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1. Introduction 

Nanotechnology involves the production and application of physical, chemical, and 

biological systems at atomic or molecular scale to submicron dimensions and also the 

integration of the resulting nanostructures into larger systems. Therefore, nanotechnology 

deals with the large set of materials and products which rely on a change in their physical 

properties as their sizes are so small. Nanotechnology promises breakthroughs in areas such 

as materials and manufacturing. Nanoparticles, for example, take advantage of their huge 

surface area to volume ratio, so their optical properties become a function of the particle 

diameter. When incorporated into a bulk material, these can strongly influence the 

mechanical properties such stiffness or elasticity. For example, traditional polymers can be 

reinforced by nanoparticles leading to novel materials to be used as lightweight 

replacements for metals. Such enhanced materials will enable a weight reduction together 

with an increase in durability and enhanced functionality.  

There are different reasons why this length scale is so important. The wavelike behavior of 

materials predominates when the size lies in the atomic scale. This changes the fundamental 

properties of materials such as melting temperature, magnetization and charge capacity 

without changing the chemical composition. The increased surface area of nano materials 

make them ideal for use in composites, reacting systems and energy storage. By increasing 

the surface area the number of surface atoms increases dramatically, making surface 

phenomena play a vital role in materials performance. This is because a greater amount of a 

substance comes in contact with surrounding material. This results in better catalysts, since 

a greater proportion of the material is exposed for potential reaction. At nanoscale the 

gravitational forces become negligible and electromagnetic forces dominate. At nano scale 

surface and interface forces become dominant. From optical point of view, when the size of 

materials is comparatively smaller than the wavelength of visible light they do not scatter 
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light and can be used in applications where transparency is of great importance. The 

automotive sector is a major consumer of material technologies. It is expected that 

nanotechnologies improve the performance of existing technologies for car industries. 

significantly. Applications range from already existing paint quality, fuel cells, batteries, 

wear-resistant tires, lighter but stronger materials, ultra-thin anti-glare layers for windows 

and mirrors to the futuristic energy-harvesting bodywork, fully self-repairing paint and 

switchable colors. The basic trends that nanotechnology enables for the automobile are : 

lighter but stronger materials (for better fuel consumption and increased safety); improved 

engine efficiency and fuel consumption for gasoline-powered cars (catalysts; fuel additives; 

lubricants); reduced environmental impact from hydrogen and fuel cell-powered cars; 

improved and miniaturized electronic systems; better economies (longer service life; lower 

component failure rate; smart materials for self-repair).  

This chapter attempts to discuss the applications of nanotechnology in automotive sector 

and bring some examples of each set of products being used in car industries. 

2. Exterior applications 

2.1. Nano-clearcoats with high scratch and wear resistance 

2.1.1. An introduction on scratch/mar 

In a multilayer automotive coating system (basecoat/clearcoat), the main responsibility of 

the clearcoat layer is to protect the pleasing appearance of the metallic underneath layer 

from environmental factors. However, the clearcoat's appearance may be vulnerable to 

degradation in exposure to harsh environmental conditions, especially weathering and 

mechanical damages (Bautista et al., 2011, Barletta et al., 2010, Courter et al., 1997, 

Ramezanzadeh et al, 2011d, Ramezanzadeh et al, 2011e). Scratch and mar are the most 

important types of mechanical damages which impose serious challenges for the coatings 

formulators. Depending on the size and morphology of the scratch/mar, the appearance 

changes of the clearcoat may vary. Based on the viscoelastic properties of the clearcoat and 

scratching condition (the cause of scratch, scratches force, scratch velocity and 

environmental temperature) scratch can be produced by two primary mechanisms, i.e. 

plastic and fracture flow. The fracture type scratch has sharp edges and irregular shapes 

having high capability of light scattering (Ramezanzadeh et al, 2011f, Ramezanzadeh et al, 

2011g, Yari et al., 2009a, Shen et al., 2004). On the other hand, plastic type scratch has 

smoother surface and less ability to light scattering (Fig. 1).  

The plastic type scratches are deeper than fracture types and have greater tendency to self-

healing at temperatures around clearcoat 's Tg.  

2.1.2. Approaches to improve scratch resistance 

Two main strategies can be sought in order to produce highly scratch resistant clearcoats: the 

first is optimizing cross-linking behavior of the clearcoat utilizing appropriate components 

and the second is introducing reinforcing inorganic fillers into the clearcoat formulation. The 
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first approach deals with low enough Tg-clearcoats showing the reflow behavior or 

extraordinary high cross-linking density (Bautista et al., 2011, Barletta et al., 2010, Courter et 

al., 1997, Ramezanzadeh et al, 2011, Ramezanzadeh et al, 2011d, Ramezanzadeh et al, 2011e, 

Yari et al., 2009a, Shen et al., 2004). The clearcoats scratch resistance can be highly improved 

by these two ways. However, there exist disadvantages for each of these strategies alone. 

Producing low-Tg clearcoats needs changing clearcoat chemical composition. This may 

negatively influence other properties of the clearcoat such as reduced chemical resistance. A 

highly cross-linked clearcoat can be obtained by the reaction of melamine based resins and 

polyols to form etheric bonds. Although this system may appropriately resist against scratch, 

the coating will be susceptible to acid etching and performs weakly in weathering. One 

alternative way to improve scratch resistance of the coating while the lowest weathering 

performance is maintained is the use of so called hybrid materials including both organic and 

inorganic domains simultaneously. In this system, the inorganic domains improve clearcoat 

scratch resistance and organic domain guarantees the stability in weathering. The hybrid 

materials can be obtained by direct embedding inorganic fillers into them or by in-situ 

production of inorganic domain in a method called sol-gel processing. The micro-sized 

inorganic fillers cannot be used due to their effects on clearcoat transparency. By using 

inorganic fillers in nano sized form, the mechanical properties of the clearcoat will be 

improved even at low loadings mainly due to their small particle size and huge surface area. 

Unlike conventional micron-sized fillers, they do not affect the transparency of the clearcoat. 

The advantages and disadvantages of incorporating nano-fillers into the clearcoat matrix or 

in-situ creation of inorganic domains in the clearcoat matrix will be discussed below (Shen et 

al., 2004, Schulz et al., 2001, Hara et al., 2001, Jardret et al., 2000, Weidian et al., 2001, 

Thorstenson et al., 1994, Ramezanzadeh et al., 2010d).  

  

Figure 1. Visual illustrations of (a) plastic type and (b) fracture type scratches. 

2.1.3. Highly scratch resistant clearcoat containing inorganic nano fillers 

It has been found that incorporation of nanoparticles such as Al2O3, SiO2, ZrO2 and TiO2 into 

a clearcoat matrix could significantly enhance the scratch resistance (Bautista et al., 2011, 

Amerio et al., 2008, Tahmassebi et al., 2010, Groenewolt et al., 2008, Sangermano et al., 2010). 

Ceramic nanoparticles have been found as appropriate hardening materials to significantly 

improve clearcoat hardness and therefore scratch resistance. However, the improvement 

cannot be easily obtainable when the particles are poorly dispersed. The inorganic fillers do 
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not have intrinsic affinity to organic phase. These lead to phase separation and aggregate 

formation. The aggregated particles (>100 nm) depreciate clearcoat properties especially the 

optical clarity. Attempts have been carried out to solve this problem by surface modification 

of fillers with organosilanes to render them hydrophobic and thereby improve their 

dispersibility into the polymeric matrix. The surface modification not only can influence 

dispersibility but also can result in stronger physical/chemical interfacial adhesion between 

particles and the matrix (Tahmassebi et al., 2010). Different factors may be influential for the 

effects of nano fillers on the scratch resistance of a clearcoat: the particles chemistry, size, 

shape and surface modification. It has been demonstrated that nanoparticles could improve 

clearcoat properties in different ways. The most important of which will be discussed here 

(Tahmassebi et al., 2010).  

Inorganic nanoparticles have hardness and elastic modulus greater than organic polymers. 

Incorporation of these particles to the clearcoat matrix increases hardness and elasticity (Fig. 

2). This depends on the content, the intrinsic hardness and the dispersion degree of the 

inorganic filler. Increased hardness and elasticity may result in better clearcoat resistance 

against sharp scratching objects penetrating into the surface. 

 

Figure 2. Schematic illustrations of the chemical structures of the conventional coating consist of 

resin/cross-linker (a) and inorganic-nanoparticles loaded paint (b). 

However, it has been shown that greater hardness does not necessarily guarantee clearcoat 

scratch resistance. There are problems with highly increased clearcoat hardness. For 

examples, when the applied forces are greater than the critical force, it leads to fracture type 

scratches. Increasing coating hardness can also result in an increase in clearcoat brittleness 

and therefore reduction of other properties like flexibility. To overcome this problem, 

attempts have been carried out to obtain tough clearcoat in presence of nanoparticles. 

Results obtained in recent researches show that nanoparticles could influence cross-linking 

density of the clearcoat by affecting curing reaction. Nanoparticles with organosilane 

modifications include functional groups with high capability of reacting with functional 

groups of resins. As a result, some chemical bonds between resin and hardener (curing 

agent) will be replaced by the bonds created between particle/hardener and/or particle/resin. 

Inorganic-nanoparticles Organic resin chains 

(a) (b)
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This results in a decrease in the cross-linking density of the clearcoat. On the other hand, 

nano fillers enhance the hardness and elasticity. These two phenomena result in clearcoat 

toughness improvement in presence of nanoparticles. A tough clearcoat can resist abrasive 

condition and show less fracture behavior (Amerio et al., 2008, Tahmassebi et al., 2010, 

Groenewolt et al., 2008, Sangermano et al., 2010).  

2.1.4. Highly scratch resistant clearcoat using sol-gel method 

Nanofiller embedded clearcoats show enhanced scratch and wear resistance. However, the 

clearcoat transparency will be influenced as a result of nanoparticles aggregation. Obtaining 

appropriate dispersion needs surface modification as well as using different dispersing 

techniques. In-situ process of inorganic phase formation inside organic matrix using sol-gel 

technique has been considered (Ramezanzadeh et al., 2011d, Presting et al., 2003, 

Hernandez-Padron et al., Hernandez-Padron et al., 2003). Organic/inorganic precursors can 

be used to produce in- situ silica network in the matrix. These precursors, either as network 

former, such as tetraethyl orthosilicate (TEOS) or network modifier such as methacryloxy 

propyl trimethoxysilane (MEMO) and glycidoxy propyl trimethoxysilane (GPTS), can be 

introduced to the main polymeric film former to obtain a so-called hybrid nanocomposite 

films. This process includes precursor hydrolysis and self-condensation reactions. The 

hydrolyzed precursors could be cross-linked with the organic coating matrix by reacting 

with polyol and other curing cross-linkes such as amino or isocyanate compounds in the 

automotive coating formulation. In this way, a hybrid nanocomposite containing 

organic/inorganic phases can be obtained (Fig. 3). The organic phase presented in the hybrid 

nanocomposit can be responsible for the adhesion and flexibility and the inorganic phase 

can help coating resists mechanical damages (Ramezanzadeh et al. 2010). 

