
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322416529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 3 

 

 

 
 

© 2012 Musgrove and Camps, licensee InTech. This is an open access chapter distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Models for Detection of Genotoxicity in vivo: 

Present and Future 

Cherie Musgrove and Manel Camps 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50554 

1. Introduction 

DNA damage is toxic to the cell, both acutely (perturbing the cell cycle and inducing 

apoptosis), and in the longer term (accelerating senescence and causing cancer and genetic 

disease) (1,2). Therefore it is of great interest for public health to determine the potential of 

anthropogenic chemicals and other compounds found in the environment to cause DNA 

damage as likely toxicants, carcinogens and teratogens (3).  

This chapter will review methods that use in vivo models (i.e. living organisms and cell lines) 

for detection of genotoxic damage caused by exposure to chemicals. The reason that living 

models play such a prominent role in mutagenesis detection is two-fold: 

1. Extremely low frequency of mutation:  the mutation frequency induced by exogenous 

agents is extremely low (in the range of 1 mutation in 106 to 107 nucleotides). The ability 

of living organisms to amplify these rare events through positive selection is the basis 

for a number of these model systems. 

2. Modulation by metabolism: metabolism has a dual role for activation (bioactivation) 

and for detoxification of genotoxic compounds. Therefore, metabolism needs to be 

taken into account by models of genotoxic exposure. Living organisms incorporate 

metabolic activity into the equation, although they only approximate human 

metabolism to various degrees. 

In vivo models fall into two broad categories according to how they detect genotoxicity: 

direct or indirect genotoxicity detection methods.  Direct measurement detects alterations 

in DNA either by sequencing, by the generation of a phenotype linked to specific 

mutations, or by visualization of the DNA damage such as micronucleus formation, 

detection of aberrant chromosomes, or an increase in the number of DNA breaks (4-6) 

(Fig. 1). 
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Figure 1.  

Phenotypic detection of DNA damage is based on loss-of-function (forward), or gain-of-

function (reverse) reporters. Forward mutation reporters are based on the loss of a 

phenotypically-detectable trait such as color or sensitivity to a metabolic poison. Therefore 

they can detect a range of mutations (miss-sense, transcriptional termination, frameshift, 

indels, etc.) along a sizeable target sequence, which increases the overall frequency of 

detectable events, allowing in many cases for direct screening. Forward mutation reporters 

also provide a representation of the range of genotoxic effects induced by the relevant 

compound, although biased for changes that lead to functional inactivation. Reversion 

reporters, by contrast, are based on reversion of a specific mutation inactivating a selectable 

marker. Therefore, reversion markers report very specific mutations at pre-determined sites, 

which may not be representative of the range of lesions introduced into DNA. Also 

reversion events are exceedingly rare due to the small size of the target, and can only be 

identified by positive selection. 

Phenotypic detection methods generally produce binary readouts, with the presence of 

growth on limiting solid or liquid media, or changes in color as primary readouts. This 

means that the generation of a single data point requires fine-tuning the dose and of the 

dilution to obtain countable colonies (on solid plates) or a number positive wells that 

follows a Poisson distribution (in liquid culture) (7).  

Genotoxic potential can also be detected by indirect measurement methods, usually based 

on transcriptional fusion of a reporter gene to a promoter responsive to DNA damage 
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(specific examples are discussed below). Indirect detection methods provide an indication 

that the cell has sensed genotoxic stress, but the accuracy of each indirect reporting system 

depends on the range of lesions inducing the relevant transcriptional response and on the 

specificity of the relevant promoter for DNA damage relative to other types of stress. The 

reporter can be colorimetric, fluorescent or luminescent. Examples include: lacZ (beta-

galactosidase), GFP (green fluorescent protein), luciferase, and phoA (alkaline phosphatase). 

Some of these markers (GFP and luciferase for example) have a wide dynamic range and are 

proportional to the amount of damage, greatly facilitating quantification (8,9).  The use of 

GFP as a reporter, rather than reliance on an enzymatic reaction, produces a measurable 

response to DNA damage in a shorter time frame.  

In general, indirect assays are better suited for high-throughput analysis because they  can 

produce quantitative signals. Surface markers such as CD59 also provide forward mutation 

reporters that are quantitative, i.e. whose loss in a cell population following chemical 

exposure is directly proportional to the amount of genotoxic damage induced (10,11). 

Quantification of surface markers in large cell populations is made possible by the use of 

FACS (Fluorescence-Activated Cell Sorting) analysis, which is a high-throughput method 

that detects the presence or absence of the relevant marker in individual cells. The 

availability of quantitative reporters for mutagenesis substantially reduces the amount of 

test sample required. On the other hand, direct mutagenesis detection assays are more 

labor-intensive but more specific because they detect alterations in DNA. 

