners, and high speed digital oscilloscopes are used 

in Hopkinson bar which provides high sensitivity and accuracy. The sensitivity of the 

pressure bar is governed by the properties of the material of the bar such as, the density and 

the elastic wave impedance (Gray III, 2000). In addition, the type of stain gages and the 

characteristics of the associated instrumentations have an effect on the sensitivity. 

The stress at the output bar is found by converting strain gages data (volts) to the stress by 

using following relations (Harrigan, 2005) 

   σ	(t) = ୽ౘ.ଶ஫஝(୲)ୋౝ	.୏ౝ.஝౟(ଵା஝ా)   (8) 

  σ	(t) = ୅.୉.க౪(୲)୅୭     (9) 

Where, σ (t)   is the stress of transmitter bar as function of time, εν (t) is the strain gage 

voltage as function of time, Gg is the amplification factor, Kg is stain gage factor, VI is bridge 

input voltage, Eb is the elastic modulus of the bar, A is cross sectional area of the bar, Ao is 

the cross sectional area of the sample, σ (t) is the transmitted axial strain pulses and νB is 

Poisson’s ratio of the bar material. In addition, the time dependent strain rate and strain are 

calculated using the following equations: 

 													ε.(t)=ଶ	େౘ಍౨ 	(୲)	୍୭       (10) 

    ε (t) =׬ ε.(t)dt୲଴     (11) 

Where Cb, I0 and Ao are the sound wave velocity, length and cross sectional area of the 

specimen respectively, and ε (t) is the reflected axial strain pulses. 

The Hopkinson bar technique is used to provide completer stress strain data as a function of 

strain rate. This is also used to determine the dynamic properties of numerous engineering 

materials; like ferrous and non-ferrous alloys, polymers, ceramics, and concrete (Forrestal 

et.al, 2002). 

Additionally, it has been widely used to characterise soft materials, metal foams that have 

low mechanical impedance which is required increasing the sensitivity of testing device 

(Klepaczco, 1997; Kiernan et.al, 2009; Lopatnikov et.al, 2003; El-Nasri, 2005; Harding, 1960). 

Split Hopkinson pressure bar has been used to measure the compressive mechanical 

behaviour of a material, loading samples in uni-axial tension, simultaneous compression 

torsion (Lewis & Goldsmith, 1973).Also, it has been designed to measure the fracture 
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toughness of an impact loaded material (Taylor, 1948). Metal matrix syntactic foams are 

characterised by using SHPB and the experimental setup and results are shown in Table .1 

and Figure.9. 

 

 Sample ID Weight (g) Length (mm) Avg. Width 

(mm) 

Velocity 

applied (m/s) 

Pre  12.6 16.84 21.40 ±0.1  

Post SHPB #2 12.6 14.26 24.00 ±0.2 21.6 

Pre  12.6 16.84 21.40 ± 0.1  

Post SHPB #3 3.6 3.69 29.00 ± 1 35 ± 1 

Pre  11.5 17.04 20.60 ± 0.5  

Post SHPB #4 7 7.74 22.15 ±1 22.35 ±1 

Pre  12 15.2 20.60 ± 0.5  

Post SHPB #6 2.1 2.63 27.50 ± 1 35 

Table 1. Summary of experimental results of aluminium matrix syntactic foams under dynamic loading 

in SHPB. 

 

Figure 9. Stress-strain curve of aluminium matrix syntactic foam under dynamic loading of SHPB. 

Dynamic compression testing showed a 10–30% increase in peak strength compared to the 

quasi-static results. The strain rate sensitivities of these foams are similar to those of 

aluminium matrix composite materials as shown in Figure.10. These foams displayed 

excellent energy-absorbing capability. This suggests that these have potential for use in high 

loading applications or for impact protection in situations where a high plateau stress is 

desired (Balch et.al, 2005).  
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Figure 10. Stress-strain curve of aluminium matrix syntactic foam under static and dynamic loading. 