2.2. Scratch resistant polymer glasses 

Nowadays, fuel consumption of a car is an important factor for both car manufacturers and 

consumers. Request for producing cars with lower fuel consumption has been enormously 

developed in recent years. Reducing the weight of the cars is one way reaching this target. 

The car weight can be significantly reduced by replacing heavy glass parts (i.e. head lights 

and windows) by light polymeric glass sheets (Fig. 4) (Yahyaei et al., 2011).  

One of the most used kinds of glass polymers is polycarbonate which has excellent impact 

strength, high toughness and light weight. Polycarbonates have been already used in light 

covers and lenses. However, polycarbonate has limited scratch/abrasion and chemical 

resistance together with the tendency to yellowing when it is exposed to UV light in long term. 

Glass is a hard material having excellent scratch resistance. However, it has higher weight and 

lower impact strength compared with polymeric glasses. Washing (both automatic carwash and 

hand washing) and sand/dust particles presented in air are main causes of scratching 

polycarbonates glass parts. This may result in a significant reduction in head lights 

transparency and therefore light scattering. Attempts have been carried out to solve the 

problem. Two methods have been sought for this purpose. Producing polycarbonate polymeric 
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glass parts by embedding nanoparticles into it and/or using acrylate or polysiloxane paints over 

the head light. Aluminum oxide nanoparticles are also used in the coatings composition in 

order to make it hard enough to resist scratch and abrasion. This coating is highly transparent 

due to the small size of the filler particles and their fine distribution (Yahyaei et al., 2011, Pang et 

al., 2006, Brinker et al., 1990). Embedding nano-sized silica particles into an organic modified 

siloxane based coating results in nano-coating for automotive glazing application. This coating 

can produce various properties for the plastic glazing like hydrophobic/anti-smudge, infra-red 

(IR) and ultra-violet (UV) shielding and anti-fogging behavior. The schematic illustration of a 

nano-enhanced automotive plastic glazing is shown in Fig. 5. 

 

Figure 3. Schematic illustration of a sol-gel based automotive clearcoat containing organic/inorganic 

precursors (Ramezanzadeh et al. 2010). 

 

Figure 4. Modern automobiles equipped with nanostructure polymeric glasses for roof, windows and 

cover light.  

Organic phase 

Inorganic phase 

Polymeric glass windowsPolymeric glass roof

Polymeric glass cover 

light 
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Figure 5. Cross-section of a nano-enhanced layers in automotive glazing coatings (Pang et al., 2006). 

The average thickness of the nano-embedded coating used for polycarbonate is 

approximately 1 mm. Different nanocoating layers (as shown in Fig. 5) are responsible for 

anti-scratch/easy-to-clean/anti-fogging and UV stabilization of polycarbonate plastic 

glazing. To this end, nanoparticles such as TiO2, SiO2 and Al2O3 for abrasion resistance 

improvement, TiO2 and ZnO for UV protection, sol-gel based TiO for anti-fogging behavior 

and TiO2 for easy-clean properties are used (Yahyaei et al., 2011, Pang et al., 2006, Brinker et 

al., 1990).  

In premium optical glazing like glass panes, using coatings with extremely high scratch 

resistance is necessary. To this end, attempts have been carried out to apply hard materials 

over the polymer glass from gaseous phase. Using physical vapor deposition (PVD) and 

chemical vapor deposition (CVD) procedures as well as plasma polymerization, a highly 

cross-linked nanometric polymeric layer containing inorganic components can be obtained. 

Producing highly scratch-resistant polymer glass using these techniques opens new 

possibilities for designing transparent roof tops (Fig. 5) and car body shell parts. 

2.3. Nano-coatings with anti-corrosion performance for car bodies 

Anti-corrosive coatings both in form of conversion and organic coatings are used to protect 

metal body against corrosive materials. The most important of these coatings are Cr(VI) and 

phosphate conversion coatings together with electrodeposition coating (ED). Cr(VI) due to 

its excellent anticorrosion performance has been widely used to protect car bodies from 

corrosion in the last decades. The high anticorrosion performance of this coating is related to 

its high self-healing behavior in corrosive environment. However, the toxic and hazardous 

nature of chromium compounds are well documented and their uses have been banned in 

recent years. Phosphate coating is another kind of conversion coating which has appropriate 

anticorrosion properties and is less toxic compared with Cr(VI). However, the bath 
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containing these materials leave huge amounts of sludge (Nobel et al., 2007, Dhoke et al., 

2009, Shchukin et al., 2007, Brooman, 2002, Kasten et al., 2001).  

It has been shown that Cr(III) is less toxic compared with Cr(VI). However, compared to 

Cr(VI), Cr(III) does not have long-term protection. Nanotechnology has been employed to 

eliminate this disadvantage. A three layer system including zinc layer, Cr(III) enriched layer 

and nano-SiO2 particles containing layer are used for this purpose (Fig. 6). Each layer has 

specific role for corrosion protection of steel. Zinc has higher negative potential than iron. 

And when it exposes to corrosive electrolyte, it can produce electron needed for cathodic 

reaction and prevents iron from oxidation. As a result, Zn2+ cations produce positive charge 

at surface. On the other hand, SiO2 nanoparticles have negative charges. Therefore, 

nanoparticles can migrate to corroded area and cover it. In fact, nanoparticles produce a 

layer with approximate thickness of 400 nm. This phenomenon is called self-healing by nano 

passivation. 
 

 

Figure 6. Conventional anti-corrosion coatings (a) and nanostructured anticorrosion system (b). 

Incorporating nanoparticles into electrodeposition coating formulation is another approach 

to improve the anti-corrosion performance of car body. Nanoparticles such as Nano-SiO2, 

Nano-TiO2, Nano-Clay, Nano Carbon Tube etc. are used to improve electrocoating 

properties. What is important here is that electrocoatings are waterborne coatings. 

Therefore, the nanoparticles used for this system must be compatible with coating 

formulation. Hydrophilic surface modifications are used to produce nanoparticles 

compatible with this kind of coating. Nanoparticles due to their very small size and high 

surface area could improve barrier properties of the organic electrocoating against corrosive 

electrolyte penetration. These particles increase electrolyte pathways through the coating 

(Nobel et al., 2007, Dhoke et al., 2009).  

2.4. Smart nano-scale container anticorrosive coating 

New generation of self-repairing coatings are developed to further enhance anticorrosive 

properties of metal substrates. In conventional systems, the barrier property of the coating is 

the main mechanism for metal protection against corrosion. However, the barrier 

(a) (b)
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performance of a coating will be damaged soon and corrosive electrolyte comes into contact 

with the metal substrate. Use of corrosion inhibitors is another approach to produce active 

coatings in exposure to corrosive electrolytes. These active agents are soluble in corrosive 

electrolytes and protect metal surface by passivation mechanism. There are different kinds 

of corrosion inhibitors which can be divided to three main types based on the mechanism 

controlling corrosion process. Anodic inhibitor (only reduces anodic reaction rate), cathodic 

inhibitor (only reduces cathodic reaction rate) and mixed inhibitors (both cathodic and 

anodic reactions can be influenced) (Nobel et al., 2007, Dhoke et al., 2009, Shchukin et al., 

2007, Brooman, 2002, Kasten et al., 2001, Sheffer et al., 2004, Garcia-Heras et al., 2004, 

Osborne et al., 2001, Vreugdenhil et al., 2005). The solubility of the inhibitors is found an 

important factor affecting its corrosion inhibiting efficiency. Very low solubility leads to low 

passivating behavior at metal substrate. There are disadvantages for very high solubility: 

first, the inhibitor will be rapidly leached out from the coating and second, the active surface 

blistering and delamination may occur due to osmotic pressure effect. As a result of osmotic 

pressure, water transportation into the coating matrix and passive layer destruction may 

occur. Because of this, adding active inhibitors at high concentration is not possible in 

conventional processes. This problem has been solved in modern coatings using nanoscale 

container (carrying active agents like inhibitors). In this approach, active inhibitor is loaded 

into nanocontainer. The nanocontainers have a permeable shell which could release active 

agents in coating matrix. In fact, the shell is designed in a way which release active agent in 

a controlled process. There is another approach which instead of nanocontainer in which the 

passive layer is doped with active agents. However, interaction of active materials with 

coating matrix leads to short-coming in the stability and self-repairing activity of the 

coating. The disadvantages cannot be seen for the system loaded with nanocontainers as the 

coating matrix does not directly contact with active agents. The system is schematically 

shown in Fig. 7 (Shchukin et al., 2007).  

 

Figure 7. Active material is embedded in the “passive” matrix of the coating (a) and active material is 

encapsulated into nanocontainers (b) (Shchukin et al., 2007). 
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The nanocontainers will be uniformly distributed in coating matrix keeping active materials 

in a trapped state. The nanocontainers respond to any signal or when the environment 

undergoes changes they release encapsulated active materials. Controlling nanocapsuls 

permeability and nanocontainers compatibility with coating matrix are the most important 

parameters affecting their anticorrosion performance. The optimum nanocontainers size 

range is 300-400 nm. Using nanocontainers with larger sizes may lead to large hollow 

cavities formation inside coating matrix resulting in significant reduction of the passive 

protective properties of the coating. Depending on the sensitive components presented in 

nanocontainers (i.e polyelectrolytes or metal nanoparticles) different parameters like ionic 

strength, pH changes, temperature, ultrasonic treatment, magnetic field alteration may 

influence shell permeability. The mechanism in which nanocontainers release active agents 

and protect attacked areas of metal surface by corrosive electrolyte forming a passive layer 

is schematically shown in Fig. 8 (Shchukin et al., 2007). 

  

Figure 8. Schematic illustration of self-repairing mechanism of nanocontainers when metal is exposed 

to corrosive electrolyte (Shchukin et al., 2007). 

2.5. Weathering resistant automotive coatings 

Two main purposes of coating application in automotive industries are protecting the car 

body against environmental conditions and imparting desirable esthetic appearance. To 

fulfill these functions, the coatings themselves have to remain intact for a long time in a 

harsh environment. Photo and hydrolytic degradations respectively caused by sunlight and 

humidity are two common processes occurred, resulting in changes in all aspects and 

properties of automotive coatings (Yari, et al., 2009a;  2009b; Ramezanzadeh, et al., 2012a). 

These chemical alterations may greatly influence all aspects of the coating. Therefore, 

automotive coatings are required to be highly resistant against weathering condition. To 

enhance coating resistance against sunlight, HALS (hindered amine light stabilizer) and/or 

organic UV-absorbers has been added to clearcoat formulation. Although these ingredients 

considerably enhanced weathering performance, in addition to having high prices, they can 
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migrate to other layers and are also prone to undergo decomposition during service life. To 

fight weathering, nanotechnology has offered new solutions that have no drawbacks as 

mentioned above for organic UV stabilizers.  