DNA-damaging chemicals are frequently generated from precursors as reactive metabolic 

intermediates (12,13). The precursors are known as procarcinogens even though 

carcinogenicity has not in all cases been demonstrated. Procarcinogens include most genotoxic 

natural products and environmental agents since they would be expected to react with other 

molecules before reaching DNA. Chemotherapeutic drugs and other anthropogenic chemicals 

or contaminants, on the other hand, are frequently direct-acting. Table 1 provides some 

examples of direct-acting and of bioactivation-dependent genotoxicants. 

Xenobiotic metabolism, which is designed to solubilize lipophilic compounds as a way to 

facilitate their excretion, contributes prominently to bioactivation (12,13). The liver is the 

primary site of metabolic bioactivation, given its large metabolic capacity as well as its 

anatomical position as the gateway for compounds absorbed in the GI tract. Bioactivation by 

metabolism also occur in other tissues, including skin, lung, bone marrow, and GI tract. 

Bioactivation in the GI tract can also result from the action of the intestinal flora, or due to 

the drastic pH changes that occur as food moves through the tract (12).  

Xenobiotic metabolism often involves two reactions, an oxidative one and a conjugative one. 

Oxygenation is typically carried out by members of the cytochrome P450 family (CYPs). 

CYPs are membrane-bound heme-proteins that require an effective reductase system to 

provide electrons (14). These enzymes tend to exhibit low catalytic efficiency and broad 

substrate specificity. Humans bear over 50 different CYP genes, which have some 

overlapping substrate specificities. Conjugation on the other hand transfers N- or O- acetyl 

groups  (acetyl transferases),  sulfates (sulfotransferases) or glutathione (glutathione-S 



 
Mutagenesis 34 

transferases) to electrophilic substrates. Metabolism genes (particularly CYPs) are 

extraordinarily polymorphic, explaining the presence of wide interindividual differences in 

response to xenobiotics (13). Liver metabolism can be mimicked in testing paradigms by 

adding primary hepatocytes, liver slices, or various organ extract fractions to tester cell 

cultures, or by liver perfusion (15). The standard fraction is known as S9 fraction, which 

combines microsomes (containing CYPs) and cytosol (enriched for transferases) from the liver 

of rodents whose metabolism has been activated through xenobiotic pre-treatment (15,16). 

 

Type of damage Direct-acting 

Chemical class 

Bioactivation-dependent 

Chemical class 

Alkylating  Diazo compounds Triazenes  

 Nitrosamines Azoxy compounds  

 Nitrosoureas N-alkylnitrosamines 

 Aziridines Aromatics Polyaromatics 

 Halogenated methanes, 

ethanes 

 Heteroaromatics 

 Mustards  Nitroaromatic 

amines* 

 Sulfates, sulfonates Some proximate 

mustards 

 

Oxidizing  Simple epoxides Quinones  

 Thiiranes, oxiranes   

 Simple peroxides   

Table 1. Examples of direct-acting and bioactivation-dependent genotoxic agents 

In the context of drug discovery, in vivo methods are second-line assays performed to 

support the safety of a compound that is in the pipeline for clinical development (17,18).  

Lead compounds are typically first prioritized by structure-activity relationship (SAR) 

analysis. This is a computational method that links specific chemical features of a given 

compound to individual biological activities, including genotoxicity. Due to its correlative 

nature, the predictive value of SAR analysis largely depends on how well represented the 

relevant class of compounds is in the database (19). Lead compounds that have made this 

first cut are then tested in vivo by direct mutagenesis detection methods for regulatory 

compliance. These include at least one prokaryotic phenotypic mutagenesis assay, one 

eukaryotic cell culture assay, and one animal test visualizing DNA damage (20,21). The 

standard test battery includes the Ames Test, the Mouse Lymphoma TK Assay, and the 

Micronucleus Test, respectively (see below). Transcriptional reporter-based assays can 

also be used for pre-screening prior to direct detection tests. Finally, the most reliable 

method to determine the potential carcinogenicity of a compound is testing it in a 

mammalian animal model (rat or mouse). This is done last, given the high cost of rodent 

carcinogenicity assays. 
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Here we discuss different in vivo models reporting on the ability chemicals to induce DNA 

damage, flagging these compounds as potential hazards to public health. This includes a 

variety of detection methods in prokaryotic, eukaryotic, tissue culture, whole-animal, and 

transgenic animal models. We finish by highlighting active areas of technology 

development and briefly speculate on the impact that next generation sequencing will likely 

to have in the field. 