High impact dynamic loading can be achieved by using high pressure gas gun (Cantwell& 

Morton, 1991). Gas gun apparatus contains a breech, pump tube, transition section, launch 

tube and target tank as illustrated in Figure 11. 

In addition to high speed camera this device can also record and analyse the moment of 

impact and post impact behaviour (Hazell et.al, 2010) and can monitor the behaviour of the 

projectile material during the impact. 

 

Figure 11. The gas gun testing apparatus (RMCS-Cranfield university) 

In gas gun, a helium gas is used to accelerate a 12 mm diameter steel spheres to velocities 

approaching 620 m/s. The helium gas is pumped in to the breech at high pressure. An 
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aluminium diaphragm blocks the release of the gas at the first stage. The diaphragm bursts 

and relieves the pressure when it reaches the required value. The helium gas is compressed 

which then heats up the volume of the gas by the polymer piston until the second diaphragm 

bursts. Consequently, the projectile and sabot is accelerated when the piston is at its final stage 

and the gas volume has expanded. The results of this test are shown in Figure. 12. 

 

Figure 12. The kinetic energy of the impact against a depth of penetration in the material. 

4. Finite element modelling 

FEM was carried out by using ANSYS package (ANSYS, 2010). The matrix was identified by 

10 nodded tetrahedron continuum elements called SOLID187 and SOLID186 in ANSYS, 

while for the microspheres ceramic walls SURF154 was used.  

In Ansys/ workbench, the material was defined by inputting its mechanical properties that 

had been found by the static compression test. To define a material in Ansys/workbench, 

physical properties, linear elastic and plasticity of the material must be defined. The material 

must have a valid density defined for explicit or implicit simulation. Isotropic elasticity was 

used to define linear elastic material behaviour by defining Young’s modulus and Poisson’s 

ratio. However, the plastic deformation was computed by reference to Von Mises yield 

criterion. The multi-linear isotropic model was used to define the yield stress (σy) as a piece-

wise linear function of plastic strain, εp. The multi-linear isotropic model has been defined 

by introducing up to ten of stress-strain pairs. 

A load of 100kN was imparted to aluminium matrix syntactic foam that had a dimension of 

20 mm x 20mm x20mm. FEA is used to understand the stress distribution around the 

microspheres ceramics. In addition, the effect of the size of the microspheres and its volume 

fraction on the composite properties has been studied. Boundary condition was applied to 

D
e

p
th

 o
f 

p
e

n
e

tr
a

ti
o

n
 (

m
m

)

Ke (J)



 
Characterisation of Aluminium Matrix Syntactic Foams Under Static and Dynamic Loading 453 

the bottom of the sample that allowed the material to move freely in X and Z directions 

while Y-direction was fixed. The sample material had been defined as multi-linear isotropic 

hardening model. 

It is found that, the Young’s modulus increases with relative wall thickness, which means 

the particles wall thickness can be used to manage the deformation and fracture behaviour 

of syntactic foam. In addition, the location of the maximum stress is found on the inner 

surface of the particles as shown in Figure.13. 

 

Figure 13. Maximum stress at the internal wall of the particles 

5. Summary 

 The ability to absorb high energy is the most desirable characteristic of metal matrix 

synthetic foam materials for use as a protective structure against dynamic loadings. 

 The characterisation of the material was done by using quasi-static and dynamic 

loading. Static compression tests were conducted to find the stress-strain curve. The 

plateau stress and densification strain are found from those tests which are important 

properties to determine the energy absorption capability of materials. 

 The effect of volume ratio of the metal matrix and the ceramic spheres on the mechanical 

properties of syntactic foam has, so far, not been thoroughly investigated. Therefore, the 

different failure modes of metal matrix syntactic foams were observed in previous studies. 
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 The previous studies suggest that the simplest way to understand the failure 

mechanism of metal matrix syntactic foam is by comparing the failure modes of closed 

cell foam, in spite of the difference in the structure of the metal matrix syntactic foam 

that has ceramics instead of voids. 
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