In recent researches, various nanoparticles such as zinc oxide, iron oxide, cerium oxide, 

titanium oxide and silica have been incorporated into conventional polymeric coatings to 

enhance their resistance against sunlight. Nanoparticles, possessing a high surface area for 

absorbing the harmful part of sunlight (ultraviolet part), prevent the coatings from weathering 

degradation. Since they are inorganic and particulate, they are more stable and non-migratory 

within an applied coating. So, they present better effectiveness and longer protection. 

As mentioned before, TiO2 nanoparticles are effective to fight against UV rays and can 

protect the coating against weathering. However, these nanoparticles especially can exert 

strong oxidizing power and produce highly reactive free radicals and degrade the coating in 

which has been incorporated. Thus, photocatalytic activity of TiO2 nanoparticles has to be 

controlled. For this purpose, treatment of nanoparticles by different techniques such as 

silane agents not only suppresses photocatalytic activity of TiO2 nanoparticles, also offers 

clear advantages like simplicity and low cost and processing temperatures. It has also been 

demonstrated that surface modification of TiO2 nanoparticles with aminopropyl trimethoxy 

silane (APS), considerably has reduced photocatalytic activity of nanoparticles and 

enhanced the weathering resistance of a polyurethane coating(Mirabedini, et al., 2011).  

In various researches, it has been shown that zinc oxide nanoparticle can be an effective 

option to nearly completely screen the UV rays and protect the coating(Lowry, et al., 2008; 

Ramezanzadeh & 2011a). In an attempt to improve the UV resistance of an aromatic 

polyurethane-based automotive electro-coating nano-ZnO particles were used. The results 

obviously illustrated that the presence of nano-zinc oxide particles could decrease the 

photodegradation tendency of the film and protect it against deterioration (Rashvand, et al., 

2011). 

2.5.1. Weathering due to biologicals 

Although, humidity and sunlight are the two main factors which degrade automotive 

coatings, other environmental factors, i.e. those originated from the biological sources can 

have a spoiling impact on the appearance of a car body during its service life 

(Ramezanzadeh et al., 2009) . In a systematic manner, the degradation mechanism and 

influence of various biological substances such as bird droppings, tree gums and insect 

gums on automotive coatings have been thoroughly studied(Yari et al., 2009c; 

Ramezanzadeh et al., 2010a; 2010b; 2011b) . It was revealed that both natural gum and bird 

dropping seem to affect the coating physically (by imposing stress to coating while they are 

being dried) and chemically(by catalyzing the hydrolytic degradation) (Yari et al., 2011; 

Ramezanzadeh et al., 2010c; 2010b; 2011b). While natural gum has extensively created large 

cracks with scattered etched areas (Ramezanzadeh et al., 2010c; 2010b), the influence of bird 

droppings was formation of numerous etched regions with some small cracks (Yari et al., 

2011). It was also found that the most important factors governing the degradation are the 
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coating chemical structure at surface and adhesion between coating surface and biological 

materials. Therefore, it was thought that any modification which could be able to alter both 

surface chemistry of the clearcoat and adhesion would be an ideal option to fight bio attacks. 

This idea was proved by a series of experiments. It was demonstrated that modification of 

clearcoat with a functional silicone additive significantly improved the coating performance 

against bird droppings and tree saps(Yari et al., 2012a, Ramezanzadeh et al., 2012b )(Fig. 9).  

According to these new findings, creating a clearcoat with non-stick and superior water-

repellency properties would significantly reduce the failure of coatings caused by biological 

materials. Ultra-hydrophobic self-cleaning coatings which are produced by nanotechnology 

is a powerful approach for this purpose. Contaminants on such surfaces are swept by water 

droplets or adhere to the water droplet and are removed from the surface when the water 

droplets roll off. Although these types of coatings for automotive glasses have been already 

commercialized, their development for automotive paints is in progress.  

2.6. Smart windows based on electrochromism 

As stated before, providing a secure and comfortable condition for driver and passengers 

has become an important task in automotive industry. To this end, automotive experts 

strongly believe that all types of energy like sound, light and heat which enter the car body 

have to be controlled. Recent progresses in polymer and different types of dichromic 

technology have allowed the development of smart glasses which intelligently control solar 

radiation transmission and modulate glare, increase passenger comfort and safety. Among 

different kinds of smart glasses, electrochromic (EC) ones are very important.  

EC materials alter their optical characteristics (darkness/lightness) when a small electric 

potential difference is applied. They are suitable for a wide range of applications. They can 

be employed in different parts of an automobile like for energy-efficient windows, antiglare 

rear-view mirrors, sunroofs and displays.  

A typical ECD composition has a complicated structure. As shown in Fig.10, it usually 

consists of a five-layer sandwiched-structure which are applied between two glass 

substrates. This structure includes transparent conductor, an electrochromic coating, ion 

conductor and ions storage coating and another transparent Conductor(Pawlicka , 2009).  

Since the layers in this structure are very thin, the technology used for this assembly can be 

considered in nanotechnology domain. The thicknesses of transparent conductor, EC, 

electrolyte and counter electrode (ion storage ) layers in a typical EC structure are 1500A°, 

4000A°, 100μm and 1250A°, respectively. These layers can be deposited by different 

techniques such as sputtering, CVD, spin- or dip-coating from sol-gel precursors, etc. 

The EC devices operate based on the reversible electrochemical double injection of positive 

ions i.e. H+, Li+, Na+ and electrons into the host lattice of EC materials. Diffusion of mentioned 

ion and electrons into EC layer initiate some redox reactions, leading to a change in 

electrochemical state of EC material and therefore its resultant color. This variation in color of 

EC layer alters the color of the whole structure (for more details, see (Monk et al., 2007).  
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Figure 9. Microscopic images pure and silicone-modified clearcoats exposed to bird droppings and tree 

gums.  

 

Figure 10. A typical EC system consists of different layers (Pawlicka , 2009). 

EC technology becomes more and more important because it possesses low power 

consumption. However, due to slow diffusion of ions, response time (the time that a 

Circular defect 

Circular defect 

Unmodified clearcoat – Exposed to Bird dropping 

Silicone-modified clearcoat – Exposed to Bird dropping

Unmodified clearcoat – Exposed to Gum 

Silicone-modified clearcoat – Exposed to Gum 
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perceivable change in color occurs) in conventional EC systems is relatively slow and this 

drawback limits application of EC systems where a fast response is needed like in 

automotive rear-view mirrors. A significant portion of studies related to EC systems is 

devoted to new methods or materials to reduce the response time. In recent years, although 

scientists have achieved successes using new materials like hydrogen ions instead of lithium 

ions, nanotechnology has opened new rooms in this field and has triggered plenty of 

academic and industrial enthusiasms. In an EC process, if the surface area of the EC 

materials increases by producing nano-structured oxide films, migration of ions will be 

improved and consequently redox reactions will occur faster. Here, a few of 

nanotechnology-involved studies are briefly presented.  

Among inorganic EC materials, tungsten oxide films have the highest coloration efficiency 

in the visible region and, therefore, have been most extensively studied so far. In a recent 

study, EC films from crystalline WO3 nanoparticles have been fabricated (Lee et al., 2006). 

Porous films of crystalline WO3 nanoparticles were grown by hot-wire chemical-vapor 

deposition and electrophoresis techniques. The nano-scale porosity of the films not only 

increases the surface area and ion-insertion kinetics, but also diminishes the overall material 

cost. It was also revealed that compared to conventional amorphous WO3 films, 

nanoparticle films demonstrated superior electrochemical-cycling stability in acidic 

electrolytes, a higher charge density, and comparable CE. It seems that these findings will 

eventually revolutionize current EC technology.  

The first commercial EC product was based on a patented document fom Gentex Corp. in 

1992. It was a solution-phase EC rear-view mirror for automotive vehicles which had a 

reflectance greater than 70% to less than 10%. This technology has been installed in many 

cars. In addition, in 2007 Donnelly Corporation designed an EC system for use as 

automotive mirrors. In this invention, which was based on polymerization of an 

electrochromic monomer, the color of the mirror varies uniformly from a silver appearance 

to bluish purple, and its reflectance changes from 60% to 20%. In a similar study, Thin 

mesoporous films of nickel oxides and nanotube manganese oxides were electrochemically 

produced on indium tin oxide(ITO) coated glasses and compared with conventional 

structure ones(Yoshino, 2012). It was found that nano-structured films exhibited marked 

changes in optical transmittance and electric charge with respect to the electrochromic 

reactions.  

Coating EC material on different types of nano-particles are much more novel approaches to 

take advantage of large surface area granted by nano-materials to overcome the drawback of 

long switching time. Coating Viologn on TiO2 nanoparicles (Cummins, et al., 2000) or 

preparation of Poly(3,4- ethylenedioxythiophene) (PEDOT) nanotubes (Kim, & Lee, 2005 ) or 

arrangement of PEDOT films (Kimura, & Yamada, 2009) on Au nano-brush electrodes are of 

the most important published activities.  

In a same research, in order to enhance the contrast and switching time of regular Prussian 

Blue (PB), which is widely used as a sole electrochrome in EC devices, the nano-technology 

concept has been applied(Cheng et al., 2007). Fig. 11 clearly describes this research.  
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Figure 11. Conceptual structure of nano-composite PB film. 

In the naocomposite shown in Fig. 11, indium tin oxide (ITO) nano-particles was applied as 

a medium layer for PB to gain larger operative reaction surface area. It was prepared by 

spraying a well-dispersed ITO nano-particle solution onto an ITO-coated glass and followed 

by electroplating PB on pre-sprayed ITO nano-particles. Due to proper covering of ITO 

nano-particles with PB, the final film produce a nano-porous electrochromic layer. Fig. 12 

shows the SEM photograph of this nanocomposite from top and cross-sectional view. It was 

also revealed that switching speed and contrast of nano-structured film exhibit much better 

performances than traditional PB thin films. It was explained by this fact that 

Nanocomposite PB offers much larger operative reaction surface area than traditional PB 

film does.  

 

 

Figure 12. SEM images of final PB nanocomposite film (a) top and (b) cross-sectional view. 
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DuPont has developed an EC device based on an organic polymer technology to control 

light transmission in automotive applications. In comparison with current EC technologies, 

this not only is less complicated, but also it can be used in rigid and flexible forms, large 

sizes, and curved shapes. Target markets of this technology in automotive include sunroofs, 

mirrors, instrument clusters, windshield shade bands, sidelights, and backlights.  

It is predicted that the market for smart windows will become a billion-dollar one by 2015 

and will be doubling by 2018. The automotive market provides the next largest source of 

smart window opportunities for glass suppliers, after the architectural markets.  