2. Prokaryotic reporter systems 

Prokaryotes are useful for assessing DNA damage because they are haploid, reproduce 

quickly, and are easily grown in culture. Their use as a model for testing genotoxicity in 

humans is based on the universal nature of chemical mechanisms of DNA modification, as 

well as on the strong conservation of mechanisms of DNA repair between bacteria and 

humans (with the important exception of nucleotide-excision repair) (1). Genetic alterations 

are frequently used to enhance the sensitivity of prokaryotic reporter systems to DNA 

damage. Examples include mutations that increase membrane permeability (rfaE, tolC) and 

deficiencies in DNA repair (uvrB, uvrA, umuD).  Most B- and K-derived laboratory strains of 

E. coli already exhibit increased permeability to xenobiotics as a result of loss of LPS selected 

during the long passage of these strains in culture (D. Josephy, personal communication). E. 

coli tends to be more sensitive to chemical mutagens than Salmonella, particularly to 

oxidizing mutagens, cross-linking agents and hydrazines (22). On the other hand, Salmonella 

facilitates detection of aromatic amines and of nitroaromatic compounds because of 

substantial endogenous bacterial nitroreductase (NR) and O-acetyltransferase (O-AT) 

metabolic activity. 

2.1. Phenotypic reporter systems 

Phenotypic reporters in prokaryotes are based on reversion of an auxotrophic marker. The 

Ames Test was the first of these assays to be developed, revolutionizing the field of genetic 

toxicology for its low cost and simplicity. This assay is based on reversion of a mutation 

preventing the biosynthesis of histidine. Reversion is detected by growth of colonies on 

solid agar in the presence of trace amounts of histidine (23). Growth on solid agar requires a 

large amount of test sample (~1 mg) but allows testing of non-water soluble compounds. A 

set of six strains have been developed to detect a broad range of point mutations and 

frameshifts (24). The Ames Test is still by far the most widely-used prokaryotic testing 

method, in part because it is mandatory for regulatory compliance.  

Two variations have been developed to facilitate high-throughput formatting and to reduce 

the amount of sample needed: Mini-Ames and the Ames Fluctuation Test. Mini-Ames (also 

known as Mini-Mutagenicity Test) follows the standard Ames Test protocol, except at 1/5 the 

size.  This reduces the amount of sample required to 300 mg of compound for the whole set 

of 6 reporter strains (25). Despite these advantages, Mini-Ames is still not widely used. The 

Ames Fluctuation Test is a variation of the Ames Test that is performed in liquid culture, 

using a chromophore as a binary indicator of growth (26). This assay has been adapted to a 
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microtiter format (Ames II Test) (27). This format can incorporate microsomes, S9 fraction, or 

hepatocytes for bioactivation. Commercially available, The Ames II Test has comparable 

accuracy relative to the traditional Ames Test for most compounds (and even higher 

accuracy for low-potency liquid mixtures) (28), and its use is overtaking that of the 

traditional Ames Test.  

The AraD Test is an alternative assay that detects forward mutations in the arabinose 

operon. The cells used in this assay have a mutation in the araD gene, which leads to 

accumulation of a toxic intermediate when arabinose is present. Mutations that inactivate 

the operon prevent the metabolism of arabinose, allowing cells to grow on arabinose (29,30).  

The AraD Test exhibits a different sensitivity profile than Ames, although being a forward 

mutation assay it has two advantages over Ames: more sensitive to point mutations (larger 

target for mutagenic action) and producing more accurate spectrum of mutation than the 

Ames test (since mutations are not limited to a single site). However, in practice this assay 

does not represent a significant alternative to the Ames Test or other cell-based mutagenesis 

assays (17). 

2.2. Transcriptional reporter systems 

Transcriptional reporter systems are based on the fusion of reporter genes to promoters of 

the SOS regulon, which includes a battery of ~40 genes involved in the response to DNA 

damage (31). This regulon is under the control of the lexA repressor, which upon genotoxic 

stress is cleaved by RecA, relieving repression (31). Two systems enjoy widespread use: the 

UmuC Test and the SOS Chromotest.  Both systems are based on transcriptional fusions of 

DNA damage-inducible promoters (umuC and sfiA, respectively) to lacZ (32,33).  

SfiA detects a broader range of genotoxic damage than umuC.  On the other hand, the host 

for the UmuC Assay is a Salmonella strain (NM3009), making this assay particularly suited 

for detection of nitroarenes, such as those found in combustion products. The UmuC Test 

has been adapted to micro-titer plate format. High throughput, fully automated microtiter 

plate versions are also available for the SOS-Chromotest as well as numerous commercially 

available kits for testing specific sample types. Thus, the SOS-Chromotest provides easily 

quantifiable, reproducible and customizable ways to measure genotoxicity in a variety of 

samples, from wastewater to blood serum (33).  An additional system, based on a fusion 

between the SOS-inducible gene sulA and the alkaline phosphatase-encoding gene phoA has 

also been recently described (34). 

3. Eukaryotic reporter systems 

Eukaryotic systems are also extensively used for detection of genotoxic activity. They have 

the advantage of having a DNA repair machinery that is even closer to that of humans (with 

homologous nucleotide excision repair machinery and more translesion synthesis 

polymerases for example) and of having comparable replication machinery, allowing 

detection of genotoxicants that interfere with mitosis.  Higher eukaryotes also have 

metabolic systems that are much closer to our own, although even rodents show marked 
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differences in metabolism relative to humans (12,13). Another advantage is the larger size of 

the cell nucleus and genome, which facilitates detection of rearrangements and other 

genomic abnormalities. Disadvantages include higher cost (particularly rodent systems), the 

presence of efflux pumps that can prevent accumulation of xenobiotics, and a diploid 

genome, which masks the phenotypic effects of heterozygous recessive mutations. Different 

strategies for improved detection of recessive mutations have been devised. These include: 

sporulation (in yeast), heterologous expression of single human chromosomes (in Chinese 

hamster cells), and selection of X-linked  and heterozygous loci as markers (which become 

dominant or homozygous recessive with only one mutation). 

As in prokaryotes, genetic modifications in yeast enhance sensitivity to DNA damage. 

Examples include deletion of efflux pumps (35), removing mag1 (a N3mA DNA 

glycosylase), hindering base excision repair (36), and deletion of mre11, preventing both 

homologous recombination repair and non-homologous end joining pathways (36). 

We group eukaryotic models into three sections: 1) phenotypic detection; 2) transcriptional 

detection; and 3) direct visualization of DNA damage.  

3.1. Phenotypic reporter systems 

Phenotypic detection of genotoxic damage in eukaryotes follows principles of forward and 

reverse mutation analogous to prokaryotic systems. While some of these systems are as old as 

the Ames’ test, others are still being actively developed. Below we discuss two yeast 

mutagenesis reporter systems (the DEL Assay and the Mitotic Gene-Conversion Assay) and four 

mammalian cell-based ones (HPRT, TK, The Human-Hamster Hybrid (A(L)) and the PigA assay). 

3.1.1. Yeast DEL Assay 

This assay detects chemical induction of recombination events by reversion of a his3 locus 

that has been interrupted by short repeats. Reversion to his+ can be measured by plating 

(37), or more recently in microtiter plate format, using a colorimetric readout (38,39).  This 

assay has thus far proven to be very accurate, discriminating between carcinogens and non-

carcinogens of the same chemical class, and showing a 92% correlation with two prokaryotic 

genotoxicity assays (Ames and UmuC) (39). 

3.1.2. Yeast Mitotic-Gene-Conversion Assay 

The Mitotic Gene-Conversion Assay uses a combination of heteroallelic (ade2-40/ade2-119 

and trp5-12/trp5-27) and homoallelic (ilv1-92/ilv1-92) gene loci to detect induction of mitotic 

crossing over, mitotic gene conversion and reverse mutation (40). The original heteroallelic 

condition ade2-40/ade2-119 forms white colonies. Mitotic crossing over can be detected 

visually as pink and red twin sectored colonies due to the formation of homozygous cells of 

the genotype ade240/ade240 (deep red) and ade-2-119/ade2-119 (pink). Mitotic gene 

conversion can be detected by the loss of auxotrophy for adenine (ade2 locus) or tryptophan 

(trp5 locus). Mutation induction can be followed by the appearance of isoleucine non-
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requiring colonies on selective media. Detecting both reversions and repair-associated 

recombination events is a unique feature of this assay that increases the sensitivity to 

genotoxicity. This assay is widely used and included in the Code of Federal regulations of 

the United States of America. However, the need to assess mitotic cross-over by screening 

for changes of color makes full automation of this assay very difficult.   

3.1.3. HPRT Assay 

This assay measures inactivating mutations at the hprt locus, which encodes the salvage-

pathway enzyme hypoxanthine-guanine phosphoribosyl transferase (HPRT). HPRT 

catalyzes the formation of inosine or guanosine monophosphate from hypoxanthine or 

guanine, respectively. Treatment with 6-thioguanine generates 6-thioguanine 

monophosphate (6-TGM), which is highly cytotoxic to wild-type cells (41). Inactivating 

mutations in the hprt gene are dominant because this gene is carried on the X chromosome 

and is subject to X-inactivation (42-44).   The standard cells for use in this assay are CHO 

(Chinese hamster ovary) cells, V79 (Chinese hamster lung cells), G12 or G10 cells (V79-

derived cells). A variation on this assay is the expression of bacterial gpt gene (the functional 

homolog of HPRT) in an HPRT- background (42).  