The Ferrari 575 M Superamerica had an electrochromic roof as standard, and the Maybach 

has a PDLC roof as option. Some Polyvision Privacy Glass has been applied in the Maybach 

62 car for privacy protection purposes. 

2.7. High-strength steels for car bodies  

In order to enhance cars and passengers safety at crashes, the automotive producers have 

attempted to use high-strength steels in car bodies. However, it is difficult recasting of high-

strength steel parts in cold state as the size accuracy changes and undesirable spring-back 

effects may occurs. Recasting in a hot state (at 1000 °C) helps us to avoid such disadvantages 

during recasting of high-strength steel parts. However, the scaling of this kind of steel is 

difficult at high temperatures. Nanotechnology is utilized to solve this problem. To this end, 

a multifunctional protective coating produced based on nanotechnological approach with 

the principles of conventional paint technologies. This multifunctional coating is produced 

using bonded and connected nano sized vitreous and plastic like materials together with 

aluminum particles. This system is schematically shown in Fig. 13 (21-22). 

 

Figure 13. Nanostructured high-strength steel for car body. 

2.8. Nanostructured tyres 

Tyres performance extremely depends on their cover composition which is continuously in 

contact with road. So the rubber composition of the cover plays an important role on its 
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properties. Different properties like abrasion resistance, grip and resistance against tear 

propagation are important. Incorporation 30% filler can improve such properties. Type and 

loading of filler as well as chemical and physical interactions between filler and rubber are 

influential parameters affecting its properties (Das et al., 2008, Zhou et al., 2010).  

While the tyre resistance against grip should be high, its rolling resistance has to be low. 

Tyres need to resist abrasion but they should have slip-proof properties to reduce the car 

slide. In fact, there are three main factors which necessarily should be considered for a 

desired car tyre. These are reducing fuel efficiency by improving rolling resistance, 

increasing tyre life time by improving its abrasion resistance and reducing car fuel 

consumption by reducing friction. However, reducing friction can negatively influence car 

safety. The modern tyres consist of a mixture of synthetic and natural rubber, carbon black 

and silica, additives and steel/textile or nylon rod as reinforcement.  

Soot (carbon black), silica and organosilane are the important examples of materials used to 

enhance rubber properties. Adding such materials to rubber composition at nanometric 

dimensions can significantly improve tyre properties. The size and surface modification of 

the particles can affect their chemical and/or physical interactions with rubber matrix. This 

varies the particles cross-linking with natural rubber molecules, affecting its properties. 

Nano sized soot particles can significantly enhance tyres durability as well as higher fuel 

efficiency. These particles have courser surface compared with traditional ones and due to 

their higher surface energy, they could produce stronger interactions with rubber matrix 

(Fig. 14). As a result, inner friction can be reduced which results in better rolling properties 

(Das et al., 2008, Zhou et al., 2010). 

 

Figure 14. Schematic illustration of a modern nanostructured based tyre for cars (Das et al., 2008, Zhou 

et al., 2010).  

It is well known that strain vibration will occur within tyre material at high car speed. 

Nanoparticles can reduce this strain vibration and results in superior traction, especially on 
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wet roads. The surface modification of the particles is important which will affect their 

interaction with rubber matrix and its final properties. It has been found that carbon 

nanotube (CNT) can improve mechanical properties such as tensile strength (600%), tear 

strength (250%) and hardness (70%) of styrene-butadien rubbers. Tyres with higher stiffness 

and better thermoplastic stability can be produced using lamellar nano-sized organoclays 

like montmorillonite. The other nanoparticles used to enhance car tyre properties are nano-

alumina, carbon nano fibers (CNF) and graphene. The rolling resistance of tyres can be 

significantly improved using silane-treated silica compared with traditional carbon black 

based tyres. Using nanoparticles, tyres with better traction on wet and icy roads can be 

produced. As a result, the stopping distance of car can be reduced by 15-20 % and 5% in fuel 

consumption (Das et al., 2008, Zhou et al., 2010). 

3. Interior applications 

3.1. Automotive fabrics 

Car industry’s commercial strategy today is to improve the safety and convenience aspects 

of automobiles. Textiles, especially fabrics, as the main substances in designing of interior 

parts of a vehicle, are very important. They are utilized in various parts such as interior 

panels for doors, pillars, seats coverings and paddings, parts of the dashboard, cabin roof 

and boot carpets, headliner, safety belts, airbags. Nanotechnology as a powerful tool has 

aided the auto-manufacturers to reach their goals in a short period of time. The most 

important properties of automotive fabrics which have been modified by the aid of 

nanotechnology include: a) anti-microbial b) self-cleaning c) fire-retardancy.  

3.1.1. Antimicrobial/antibacterial and Anti-odour properties 

Textiles can grant an appropriate environment for micro-organisms growth especially at 

proper humidity and temperature in contact to human body. Rapid and uncontrolled fast 

thriving of microbes can lead to some serious problems. Because of public concern about 

hygiene, the number of studies about anti-microbial modification of textiles has been 

significantly increased in recent years. To this end, various anti-microbial agents such as 

Oxidising agents ( aldehydes, halogens), Radical formers (halogens, isothiazones and peroxo 

compounds), diphenyl ether (bis-phenyl) derivatives, Quaternary ammonium compounds 

and chitosan have been used. Nevertheless, application of many of these materials has been 

avoided because of their harmful or toxic effects. More recently, nanotechnology has been 

the basis of a great number of researches to produce novel anti-microbial textiles. As 

schematically presented in Fig. 15, the most important nano-structured anti-microbial agents 

are silver, titanium oxide, gold, copper and zinc oxide and chitosan nano-particles, silver-

based nano-structured materials, titania nanotubes (TNTs), carbon nanotubes (CNTs), nano-

clay, gallium, liposomes loaded nano-particles (Dastjerdi & Montazer, 2010). These 

nanoparticles can be coated directly on textiles or via a vehicle (incorporated nanoparticles 

in a matrix such as silica network). Various techniques can be utilized for coating of these 

antimicrobial agents on textiles like sol-gel processes and chemical vapor deposition.  
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Figure 15. Classification of inorganic based nano-structured anti-microbial agents(Dastjerdi & 

Montazer, 2010). 

The anti-bacterial action in these agents is caused via either a photo-catalytic reactions or 

biocidical processes. An example of former type of anti-bacterials is titania-based agents that 

act through the absorption of light, photo-catalytic reactions. As a result of these reactions, 

excited charge carriers (an electron and a positively charged electron-hole) are produced. 

While the positively charged holes induce the oxidation of organic molecules, the electrons 

can react with oxygen, leading to formation of hyperoxide radicals. These radicals attack 

and oxidize the cell membranes of microorganisms. The described photo-catalytic process is 

the cleaning mechanism of superhydrophilic self-cleaning surfaces which leads to the 

degradation of stains (Banerjee, 2011; Fujishima et al., 2008). Silver and gold are examples of 

the latter type of anti-bacterial materials. In biocidical action, the antibacterial effect happens 

via interaction between the positively charged biocide and the negatively charged cell 

membranes of microorganisms which damages the microorganism. In the majority of 

researches a combination of both mechanisms (photo-catalytic and biocidal processes) are 

used to achieve an efficient anti-bacterial effect (Yuranova, et al., 2006; Yeo et al., 2003). 

Among different anti-bacterial agents, silver has received the most attention because of 

potential advantages(Montazer et al., 2012a; Montazer, et al., 2012 b). Besides possessing a 

high degree of biocompatibility, silver is highly resistant to sterilization conditions and has a 

long-term antibacterial efficiency against different bacteria.  

In commercial viewpoint, anti-bacterial automotive textiles based on nanotechnology are 

beginning to enter the market. For example, Tencel™ material based on nanofibrils of 
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cellulose was produced by Lenzing. It has a combination of properties and in particular 

antibacterial properties which reduces growth of bacteria. This product has been introduced 

to the market as a good candidate for seat car covers. 

3.1.2. Hydrophobic surfaces and anti-stain textiles 

Lotus leaf is a natural model for super-hydrophobic surfaces. Very low surface energy 

materials (like fluoro- or silicone- containing polymers) and nano-scale roughness structures 

(created by nanoparticles or nanotechnology-based procedures) are required for creating a 

superhydrophobic self-cleaning surface. A schematic picture of such surfaces is shown in 

Fig. 16. On these surfaces the distance between summits of such nano-roughnesses is around 

few hundreds nanometer and they are so close together that a speckle of dirt would not fit 

between them(Wang et al., 2011). Therefore, a non-stick surface is produced. On the other 

hand, low surface energy substances make water roll off and easily wash off unattached dirt 

from surface.  

Different methods based on nanotechnology like Layer-by-Layer Deposition, 

Electrodeposition/Electropolymerisation, Plasma and Laser Treatment, Electrospinning, 

Casting and Molding can be employed for creating nano-roughness.  

Among researches to make super hydrophobic surfaces, carbon nanotube, silica and fluoro 

containing polymer nanoparticles were applied to the nylon, cotton and polyester fabrics in 

form of a coating (46-48). In these works, they could achieve artificial lotus leaf structures.  

 

Figure 16. Self-clean action on a conventional and on a nano-structured textiles by removing dirt with 

water (lotus effect).  

Opel Co. was the first manufacturer in the world to equip seating upholstery of Insignia 

(Car of the Year 2009) with the Nanogate coatings that repel dirt and liquid staining. 

3.1.3. Flame retardant fabrics  

For the last half a century, various compounds have been employed to improve the fire 

resistance performance of textiles. Inorganic chemicals such as antimony, aluminum and tin 
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as well as Bromine, Chlorine- and Phosphorus- based compounds are the main chemical 

families of flame retardants (Horrocks, 2011). These conventional chemicals are not usually 

harmless. It has been proved that halogen–antimony and phosphorus–bromine 

combinations, besides having limited performance have environmental concerns. 

Environmental regulations have restricted the use of these flame-retardant additives, 

initiating a search for replacing toxic flame retardants in polymer formulations with safer 

and more environmentally-friendly alternatives. This has sparked the interest of 

nanoscientists. 

Recently, polymer nanocomposites offering significant advantages over conventional 

formulations have received many attentions in the field of flame retardancy. Nanoparticle 

fillers are highly attractive for this purpose, because they can simultaneously modify both 

the physical and flammability properties of the polymeric matrixes. Layered silicates (clay) 

and carbon nanotubes (CNTs) are two main nanostructured materials that have attracted the 

attention of scientists to promote fire performance of polymeric substrates like textiles 

(Bellayer et al., 2004; Kiliaris, & Papaspyrides, 2010). The nano-materials make fabrics less 

ignitable and self-extinguishable when the flame is removed.  

Since flame retarding mechanisms of clay and CNTs are different, significant synergism 

happens when they are introduced to textile together, leading to a much more efficient 

approach to improve the flame retardancy.  

In recent studies, polyhedral oligomeric silsesquioxane(POSS) compounds have been 

utilized as fire-retardant agents. In a series of experiments, Bourbigot and coworkers 

introduced POSS nanoparticles in polypropylene yarns, cotton and knitted polyester and 

showed that the time-to-ignition increased significantly as a result of presence of 

nanoparticles (Bourbigot, et al., 2005).  

Since clays, CNTs and POSS nanoparticles are more expensive than traditional fire 

retardants, their uses are currently hampered even if they are more environmentally 

friendly. Therefore, cost reduction would likely change this situation. 

3.2. Nano-coatings for engine application 

Coatings plays an important role in improving efficiency and life of the car engine. These 

are listed below (Dahotre et al., 2005, MacLean et al., 2003, Lin., et al 1993): 

Lubrication (reduced frictional loss) 

Thermal insulation (higher operating temperature) 

Reduced friction (surface finish and affinity or oil) 

Reduce dimension weight (replaces cast iron block/liner) 

It is well known that engine of a car can operate at higher temperatures by reducing external 

heat removal. Using lightweight materials in engine to reduce load, heat losses and 

frictional losses is another approach to improve fuel efficiency. One of the most important 
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factors to improve fuel efficiency is reducing weight of engine. Replacing cast iron (with 

density of 7.8 g/cm3) used in engine blocks with low-cast aluminum-silicone (with density of 

2.79 g/cm3) is one possibility for engine weight reduction. However, aluminum alloys do not 

have adequate wear resistance and high seizure loads to be used in the cylinder bores. 

Because of these, cylinder bores are made of cast iron liners which have good wear 

resistance. Therefore, attempts have been carried out to improve aluminum bars properties 

using new composites and/or monolithic coatings (Dahotre et al., 2005, MacLean et al., 2003, 

Lin et al., 1993, Venkataraman et al., 1996, Rao et al., 1997).  

Nanomaterials can be employed to achieve extraordinary properties for aluminum bars. 

Schematic illustration showing the variations of hardness versus grain size is depicted in 

Fig. 17. 

 

Figure 17. The effects of grain size of a metal on its hardness and other properties (Dahotre et al., 2005). 

Fig. 17 clearly shows increase of hardness and flow stress as the grain size decreases (<100 

nm). At grain sizes smaller than 100 nm, the deformation mechanism will be changed from 

dislocation-controlled slip to grain boundary sliding whilst the plasticity is increased 

simultaneously. Different parameters including toughness, flow stress, ductility and thermal 

insulation of the aluminum will be intensified when the grain size is in nano scale. 

Nanocoatings have been utilized in order to improve engine efficiency as described below: 

3.3. Wear resistant nano-coatings for engines 

Scratch and wear are criteria parameters which will be considered for the metal parts used 

in automobile engines. Electrodeposited hard chrome and microstructure ceramic coatings 

are the most used kinds of protective coatings for engine parts. The ceramic coatings are 

frequently applied on metal parts using thermal spray. In plasma spraying, the coating 

powder reinforced with ceramic particles is injected into a plasma stream following by 

heating and accelerating toward the metal substrate. The ceramic rapidly cools and produce 

a coating layer over the substrate. However, there are limitations for the use of 

microstructure ceramic and eletrodeposited chrome coatings. Chrome coatings include 

hazardous materials influencing the environment and are also expensive. The conventional 

microstructure ceramic coatings are less expensive than chrome coating but are brittle and 
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show low adhesion to the substrate. Attempts have been carried out to find other 

replacements. Nanostructured containing ceramic coatings have been utilized to improve 

metal parts of engine against abrasion and wear. Reducing the scale of materials 

microstructure like grain size, particle size or layer thickness can significantly alter its 

properties (Fig. 18) (Rao et al., 1997, Wuest et al., 1997, Rastegar et al., 1997, Cole et al., 1997, 

Ebisawa et al., 1991, Kabacoff et al., 2002, Sanchez et al., 2007).  

 

Figure 18. Different states of nanostructured materials used in order to improve car body properties 

(Kabacoff et al., 2002).  

Recently, new nanoceramic composites (alumina-titania ceramic coatings) have exhibited 

excellent wear resistance. However, there are problems with spraying nanoparticles because 

of their low mass and poor fluidity. One way to solve this problem is agglomerating 

nanoparticles into micrometer-sized aggregates. However, in order to obtain initial 

nanostructure after spraying, the process must be carefully controlled. Alumina, alumina-

titania, cemented tungsten carbides, or zirconia powders are examples for the 

nanostructured coatings obtained from agglomerated particles plasma spraying. Both wear 

and abrasion resistance of the metal substrate will be considerably improved after the 

nanostructured materials spraying. Recent findings have revealed that atmospheric plasma 

spraying of the nanostructured materials results in better nanostructure formation in final 

coating layer and better tribological properties of the coating (Dahotre et al., 2005, Kabacoff 

et al., 2002, Sanchez et al., 2007). 

Particle diameter Layer thickness

Fiber diameter Grain size
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3.4. Nano-coatings with good lubrication for engine application 

It is well known that mechanical friction could significantly influence the internal 

combustion (IC) engine fuel economy. Valve train, piston system crank and bearing system 

are the most important sources of frictions (Fig. 19) (Dahotre et al., 2005, Kabacoff et al., 

2002, Sanchez et al., 2007). 

  

Figure 19. New coatings used to improve (right) engine body structure and (left) cylinders.  

These friction sources could reduce engine life and increase oil consumption. Coatings could 

reduce frictions and result in lower oil usage. Examples of these coatings are Ni-Mo-MoS2, 

Ni-BN, graphite-Ni, etc. Recently, nano-structured materials have been utilized to improve 

friction properties of piston rings. Zirconium ceramic coatings can modify surface 

properties. Nano-size zirconium powder can be dispersed in a mineral oil. The 

nanoparticles can reach working surface of the engine when the piston moves. The nano-

size zirconium help ceramic particles better bond to the metal surface. Heat generated 

during engine operation would be enough to cure ceramic powder attached to the engine 

surface. After curing, ceramic coating produces hard and smooth surface at different parts of 

the engine including cylinder walls, piston rings, piston top, valve tops and bearing 

surfaces. The nano-size zirconium particles can also improve fuel economy, power output, 

oil burning and reduce noise, vibration of engine and pollution discharge (Rao et al., 1997, 

Wuest et al., 1997, Rastegar et al., 1997, Cole et al., 1997, Ebisawa et al., 1991, Kabacoff et al., 

2002, Sanchez et al., 2007).  

3.5. Nanofluids and nanolubricants 

3.5.1. Nanofluids: Properties and application in automotive industry 

Adding nano sized materials like nanofibers, nanotubes, nanowires, nanorods and 

nanosheets to fluids results in producing new generation of fluids having superior 

properties in comparison with conventional fluids. In fact, nanoscale colloidal suspensions 

loaded with condensed nanomaterials are named nanofluids. This system consists of two 

phases: liquid phase (base fluid) and solid phase (nanoparticles). Using nanoparticles, the 

thermoplastic properties such as thermal diffusivity, thermal conductivity, viscosity and 

convective heat transfer coefficient of the fluid will be significantly enhanced. Achieving 

such properties need making stable nanofluids which has shown serious challenge in recent 
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years (Yu et al., 2011, Trisaksri et al., 2007, Wang et al., 2007, Wang et al., 2008). Using 

nanofluids, cooling systems with higher efficiency have been designed for cars. Decreasing 

cooling system weight and reducing its complexity are the most important advantages of 

using nanofluids. In this way, compact cooling system with smaller size and weight can be 

designed for cars' radiator. Improving thermal conductivity of ethylene glycol-based fluids 

using nanomaterials has attracted much attention as engine coolant. In conventional cooling 

systems, a ratio of 50:50 of water and ethylene glycol is used as coolant. However, there are 

advantages of using ethylene glycol based nanofluids such as low pressure operation 

compared with mixture of water and ethylene glycol. Nanofluids based coolants have 

boiling point higher than conventional ones helping it reject more heat through coolant 

system. It has been shown that using nanofluids in cars' radiator could reduce frontal area of 

radiator up to 10%. In this way, nanofluids could reduce aerodynamic drag and fuel saving 

up to 5%. Nanofluids could also reduce friction and wear in pumps and compressors, 

leading to fuel saving up to 6%. These all reveal that nanofluids are suitable materials which 

not only could improve cars cooling system performance but also can greatly influence the 

structure design of cars (Wang et al., 2008, Li et al., 2009, Kakac et al., 2009, Xie et al., 2009, 

Yu et al., 2009, Yu et al., 2007, Kole et al., 2007, Tzeng et al., 2005).  

3.5.2. Heat transfer improvement using nanofluids 

Maxwell's model reveals that increase in volume fraction of spherical nanoparticles results 

in thermal conductivity improvement of a liquid. Moreover, increase in surface area-to-

volume ratio of the particles leads to an increase of the conductivity of the liquid. In 

addition to particles size and particles loading, the particles sphericity (defined as the ratio 

of the surface area of a perfect spherical particle to that of non-spherical particle at the same 

volume) is another parameter influencing thermal conductivity of a suspension. Hamilton 

and Crosser's (Yu et al., 2009, Yu et al., 2007, Kole et al., 2007, Tzeng et al., 2005) revealed 

that decreasing particle sphericity from 1.0 to 3.0 results in significant increase in thermal 

conductivity more than two times. Particle with 10 nm diameters has surface-area to volume 

ratio of 1000 times greater than a particle with 10 μm size. Consequently, it has been 

expected to enhance thermal conductivity using nanometer sized particles much greater 

than micrometer sized particles. 

Attempts have been carried out to improve heat transfer ability of water/ethylene glycol 

liquids (used in a car radiator) using nanoparticles. Nano CuO and Al2O3 particles are added 

to these liquids. Results showed significantly enhanced thermal conductivity of the liquids 

using these nanometric materials. It is shown that using 4 vol% nano-CuO (30 nm diameter) 

can increase thermal conductivity of the ethylene glychol by 20%. The same observation was 

seen in case of using nano-Al2O3 particles in water. It has been found that reducing nano-

CuO particles' size results in further increase in thermal conductivity of the liquid. In 

another research, the effects of addition of nano sized ZnO, Al2O3 and TiO2 particles (at 5 

vol%) to an ethylene glycol on its thermal conductivity and viscosity was studied. The 

highest thermal conductivity and the lowest viscosity were observed for the liquid loaded 

with MgO nanoparticles. Carbon nanotube is found effective nanoparticle to enhance 
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thermal conductivity of water and ethylene glycol. Using 1 vol% carbon nanotube can 

improve water/ethylene glycol mixture conductivity up to 175% (Kakac et al., 2009, Xie et 

al., 2009, Yu et al., 2009, Yu et al., 2007, Kole et al., 2007, Tzeng et al., 2005).  