3.1.4. Cell Line TK Assay (mouse or human lymphoma cells) 

The cells used for the assay are mouse lymphoma cells L5178Y, which are heterozygous at 

the thymidine kinase locus (tk1) on chromosome 11. Inactivating the WT allele induces 

trifluorothymidine (TFT) resistance, and tk−/− mutants can be selected for in a background 

of tk+/− non-mutant cells (45-47). Colony size is an indicator of the type of mutation 

involved: large colonies typically correspond to small TK-inactivating mutations, while 

small colonies often indicate clastogenic damage. This test (which is mandatory for 

regulatory compliance) is the most favored of the cell-line based assays because of its 

sensitivity to mutagens (48,49). However, this assay is also very susceptible to false positives 

(48,49).  

Two tests use surface proteins as forward mutation markers, the Human-Hamster Hybrid 

(A(L)) Cell Mutagenesis System and the PigA Assay. Surface markers offer several 

advantages over drug-dependent readouts. Results are quantitative, producing not only a 

binary (yes/no) result but an indication of the potency of the chemical tested. In addition, 

with these assays cells do not need to be lysed for analysis, which enables tracking of the 

phenotype over time, as well as testing multiple or constant low-level exposures. 

3.1.5. The Human-Hamster Hybrid (A(L)) Cell Mutagenesis System 

Human-hamster hybrid (A(L)) cells were generated containing a single human chromosome 

11 in addition to a standard set of CHO chromosomes. This human chromosome expresses 

CD59, CD44 and CD 90 surface antigens. The presence of CD59 on the cells’ surface makes 

them sensitive to binding by a polyclonal antibody known as E7. Upon binding of the E7 

antibody, incubation with serum stimulates the complement cascade, which lyses the cells.  
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The yield of CD59- mutants can also be detected by immunofluorescence and quantified 

using flow cytometry, providing a quantitative readout for mutagenesis (50,51). Detection of 

CD59- mutants exhibited a linear correlation with clastogen (gamma-radiation) and point 

mutagen (MNNG) dose, confirming the quantitative nature of the assay (50).  

3.1.6. PigA Assay  

The phosphatidylinositol glycan complementation group A (Pig-A) gene encoded on the X-

chromosome is essential for attaching GPI-anchored proteins to the cell surface. The PigA 

assay detects the loss of CD59 (incidentally the same marker used in the Human-hamster 

hybrid (A(L)) assay described above) in red blood cells as and indicator of loss-of-function 

mutations at the endogenous Pig-A locus. Anti-CD59-PE is used to stain blood cells, and 

individual cell fluorescence is monitored by FACS analysis (10,52). Thiazole orange is used 

to differentiate  between mature erythrocytes, reticulocytes (RETs), and leukocytes; and anti-

CD61 to resolve platelets (10). The assay has been adapted for monkeys, mice, rats and 

humans (11). In rats, phenotypes can be detected earlier in reticulocytes than in erythrocytes 

(2 weeks versus 2 months following exposure, respectively).  

3.2. Transcription reporter systems 

As in the case of prokaryotes, eukaryotic transcription reporter systems are transcriptional 

fusions to genes that are specifically induced in response to DNA damage.   

In yeast, one of the promoters of choice is that of ribonucleotide reductase 3  (rnr3), which 

encodes a form of the large subunit of ribonucleotide reductase. This gene is transcribed in 

response to low levels of damage, discriminates between DNA damage and other forms of 

stress, and its expression reaches higher levels than other DNA damage-responsive genes 

(53).  The rnr3 promoter is therefore ideal as a reporter. An assay was developed with rnr3 

driving lacZ expression (rnr3-lacZ) (35), and has had a modest impact following its initial 

description (10 PubMed citations, and 260 Google Scholar hits). A promising variation was 

developed that uses secreted Cypridina luciferase as a reporter (rnr3-luciferase) in a DNA 

repair-deficient yeast strain (54,55).  Secretion of luciferase into the culture medium 

facilitates sequential measurements of DNA damage because cells don’t need to be 

collected. This allows the detection of chronic effects, i.e. accumulated damage due to 

chronic low-level exposue over an extended period of time.  It is easy to envision a fully 

automated adaptation of this assay, which would be cheap, and would not require 

specialized technicians.  

Another promoter that has been used in yeast is that of HUG1 (Hydroxyurea- UV- and 

Gamma radiation-induced). The HUG1 promoter is used to drive expression of GFP (56). 

While the specific function of HUG1 is unknown, it is a part of the Mec1p kinase pathway, a 

signal transduction cascade that has a pivotal role in DNA damage-sensing in yeast. The 

sensitivity of the initial strain was enhanced by two deletions: that of mag1 and that of 

mre11. These changes increased the sensitivity of the assay to alkylating agents and to 
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inducers of strand-breaks, but did not change the sensitivity to other forms of DNA damage 

(36). However, in order for this system to have a clear advantage over other luminescence-

based reporters, the sensitivity still needs to improve considerably. 