3.6. Lubricating oils for cars using nanoparticle additives 

Lubricants like mineral oil are used to reduce friction and wear in automobile engine. The 

pistons movement in cylinder of an engine produces frictions as a result of metals wear. 

This may lead to reduced engine efficiency as well as lowered engine life. Oils are used as 

lubricant to reduce friction. The conventional oils need to be exchanged after a special 

engine working time. In fact, the oil lubricant properties will be gradually reduced. 

Researches to produce better oils with longer life are developed in recent years. 

Nanotechnology is one of the most effective ways of fulfilling this target (Wu et al., 2007, 

Chinas-Castillo et al., 2003). It has been shown that nanoparticles could improve lubricant 

behavior of conventional oils. Particles shape, size and concentration are influential 

parameters affecting wear and friction reduction. It has been shown that gold particles 

having particle size of 20 nm has the best lubricating effects. Dialkyldithiophosphate 

modified copper nanoparticles is shown as an effective nanoparticle with high ability of 

improving anti-wear ability of metal surface by producing an anti-friction film. Diamond 

and inorganic fullerene-like (IF) particles are other examples of anti-wear nanoparticles 

being used as additives for lubrication. The most important mechanisms which result in 

friction reduction are colloidal effects, rolling effects, protective film and third body. 

Diamond nanoparticles were added to oil to improve its anti-wear ability. This nanoparticle 

has found to improve oil lubricant behavior via various mechanisms including: (a) ball 

bearing effects of the spherical particles existed between rubbing surfaces, (b) the surface 

polishing and (c) increasing surface hardness. Adding CuO nanoparticles to oil could 

significantly reduce friction coefficient. Ball bearing at high temperature and viscous effect 

at low temperature are the reasons CuO nanoparticles can improve anti-wear behavior of 

oil. The nanoparticles depositions at worn surfaces would be responsible for shear stress 

reduction leading to tribological properties improvement of the surface (Wu et al., 2007, 

Chinas-Castillo et al., 2003, Zhou et al., 1999, Rapoport et al., 1999, Chen et al., 1998).  

3.7. Energy criterion in cars 

To replace combustion engines, different strategies and methods have been developed. 

Among them, electrochemical energy production/storage is the most important option 

owing to sustainability and being environmentally friendly (Schlapbach & Zuttel, 2001). The 

so-called electrochemical energy storage and conversion systems include fuel cells, batteries 

and supercapacitors. Although batteries have found their way in marketplace in different 

applications and fuel cells and supercapacitors are competing to establish promising 

applications, there are still many challenges to be solved to have energy conversion/storage 

systems which could surpass combustion engines in terms of power/energy performance 

and cost (Winter & Brodd, 2004). Nanomaterials are finding great contribution to overcome 

these challenges (Arico et al., 2005; Serrano et al., 2009). 
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3.7.1. Fuel cells 

Automobiles powered by fuel cells are believed to have considerable market in near future 

and it is envisioned about 80 million fuel cell vehicles will be on the road by 2020 (Serrano et 

al., 2003). High efficient energy conversion, safety, high energy density, nonpolluting are the 

advantages of employing fuel cells as energy source for driving a car (Jacobson et al., 2005). 

However, high cost, low volumetric power density, low durability and cell life plus high 

sensitivity to purity gas stream and complex operation are disadvantage of using fuel cells. 

Thus, hybrid configuration of fuel cells with batteries or supercapacitors is being developed 

in order to supply power for peak-power demands such as acceleration and start-up and 

also recovering braking energy (Kötz et al., 2001). In fact, despite of comparable energy 

density of fuel cells (100-1000 Wh.kg-1) relative to combustion engines, they have few order 

of magnitude lower power densities, rendering them as steady energy source. On the other 

hand, supercapacitors possess high power density comparable to combustion engines (Fig. 

20). Therefore, hybrid systems of fuel cells and supercapacitors or batteries are an efficient 

configuration for replacing the combustion engines. In general there are six types of fuel 

cells systems including i) alkaline fuel cells ii) polymer electrolyte membrane fuel cells 

(PEFCs) iii) direct methanol fuel cells (DMFC) iv) phosphoric acid fuel cells v) molten 

carbonate fuel cells and vi) solid oxide fuel cells (Winter & Brodd, 2004). 

 

Figure 20. Ragone plot of the energy storage domains for the various electrochemical energy 

conversion systems compared to an internal combustion engine and turbines and conventional 

capacitors (Winter & Brodd, 2004). 

Although one can drive a car powered by some classes (PEFCs) of fuel cells, there are still 

some challenges associated with employing them which are mostly high cost, fuel 

supply/storage and life time. Generally the fuel choice is hydrogen and oxygen which finally 
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exhaust water. Hydrogen supplication, refuelling infrastructure and storage of hydrogen are 

still ongoing challenges (Chan, 2007). Although hydrogen has very high gravimetric energy 

density, its’ application hindered due to low volumetric energy density. Storing hydrogen in 

liquid state require employing highly expensive cryogenic tanks (Fig. 21). Compressing 

hydrogen gas also urges using costly storage facilities. There has been considerable research 

to develop new materials enabling storage of hydrogen at high enough concentration at not 

too high pressure and too low temperature. Initial interest was focused on metal hydrides 

through chemisorptions of hydrogen (Fig. 22). However, efforts were quite unsuccessful to 

synthesis metal alloys reaching to theoretical limit (~8wt%) unless some promising results 

were reported for nanosized metal (oxide) composites (Arico et al., 2005). Metal alloys such 

as LaNi, TiFe, MgNi are generally expensive and in all cases are heavy which makes 

commercialization of products dealing with mobile applications problematical. 

 

Figure 21. GM ElectroVAN, the first hydrogen fuel cell powered car introduced at 1966. The hydrogen 

and oxygen stored in super-cooled liquid in cryogenic tank. 

 

Figure 22. Comparison of volumetric density of different systems to store hydrogen (Schlapbach & 

Zuttel, 2001) 

In another set of research, the efforts are focused on physical entrapping of hydrogen in 

porous materials. Physisorption of H2 allows fast loading and unloading. Nanostructured 
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materials are the sole candidates for this purpose. Carbon nanomaterials (Dillon et al., 1997) 

and metal organic framework (MOFs) (Ce´te et al., 2005; Zhou et al., 2007) are two dominate 

studied classes of materials with the goal of solid-phase storage of H2. By the advent of 

carbon nanotubes at early 90s (Iijima, 1991; Iijima & Ichihashi, 1993), great deal of attention 

was attracted to this novel nanomaterial. Dillon et. al. (Dillon et al., 1997) for the first time 

reported high capability of single-walled carbon nanotubes (SWNTs) as porous media for H2 

uptake, reporting 5 to 10wt% of H2 adsorbtion at ambient conditions. Chen et. al. (Chen et 

al., 1999) later reported significant enhancement of H2 uptake (20wt%) of multi-walled 

carbon nanotubes (MWNTs) upon doping with alkali metals at 300K and 0.1MPa. These 

results were beyond the requirements that have been established by Department of Energy 

(DOE) of US where gravimetric density of H2 must be at least 6wt%. However, subsequent 

studies revealed that CNTs are not promising candidates for H2 uptake. The results indicate 

metal doping of CNTs can enhance the H2 uptake of nanotubes, but hardly exceeds 4wt% 

(Liu et al., 1999; Béguin & Frackowiak, 2006). 

Novel nano-porous materials, MOFs, have been centre of attention for gas adsorbtion. These 

materials are product of reaction of metals ions with rigid organic molecules (Ce´te et al., 

2005). Due to exceptionally high surface area and tunable chemical structure of MOFs, high 

potential for high enough H2 uptake is envisioned. In September 2011, Daimler introduced a 

concept vehicle, Mercedes-Benz F125!, which was pictured to be derived by 2025 

(http://media.daimler.com). The most interesting technology of this conceptual car is its 

source of energy which is hybrid of Li-S battery (See below for more details) and hydrogen 

fuel cell. Despite current technology used in available fuel cell vehicles, liquid or compress 

hydrogen, storage facility of hydrogen is based on MOFs materials in this concept vehicle. 

The manufacturer claims one will be able to derive up to 1000km with maximum speed of 

220km.h-1 before it is needed to be refilled. 

Although interest to fabricate solid-phase hydrogen reservoir using CNTs are now 

quenched, emergence of the carbon-based thinnest materials, i.e. graphene, again revived 

hopes to have carbon-based hydrogen storage tanks (Park et al., 2007; Dimitrakakis et al., 

2008; Burress et al., 2010). In fact, as the H2 storage mechanism in carbon nanostructures 

relies on physisorption on graphenic surface, the hydrogen uptake is proportional to specific 

surface area of nanostructure which reaches ultimate value for carbon nanostructures in 

graphene (2630 m2.g-1) (Dimitrakakis et al., 2008). Researches on developing high surface 

area graphene-based materials are ongoing and more time requires confirming whether 

graphene-based nanoporous materials are able to solve the mystery of the hydrogen storage 

or not (Subrahmanyam et al., 2011). 

Another major issue which hinder widespread application of fuel cell vehicles, is high cost 

associated with manufacturing them (Fig. 23). The expensive constituents of fuel cells 

including the catalyst and electrolyte membrane are the origin of high cost of fuel cells 

(Steele & Heinzel, 2001). In addition, performance and life time of these classes of fuel cells 

(PEFC, DMFC) can be remarkably improved by nano-engineering of the catalyst and 

electrolyte membrane. In fact, the commercialization of fuel cells will very much rely on the 

ability to reduce the cost and improve the performance of catalyst, membrane and other 
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expensive parts to launch a fuel cell powered vehicle at a competitive cost and driving 

capabilities (Arico et al., 2005). To reach this goal, nanotechnology plays a dominant role. 

 

Figure 23. The challenges associated with implementing hydrogen as the next generation green fuel 

including hydrogen source and production, storage infrastructure, fuel tank and high efficient fuel cells 

(Tollefson, 2010). 

Principally, fuel cells (PEFCs and DMFCs) operate with a polymer electrolyte membrane 

which is sandwiched between cathode and anode that separate the fuel (hydrogen) from the 

oxidant (air or oxygen) (Fig. 24). The performance of these low-temperature fuel cells is 

mostly limited by oxygen reduction reaction (ORR) (Arico et al., 2005). The current 

generations of fuel cells are utilized platinum (Pt)-based catalyst for both the oxidization of 

fuel and reduction of the oxygen (Greeley et al., 2009). Several factors are motivating 

researchers to replaces Pt which the high cost of this precious metal (40-70 $.g-1) is one them. 

In addition, this metal is so scarce (less than 0.005 p.p.m in the Earth’s crust) and about 90% 

of the world’s Pt supply comes from just two countries, South Africa and Russia 

(http://en.wikipedia.org/wiki/Platinum). A few approach are being actively pursued with 

the goal of improving the electro-catalyst activity plus lowering the overall cost. However, 

these efforts have dominantly followed three major strategies including: i) improving the Pt-

based catalyst ii) developing new class of non-precious catalyst using other transition metals 

and finally iii) metal-free catalyst materials. 

Today Pt-carbon catalyst which are widely used in PEFCs and DMFCs, are nanoparticles of 

Pt decorated on carbon support (e.g. carbon black) (Greeley et al., 2009). Pt nanoparticles’ 

activity increases as the particle size decreases reaching a minimum of ~3nm (Arico et al., 

2005). Rational nano-engineering of Pt alone or with other metal atoms into specific 

arrangement of nanostructured alloys such as core-shell nanoparticles or nanowire 

(Koenigsmann et al., 2011; Koenigsmann et al., 2012; Hong et al., 2012; Lim et al., 2009) is a 

highly effective tool to synthesis new generation of catalyst if fundamentals of governing the 

performance of catalyst are understood. Core-shell nanoparticles of Pt-Cu, for example, are 
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more active than Pt which consists of cores made of a Cu-Pt alloy and Pt-rich outer shell 

(Mayrhofer et al., 2009). Such structure is obtained through a controlled dealloying the 

hybrid nanoparticles. However, many challenges associated with using precious Pt-based 

catalyst still remain untouched through these strategies. For instance, General Motor’s fuel-

cell set-up used around 80 grams of platinum as electrocatalyst to split hydrogen into 

electrons and protons which costs roughly 5000$ (Tollefson, 2010). Although General 

Motors’s officials hope to reduce the Pt loading to 30 grams in near future and less than 10 

grams in the next decade, the price of catalyst would still be high considering the fact that 

the Pt is so scarce.  

 

Figure 24. Basic structure of hydrogen fuel cell in which hydrogen split into electron and proton at 

anode and at cathode protons reduce oxygen exhausting water finally (Tollefson, 2010). 

With the goal of achieving inexpensive catalyst for fuel cells’ application, tremendous 

attempts have been done since 60s decade (Jasinski, 1964). Despite quite ineffective early 

catalysts, recent developments through nanoscale engineering of nanostructured catalysts 

revive the hopes to have non-precious replacement of Pt catalysts. Catalysts based on 

thermally annealed precursors comprising nitrogen, carbon and transition metals, especially 

Fe and Co (Fe (or Co)/N/C), have attracted more attention due to high activity and 

performance (Lefevre et al., 2009; Bashyam & Zelenay, 2006; Proietti et al., 2011). This class 

of catalysts consists of metal nanoparticles embedding in nanostructured nitrogen-doped 

graphenic carbon (Wu et al., 2011). Metal free catalysts have been also synthesized and 

evaluated as catalyst. Among them, carbon-based nanostructures are the most studied 

systems. At 2009, Dai’s group (Gong et al., 2009) at Case Western University showed gas 

phase N-doping of CNTs would result in a metal free electrocatalyst. After that, many 

studies revealed promising performance of N-doped carbon nanomaterials such as SWNTs 

(Zhang & Dai, 2012), graphene (Qu et al., 2010), mesoporous graphitic array (Liu et al., 2010) 

and carbon quantum dots (Li et al., 2011), for replacing Pt-based catalysts (Gong et al., 2009; 

Chen et al., 2012; Wang et al., 2011). Findings in Fe (or Co)/N/C systems and N-doped 

carbon nanomaterials may be combined possibly through using CNTs or graphene as 
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support in Fe (or Co)/N/C catalysts instead of carbon black. However, it seems that carbon 

nanomaterials would have much more contribution in the next generation of catalyst in fuel 

cells than what they have in current Pt/C commercial catalysts. Rational design of 

nanostructure of the so-called upcoming catalyst would be the key issue. 

3.7.2. Batteries  

Although fuel cell powered cars have been driven since more than 45 years ago (Fig. 21), the 

current efficiency as replacing the internal combustion engines hinders widespread use of 

FCV (additionally lack of hydrogen storage infrastructures and cost are real barriers) 

(Turner, 2004). In addition, from practical point of view, because of low power density of 

FCs, FC powered automobiles require an energy storage device to deliver required energy 

in power-peak demands. As a result, currently automakers have come to this decision to 

launch new versions of hybrid cars before FC cars, which has resulted to introduction of 

new generation of automobiles with considerably low gasoline combustion reaching to 

record less than one litre per 100 km (Demirdeven & Deutch, 2004). Therefore, at the heart of 

the upcoming automobiles, energy storage devices play a key role. Batteries are blooming in 

different markets and automobile industry is not an exemption. Among different classes of 

batteries, lithium ion batteries have higher potential for employing in the next generation of 

cars due to higher energy density, unless in the first generation of electric cars even lead-

acid batteries (for example the EV1, GM introduced 1996) and Ni-MeH (Prius, Toyota) were 

used (http://www.economist.com/sciencetechnology/tq/PrinterFriendly.cfm?story_id= 

10789409). 

Similar to other batteries, Li-ion batteries also consist of cathode, electrolyte and anode (Fig. 

25). Due to principles governing the electrochemistry of Li-ion batteries wide ranges of 

materials can be used in this class of devices which significantly affect the cell potential, 

energy density and safety of batteries (http://www.economist.com/sciencetechnology/tq/ 

PrinterFriendly.cfm?story_id=10789409). Therefore, huge amount of attention has been 

attracted towards developing high performance Li-ion batteries from both academic 

communities and industrial firms. The efforts are focused on improving the capacity, safety 

and the charging rate. Nanoscopic materials are presumed to have great contribution in the 

world’s $56 billion battery market in near future (Serrano et al., 2009). 

The cathode and anode materials must be able to be intercalated with Li ions having high Li 

hosting capacity and also high electron conduction (Tarascon & Armand, 2001). Among the 

various materials employed as cathode for Li-ion batteries, iron (or other metal) phosphate is a 

promising and safe replacing candidate for conventional cathode material, cobalt oxide (Padhi 

et al., 1997). This case is interesting as nanoengineering helped a lot to see marketable version of 

this material. In fact, due to the low electrical conductivity of FePO4, the energy charging rate is 

very low. Unless it is found that doping with other transition metals can enhance the material’s 

conductivity, FePO4-based materials found their way in marketplace when Chiang’s group at 

MIT uncovered that nanosized FePO4 particles can store and deliver energy much faster than 

usual size (~10 μm) due to higher surface area which facilitate intercalation of Li ions (Chung et 
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al., 2002; Kang & Ceder, 2009). In fact, conventional Li-ion batteries equipped with cobalt oxide 

which are prone to catch fire due to thermal runaway, phosphates can be used to fabricate 

larger Li-ion batteries much more suitable for automobiles. For example, Volvo 3CC concept 

car, because of limitations associated with using cobalt oxide based batteries, is equipped with 

3000 Li-ion cells with AA size. The safety issue can be overcome by employing phosphate-based 

cathode, the technology which is being commercialized by A123 Systems (co-founded by Dr. 

Chiang) which is collaborating with GM on a plug-in hybrid car, Chevy Volt (Fig. 26) 

(http://www.economist.com/sciencetechnology/tq/PrinterFriendly.cfm?story_id=10789409). 

 

Figure 25. Basic structure of a Li-ion battery in which lithium ion intercalation into anode and cathode 

during charge and discharge process, respectively, is employed to store electrochemical energy 

(Tarascon & Armand, 2001). 

Nanosizing the cathode and anode materials are now tremendously followed in different 

battery materials (Fig. 27). Silicon, one of the most promising anode materials, may find 

somewhere in market if researchers could overcome instability of this materials during 

charge-discharge process through the nanostructuring of this element (Armand & Tarascon, 

2008). Different nanostructures of Si such as nanoparticles (Lee et al., 2010), nanowire (Chan 

et al., 2008), nanotube (Wu et al., 2012), hierarchical nanoporous structures (Magasinski et 

al., 2010) and their composites with nanocarbons (Lee et al., 2010; Cui et al., 2009), have 

shown to have exceptionally high capacity and stability raising hopes to have commercial 

batteries with Si-based anode. 

In the realm of cathode materials for Li-based batteries, sulfur boosts the capacity of Li-ion 

batteries with one order of magnitude higher theoretical capacitance (Peramunage & Licht, 

1993). Therefore, the Li-S batteries may succeed Li-ion batteries as their energy density is 

extremely high plus low cost and density of sulfur (Kang et al., 2006). However, its capacity 

fades away during charge-discharge of the cell due to polysulfide ions (the reaction 

intermediates) dissolution in electrolyte causes irreversible loss of active materials 

diminishing the capacitance few times lower than theoretical value. At 2009, by employing 
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an innovative technique through the nanostructuring the sulfur inside the mesoporous 

carbon, capacitances near the theoretical limits were attained (Ji et al., 2009). After that, 

different carbon nanostructures such as hollow carbon nanofibers (Zheng et al., 2011), 

graphene oxide (Ji et al., 2011) and pyrolzed PAN/graphene (Yin et al., 2012) were used to 

immobilize sulfur. This class of batteries (Li-S) would find market in automobile industries 

as also claimed by Daimler in its concept vehicles, Mercedes-Benz F125! having exceptional 

high range of 1000km (Fig. 28) (http://media.daimler.com). 

 

Figure 26. Chery Volt, a plug-in hybrid car, was introduced by GM. The automaker is trying to use 

safer nanophosphate-based batteries 

(http://www.economist.com/sciencetechnology/tq/PrinterFriendly.cfm?story_id=10789409). 

 

Figure 27. Nanotechnology will make batteries with higher energy density which charge faster than 

current Li-ion batteries (Serrano et al., 2009). 
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Figure 28. Mercedes-Benz F125! the concept vehicle introduce by Daimler at 2011 equipped with 

advanced technology in energy storage including high performance Li-S batteries having power density 

of 350 Wh.kg-1 (energy capacity 10 kWh) and revolutionary ultra-porous MOFs technology (104 m2.g-1) 

making it possible to store 7.5 kg of H2 in a flexible framework. All these technologies owe a lot to 

nanoscience and technology (http://media.daimler.com). 

3.7.3. Supercapacitors 

Despite of advantages of using batteries as energy storage device in hybrid cars including 

high energy density, challenges associated with employing batteries especially timely 

recharging, safety and lifetime bring the another electrochemical storage device as candidate 

for the same purpose, i.e. supercapacitors. Supercapacitors store energy by forming a double 

layer of electrolyte ions on the surface of conductive electrodes, called EDLCs (Miller & 

Simon, 2008). The widespread applications of supercapacitors are limited by their low 

energy density (1-5 Wh/kg) comparing to batteries (10-500 Wh.kg-1) and as a result high cost 

of energy storage. But the fact that supercapacitors can be charged and discharged in less 

than a minute over a million cycles motivates scientific communities to enhance energy 

density of supercapacitors (Simon & Gogotsi, 2008; Chmiola et al., 2006). It is envisioned at 

energy density of 40 Wh/kg, the supercapacitors would be an improvement over the 

batteries used in some hybrid vehicles. In addition, the concept of supercapacitor powered 

urban bus which recharge at each bus stop in a minute is another intriguing idea (Fig. 29, 

left side). 