In human cell lines, the promoter of choice is that of the Growth Arrest and DNA Damage 

45 (GADD45) gene, which is a sensor for genotoxic stress in mammalian cells. GADD45 is 

induced upon exposure to clastogens, aneugens, and mutagens. The GreenScreen Assay, 

which uses a transcriptional fusion with GFP transformed into human lymphoblastic TK6 

primary cells as a reporter, showed high specificity for carcinogens that do not require 

metabolic activation (100% accuracy with 75 chemicals tested) (57), as well as for 

procarcinogens (91% accuracy with 23 chemicals tested) (58). This assay has since 

undergone extensive validation with more than 8,000 compounds. The overall specificity to 

genotoxins has remained quite high at 95% (59). The GreenScreen Assay has been 

commercialized by the company Gentronix, including a 96-well plate version, and is 

becoming increasingly popular.   

3.3. Direct visualization of DNA damage 

A sensitive way to visualize DNA damage in eukaryotic cells is the COMET assay. This 

assay detects DNA fragmentation, which can result from a wide range of lesions including 

double strand breaks (DSBs), single strand breaks (SSBs), alkali labile (abasic) sites, 

oxidative DNA base damage, and DNA-DNA/DNA-protein/DNA-drug crosslinking. Cells 

are embedded in a thin layer of agarose, which is mounted on a microscope slide. The slide 

is immersed in an ionic running buffer (usually TBE or TAE) and the cells are 

electrophoresed through the agarose. DNA fragments will travel faster than the intact parts 

of the nucleus, and will run in front of the nucleus. When the DNA is stained and observed 

with a microscope, the fragments form what looks like a comet’s tail, and the nucleus forms 

the comet’s head (17,18) (Fig1. direct visualization). The COMET assay does not test for a 

specific end-point and can therefore be used to monitor both the genotoxic effects of 

chemical exposure and the kinetics of DNA repair. The use of the COMET assay as a 

readout for genotoxicity is increasing. Full automation has recently been achieved (60,61), 

which will greatly facilitate standardization and use of the assay as a screening tool. In 

addition, the sensitivity of this assay is being improved through combinations with other 

visualization methods, such as FISH (6,62). 

3.3.1. Sister Chromatid Exchange Assay 

The Sister Chromatid Exchange (SCE) Assay detects reciprocal exchanges between two 

sister chromatids of a replicating chromosome, apparently involving homologous loci (63). 

The DNA is labeled for two cell cycles (for example with bromodeoxyuridine) and 

visualized by fluorescence microscopy. It can be performed on a variety of cells, including 

cells from sentinel species like mussels and fish, which makes this assay extremely useful for 

environmental monitoring (64). This assay has also been used in humans as a marker for 
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genotoxic exposure (65).  While this assay does not detect DNA damage per se, SCE is an 

indication of ongoing DNA repair and therefore a genuine indicator of genotoxicity. 

Two other visualization methods (the Micronucleus Test and the Chromosomal Aberration Test) 

are largely aimed at the detection of clastogens (agents that produce alterations affecting 

more than a few contiguous bases) and of aneugens (agents that alter the number of 

chromosomes). Prokaryotic systems have poor sensitivity for clastogens and aneugens 

because prokaryotes do not have multiple chromosomes, and their replication shares little 

mechanistic homology with mitosis.  In addition, the larger size of the genome and of the 

nucleus in eukaryotes greatly facilitates the direct visualization of large aberrations.  

Therefore, these two assays complement prokaryotic reporter systems and are required for 

regulatory compliance.  

3.3.2. Micronucleus Test (MN) 

Micronuclei (MN) are broken fragments of daughter chromosomes that did not make it into 

the nucleus during mitosis. MN formation is therefore diagnostic for chromosomal DNA 

damage. It is detected by staining for DNA, cell membrane and nuclear membranes, 

followed by observation of individual cells with microscopy. The approved method for 

scoring micronucleus induction is to image stained cells and count those with MN. Cells can 

be harvested from a live animal or from tissue culture. The presence of MN is best visualized 

in erythrocytes (because they are anucleate) but it can also be used with other cell types. The 

success of this test relies on proper cell harvesting and culturing techniques, as the integrity of 

the cell and nuclear membrane are vital. It also depends on careful scoring of cells, since the 

nucleus must be clearly defined in order to determine the occlusion of MN from the nucleus 

(5,66). Flow cytometry can be used to quantify cells with MN induction (67), although careful 

microscopy controls are recommended. Recently, micronuclei induction in TK6 cells by a 

battery of reference compounds was determined using both microscopy and flow cytometry 

(68). This study produced a good correlation between the two readouts, suggesting that MN 

assay by flow cytometry may become one of the methods of choice for routine genotoxicity 

testing in the near future, particularly in the pharmaceutical industry. 

3.3.3. Chromosomal Aberration (CA) Assay 

The Chromosomal Aberration Assay detects large-scale damage of chromosomes, including 

structural aberrations (fragmentation or intercalations) and numerical aberrations  

(aneuploidy and polyploidy). Numerical aberrations are most frequently the result of 

unequal segregation of homologous chromosomes during cell division, which can be caused 

by interference with cohesion during mitosis (69). The test is most commonly carried out in 

vitro by exposing cell cultures to the test substance, and then treating the cells with a 

compound that stops mitosis in metaphase (colcemid). Following staining, the chromosomes 

are analyzed microscopically for aberrations. FISH-staining techniques have been used to 

increase the sensitivity of CA, allowing each chromosome to be differentially stained to reveal 

chromosomal rearrangements not detectable with conventional staining techniques (70,71). 
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3.4. Transgenic animal models 

Transgenic animals represent one of the pillars of toxicological analysis, because they 

combine exposure in a whole organism with efficient  detection in microbial systems. Every 

cell of the transgenic animal carries a chromosomally-integrated vector-reporter fusion gene 

that is not expressed and is therefore free to accumulate mutations. The vector is either a 

bacteriophage or a bacterial plasmid. Following exposure of live animals to a test chemical, 

transgenes are recovered from the genomic DNA and placed in the appropriate bacteria for 

readout of mutational frequency. Mutants are identified through the use of phenotypic 

reporters and their mutational spectrum can be determined by sequencing (72). Transgene 

models are ideal for study of the effects of chronic and repeated exposure, given the genetic 

neutrality of the transgenic reporter in the live animal. When the goal is to obtain mutation 

spectrum information, prolonged and/or repeated genotoxic exposure maximizes the 

number of independent mutational events obtained. 

3.4.1. Muta™Mouse 

The Muta™Mouse was the first transgenic rodent system to be introduced (73). In this 

system, the transgenic mice have, on their third chromosome, the  g10 bacteriophage vector 

linked to a single lacZ.  Following treatment, the genomic DNA is extracted from the tissues 

of interest, packaged into a lambda vector and transfected into lacZ- E. coli. Mutations result 

in while plaques in the presence of X-gal. This system is not nearly as popular as the LacZ 

Plasmid Mouse and the Big ® Blue Mouse because of poorer yield of transgenic DNA (72).  

3.4.2. Big ® Blue Assay 

Another bacteriophage-based assay is the Big ® Blue Assay, which exists in both mouse and 

rat backgrounds (74,75), and is available from several different companies (72). The original 

mouse version uses LacI, the lac repressor, as the reporter that is linked to the LIZ phage 

vector.  Multiple copies of the transgene (40 for the mouse model and 30 for the rat) are 

integrated in the chromosome, arranged head-to-tail. Transformation of recovered vector 

into E. coli followed by plating on X-gal medium allows the identification of blue plaques 

(with inactive mutant lacI) on a background of white plaques. The Big Blue system was 

greatly improved by the use of the cII gene as a reporter. The cII  gene is responsible for 

transition from the lytic to the lysogenic phase at low temperatures, inducing expression of 

the CI repressor. Inactivating mutations sustained at the cII locus confer phages with the 

ability to form plaques, making detection of mutations a simple positive selection (76,77).  

3.4.3. LacZ Plasmid Mouse 

The LacZ Plasmid Mouse has 20 copies of the pUR288 plasmid per haploid genome (a total 

of 40 copies) integrated into multiple chromosomes (78). Genomic DNA is recovered, and 

digested by the HindIII restriction enzyme, releasing single copies of linearized plasmid. 

Magnetic beads coated in Lac repressor protein are used to isolate plasmid DNA from the 

digest, and the isolated vector is then recircularized into individual plasmids. These 
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plasmids are transformed in E. coli and mutant frequency can be determined by scoring 

white colonies in the presence of X-gal. Compared with bacteriophage-based transgenic 

systems, plasmids can be isolated more efficiently and are more tolerant of deletions (both 

internal and involving flanking sequence) (72). A significant improvement to the test was 

the introduction of P-gal (which generates a toxic product when broken down by -gal) as a 

positive selection for -galactosidase loss-of- function (79).  