At the heart of the current EDLCs, nanoporous carbon acts as electrode. To improve the 

energy density of supercapacitors, different nanomaterials such as MWNTs (Frackowiak et 

al., 2000), SWNTs (Kaempgen et al., 2009), metal oxide nanoparticles (Hu et al., 2006) and 

conducting polymers (Zhang et al., 2010) (two later cases are classified as pseudo-

capacitors), have been used but high cost of nanotubes and some metal oxide (e.g. RuO2) and 

poor stability of pseudo-capacitors render them not enough efficient storage device. 
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Emergence of graphene has revolutionized this field, as this material is the thinnest 

imaginable carbon allotrope (Fig. 29, right side) (Stoller et al., 2008). The graphene-based 

pseudo-capacitors are still in infancy stage, but initial results confirm high capacity of 

graphene-based EDLCs having improved energy density. At May 2011, Ruoff’s group (Zhu 

et al., 2011) at university of Texas-Austin claimed they have developed graphene-based 

EDLCs through an industrial viable method having energy density of 75 Wh.kg-1 which is 

more than one order magnitude higher than conventional supercapacitors. It is foreseen by 

2020, half of graphene’s market (~ $675 million) belongs to supercapacitors which clearly 

illustrate the impact of graphene-based materials on this field 

(http://www.bccresearch.com/report/AVM075A.html). It should be noted that hybrid 

systems of batteries and supercapacitors are indentified as the most effective and reliable 

solution for applications where lifecycle and reliability are vital including cars 

(http://www.grapheneenergy.net/applications.html). 

 

Figure 29. Left side: Sinautec's Ultracapacitor Bus, an urban bus powered by on-board supercapacitors 

and batteries which charged at bus stop. Right side: a conventional set-up for supercapacitors in which 

forming a double layer of electrolyte ions on the surface of high surface area conductive electrodes store 

energy (Stoller et al., 2008). 

At June 2010, researchers at MIT introduced new concept of energy storage device, having 

both high density (comparable to Li-ion batteries) and power density (even higher than 

supercapacitors) (Lee et al., 2010). Again nanocarbons did excellent as electrode. The whole 

idea was to exchange Li ions between the surfaces of two nanostructured carbon electrode 

having functional groups (Jang et al., 2011). In fact, charging of Li-ion batteries is timely 

because Li ions must intercalate into cathode and anode which takes time. This strategy to 

store energy may be implemented in next generation of automobiles but further 

investigation are required to clarify the exact chemistry governing the device and also 

confirm feasibility and other issues.  

3.8. Nanotechnology in solar cell in automobile 

Solar cells are used to produce electricity from sunlight. This system has been gradually 

developed in different industries as it is an environmentally benign method of producing 
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electricity and helps industries to reduce fuel consumption. In recent years, research to find new 

sources of energy in automobiles are being carried out (Levitsky et al., 2010, Ong et al., 2010).  

It has been found that solar cells can be used as an additional source of energy supporting 

some of electronic devices used in an automobile. Silica-based solar system is a conventional 

system for producing electricity from sunlight. However, production and large scale use of 

this system is complicated and costly. Therefore, attempts have been carried out to produce 

new solar system usable for automobile economically. In silicon based solar cells, the 

electron needed will be supplied by silicon after exposure to sunlight. The produced 

electron can be transferred to semiconductors from electrodes. In solar cells, an organic 

material like chlorophyll can be used as substrate. A large surface area layer based on 

nanoporous titanium oxide is used for the transmission to the electrodes. This system as 

shown in Fig. 30 consists of two glass plates each of them have a transparent electrode 

(Levitsky et al., 2010, Ong et al., 2010).  

 

Figure 30. Solar cells based on nanotechnology for modern cars. 

As it can be seen in Fig. 30, one of the plates covered with layer of dye-sensitive titanium 

oxide and another one is coated with platinum as catalyst. However, in conventional silicon-

based solar cells, the efficiency is low due to light reflection at the solar glass pan. The 

reduction is approximately 10 percent for even high efficiency solar cells. This problem has 

been solved in new generation of solar cells using sol-gel method. Using this technique, a 

coating layer is applied over the glass pans. This coating could reduce light reflection from 

glass pans resulting in an increase in solar cell efficiency up to 6 percent. The sol used for 

this purpose includes a mixture of silica balls at two different sizes. To obtain best anti-

reflective properties from coating, mixture of particles with diameter of 10 nm and 30 nm 

should be used. In order to apply coating layer over the cells, the glass pans should be 

immersed in the tank containing nano SiO2 sol. The optimum antireflective properties can be 

obtained at 120 nm thickness. The sol becomes dry using gel and nanoporous layer can be 

obtained after hardening glass coated pans at 600-700 °C. This novel coating layer has very 

low refractive index (of only 1.25) resulting in light reflection at 400-2500 nm. In this way, 

solar transmission will be increased from 90 percent for conventional one to 95 percent for 

this solar cell (Levitsky et al., 2010, Ong et al., 2010). 
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3.9. Nanotechnology based catalyst for reduction of exhaust emission 

Todays, environmental regulations forced car producers to reduce exhaust emission of 

automobiles. Using new generations of fuels can be one way achieving this target. However, 

at this time, technology needed for large scale production of fuel has not been developed 

maturely. Use of catalysts is a conventional approach reducing exhaust emission. These 

catalysts are made of high-grade steel housings containing catalytically active materials. 

These active materials are able to convert exhaust pollutants to nitrogen, steam, and carbon 

dioxide. Three most important polluting elements that exhaust included carbon monoxide, 

hydrocarbons and nitric oxides. To eliminate or reduce these pollutants emission from 

exhaust gas, three kinds of catalysts are needed. Nanotechnology can play an important role 

in converting toxic pollutants to non-toxic gases. It is well known that increasing surface 

area of catalyst enhance its catalytic activity. Designing catalytic materials to absorb nitric 

oxides from exhausted gas has become a big challenge for car manufacturers. To solve this 

problem, new generation of catalyst with high capability of NOx-absorbing are developed. 

The mechanism by which this system works is presented in Fig. 31 (Hvolbk et al., 2007, Kim 

et al., 2006, Nilsson et al., 2005, Zhou et al., 2010). 

 

Figure 31. Three-way nano-structured catalyst for cleaning exhaust from pollutants (Hvolbk et al., 2005).  

Recent researches revealed that Au nanoparticles having sizes lower than 5 nm are very 

effective catalysts. There are many different mechanisms indicating catalytic activity of nano 
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sized Au particles. The most important of them are the quantum size effects, charge transfer 

to or from the support or support induced strain, oxygen spill-over to or from the support, 

oxidation state of Au and the role of very low-coordinated Au atoms in nanoparticles. The 

metal nobility depends on the metal surface ability to oxidize or chemisorption of oxygen. 

From periodic table of elements, Au is the only metal with endothermic chemisorption 

energy. Because of this behavior, Au is a metal which could not bind with oxygen at all. Au 

is a very good catalyst for oxidation of carbon monoxide (CO) presented in exhausted gas in 

automobile. The activity of Au depends on particle size as the best activity can be seen at 

particle sizes < 5 nm (Hvolbk et al., 2005).  

3.10. Ultra-reflecting layer for automobile mirror 

3.10.1. Mirrors with high optical and self-cleaning properties  

New generation of mirrors and headlights used in cars are based on glass and polymer 

components with high optical quality and efficiency. Nanotechnology is employed to 

achieve these unique properties. To this end, ultra-reflecting thin layer (with thickness lower 

than 100 nm) based on aluminum oxide can be applied over the surface of mirrors or 

headlights. Applying ultra-thin layers over the mirrors can also help us to equip surfaces 

with fat, dirt water and repellent features. Using chemical vapor deposition (CVD) 

technique, nanometric hydrophobic and oelophobic layers can be applied over the surface of 

mirrors. It has been found that fluoro-organic materials are able to improve hydrophobicity 

and oelophobicity of the surface at thicknesses of 5-10 nm. This nanometric layer could also 

produce smooth surface which impurities like water drop, dirt, oil and fingerprints can be 

easily cleaned. This ultra-thin layer has high resistance against friction and makes it 

applicable at longer times. As it can be seen in Fig. 32, the layer could chemically bonded to 

the surface of mirror from the side consisting anchor groups. The chemical groups at other 

side of the layer produce hydrophobic surface. 

 

 

 

Figure 32. The composition of ultra-reflecting layers used on modern mirrors. 
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3.10.2. Anti-glare rear mirrors 

Nowadays, safety regulations for car drivers lead to produce rear view mirrors to obtain an 

appropriate view at dawn and dusk. This can be done by equipping glasses with functional 

layer composite with electrochromic properties. For the glasses equipped with this 

technology, the optical properties will be changed by applying a certain voltage which 

moves the charges to intermediate layer. The incoming light will be absorbed by color 

centers produced by ions at the electrodes. As a result, small quantity of light will be 

reflected (Fig. 33).  

 

 

Figure 33. The conventional mirrors (a) and modern anti-glare rear mirrors for cars (b). 

Like charging and discharging of a car battery, the glass can get back to its original 

properties as the pole changes. This glass equipped by a rear sensor which could measure 

and control the glaring light of following vehicles. As soon as the glaring light disappears, 

the mirror gets back to original state. 

3.11. Nano-filters for air cleaning  

In addition to safety improvement and fuel consumption reduction, the enhancing comfort for 

customers is of importance. The air quality inside the car is an important factor affecting 

customers comfort. The air inside cars contains particles and gaseous pollutions which need to 

be filtered. Achieving this target needs equipping cars with high quality interior air filters with 

high efficiency of pollens, spores and industrial dusts filtration. This filter could be used at 

variable temperature (-40 °C to 100 °C) and humid conditions. Nanofibers are utilized to 

produce novel filters with superior properties compared with conventional filters (Fig. 34).  

For the fibers in nanometric range size the classical fluid dynamic laws is not true anymore. 

Because of the lower air resistance of nanofibers compared with micron-sized fibers, air can 

(a) 

(b) 
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be transported through filter easier with lower air pressure loss. This shows that the new 

filter work at lower level of energy.  

This technology is also applied for soot filters. Using nanofibers in soot filters, the emission 

of pollutants in passengers and utility cars will be reduced. Using nanofilters, the dirt 

particles could not adhere to the foam materials used at roof of car and prevent polluting it.  

 

Figure 34. Nano-filters for air cleaning in car interior. 
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