4. Conclusions 

Mutagenesis detection in vivo is key for testing the genotoxic potential of anthropogenic 

chemicals produced for industrial or medical applications as well as of products present in 

our environment. Both prokaryotic and eukaryotic models are useful, and complement each 

other. Prokaryotic models are simple, inexpensive, and frequently amenable to high-

throughput formatting but detection is largely restricted to mutagens that induce point 

mutations and frameshifts. Eukaryotic models, by contrast, are more labor-intensive and 

time-consuming but are more sensitive to clastogenic and aneugenic activity and facilitate 

visualization of DNA damage (nicks, breaks, abasic sites, etc.). Indirect methods are cost-

effective and easily amenable to automation, while visual or phenotypic detection is more 

specific because it reports DNA damage or genetic alterations caused by DNA damage but 

is generally more expensive and labor-intensive.  

Accurate reproduction of human metabolism in model systems of genotoxicity remains one 

of the most urgent challenges in the field. As mentioned in the introduction, bacterial strains 

used for genotoxicity testing exhibit some metabolic activities. However, they lack 

cytochrome p450 activity completely, making them poor models for human bioactivation. 

Individual CYP proteins have been expressed in E. coli (22). However, expressing active 

CYP proteins in E. coli is not trivial, as it requires special media and co-expression of a 

reductase system as electron donor. More importantly, only a few CYP alleles can be 

expressed at a time, so it will be extremely difficult to reproduce the complex patterns of 

CYP expression occurring in liver cells. In the classic Ames Test, mammalian xenobiotic 

metabolism is mimicked through the addition of post-mitochondrial hepatic rodent extract 

(S9 fractions). While this in vitro metabolic model allows detection of a range of pro-

carcinogens, it misses short-lived metabolites that fail to cross the bacterial cell wall and 

suffers from low reproducibility because of the variable composition of the extracts (15% 

inter-laboratory variability) (48).  

Whole-animal models are still the most sensitive systems available for detection of 

procarcinogens. Fish were proposed as a model organism early on due to their enhanced 

liver metabolism relative to humans and to the easy exposure to xenobiotics in the water or 

in the trophic chain (80). Transgenic reporters analogous to the ones created in mice were 

developed in fish (80,81), although their use is not yet widespread, possibly due to the need 

for specialized labor and facilities. Drosophila melanogaster is also likely to become more 

prominent in the future as a model for genotoxicity because it complements in many ways 

bacteria or yeast-based models. It is a whole organism, but extremely cheap and easy to 

maintain. Like fish, Drosophila produce large numbers of testable offspring (high n), and 
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have metabolic and DNA repair systems that are highly homologous to human systems. 

Assays for genetic damage in germ cells, mostly in males (Sex-Linked Recessive Lethal Test 

(SLRLT), and Reciprocal Recombination Test) were the initially developed (82). Recombination 

assays were later devised in somatic cells for improved sensitivity (82). These assays rely on 

endogenous forward mutation markers, with visible developmental abnormalities in wings, 

eye morphology, or bristle shape as readouts. Flies can be exposed to test chemicals in early 

stages of development (larvae), further increasing the sensitivity of the assay. Larvae are 

very actively metabolically and have been shown to be sensitive to teratogenic effects of pro-

carcinogens (83). The large number of endogenous targets, the suitability for early exposure, 

and its active metabolism make Drosophila possibly the most sensitive phenotypic detection 

model available and a very promising model for detection of genotoxic and teratogenic 

effects (83). 

New molecular technologies are likely to enhance our ability to detect the presence of 

mutations at very low frequencies, as illustrated by the Random Mutation Capture Assay (84). 

This technique detects the loss of a specific restriction site in chromosomal or mitochondrial 

genomes using multiplex PCR amplification (65,84) and has enabled establishing 

spontaneous mutation rates in tumors (85), and in a mouse model of aging (86). Importantly, 

by limiting dilution of the template, this technique has the ability to detect mutations from 

single DNA molecules templates, identifying non-clonal mutations in a heterogeneous 

population (85).  

High-throughput sequencing technology will also likely allow the determination of 

genotoxic effects in the near future with an unprecedented level of resolution. Next-

generation sequencing is based on massive, parallel amplification of templates (87). While 

DNA amplification is PCR-based, and therefore susceptible to the error-rate of the 

polymerase, mutations present in the template can still be detected through redundant 

coverage (typically in the 30-fold range).  The accuracy of coverage information can be 

ensured through adequate design of bar-coded primers for amplification. Because, given the 

structure of the human genome, most random mutations in a cell are expected to be neutral, 

they should occur randomly and increase the genetic diversity in exposed the population 

over a period of time. In the absence of positive selection, sequencing of clonal mutations 

(i.e. mutations that are present in a significant fraction of the population) would miss this 

underlying genetic diversity (88). Therefore, obtaining an adequate representation of 

chemically-induced mutations would require sequencing DNA from individual cells.  

As these new models and molecular tools become established in the field of genetic toxicity, 

they will need to be incorporated into the regulatory process for approval of new chemicals 

or for reassessment of chemicals currently in use.  
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