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1. Introduction 

1.1. Context and motivation 

Quality control in the manufacturing industry has traditionally been performed manually 

by workers. As manufacturing increases in speed and volume through the introduction of 

automation, the human worker becomes a limiting factor in speed, accuracy, and 

consistency. In the automotive industry, quality control is critical to ensure that automotive 

body parts meet predefined standards. Identifying deformations, such as undesired dings 

and dents on panels, and marking them so that they are repaired while still on the assembly 

line is essential. In current industrial settings, the procedure for identifying surface defects 

on automotive body panels often requires a laborious manual surface rubbing operation. 

This time-consuming process is difficult for a human, especially when dealing with small 

deformations that require close inspection, and may result in a decreased accuracy when the 

repetitive task is performed over the course of an entire work shift. Automation of quality 

control could significantly improve the accuracy and speed of the assembly line, thus 

increasing the number of panels inspected within an allotted time, maximizing the number 

of accurately detected defects, and minimizing the number of false detections.  

To fully automate this process, a system would have to analyze the surface of the body part 

to be inspected, determine the position of deformations, and mark those deformations on 

the body part. This chapter focuses on the analysis of 3D surfaces and automatic detection of 

deformations. One important contribution of this work comes from the imposed 

requirement that this system must be able to detect deformations without knowledge of the 

ideal shape of the part, meaning it cannot use a master work or CAD model for comparison. 

Some automated deformation detection techniques focus on the difference between the 

scanned model and an existing ideal model or master work (Newman & Jain 1995; 

Lilienblum et al. 2000). Certain challenges lie within this approach. The first constraint is 
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that a very precise ideal model must be available, because small faults in the master work 

can result in erroneously detected defects during execution. The second challenge is related 

to the registration of the scanned part with the ideal model. Due to vibrations on the 

assembly line and slight inconsistencies in the acquired model, inaccurate registration may 

occur resulting in incorrectly detected defects. Also, if panels of different models are 

processed on the same assembly line, or a new piece is introduced to the system, significant 

calibration and set up is required to synchronize the master work with the acquired model. 

Because of these difficulties, this chapter introduces a more generic and robust technique 

which does not require an ideal model. 

1.2. Objectives 

This chapter deals primarily with the design of a deformation detection system. Its 

requirements are to identify deformations of interest over the surface of automotive body 

parts, with minimal human interaction and independently from the type of acquisition 

system used. The deformations of interest are dings and dents, where dings are surface 

deformations which protrude from the surface and dents are depressions into the surface. 

This chapter focuses on deformation detection when no ideal model of the automotive part 

is provided, similar to an approach which is alluded to by Döring et al. (Döring et al. 2004) 

and explored by Chen (Chen 2008). Since there is no CAD model of a master work to 

compare the measured model to, the deformation detection must be done without 

knowledge of the expected surface and requires certain assumptions to be made based on 

common characteristics of surface deformations compared to the characteristics of an 

undeformed surface. However, not all characteristics can be assumed, known, or easily 

defined. Therefore some basic parameters need to be set by the operator to provide the 

system with a minimal knowledge of the approximate size or scale of the deformations that 

the manufacturer wants to detect and eliminate from its products. This is not unrealistic, as 

the operator generally has a clear idea of the approximate range of sizes for the 

deformations to be detected.  

Given these requirements, a system is proposed which analyzes the digital 3D model of an 

automotive part collected along the assembly line, determines the locations of only the 

deformations of interest, and classifies them as dings or dents. Areas of significant surface 

variation could be deformations. But other features of an automotive body panel such as 

aesthetic curves and door handles, or inaccurate surface measurements such as acquisition 

artifacts and noise, also represent surface curves that must not be falsely detected as dings 

or dents. The deformation detection system is comprised of a surface shape analysis phase 

to extract areas of interest, a segmentation phase to group areas containing pieces of 

deformations together into segments, and a classification phase to determine which 

segments contain deformations and which contain design features.  

A deformation detection pipeline is proposed, which combines an enhanced octree-based 

feature extraction, with segmentation and classification to extract deformations from a 3D 

mesh of an automotive surface panel. This pipeline supports multi-resolution analysis of 3D 
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models, providing the capability of extracting deformations regardless of the resolution or 

scale of the model, and relies on intuitively adjustable parameters for the operator to target 

the feature extraction towards desired characteristics of the deformations.  

2. Literature review 

The process to automatically determine the location of a defect on an automotive body part 

requires several steps, some of which are still complex research topics. This section reviews 

important research that is relevant to the topic of automated deformation detection 

proposed in this chapter. In order to analyze the surface for automotive body parts, the 

latter must first be digitally represented as a 3-dimensional object. Various techniques in 3D 

acquisition are explored in section 2.1. To determine the location of deformations in the 

digitized 3-dimensional surface, the surface must be analyzed for certain characteristics. 

Surface shape analysis is discussed in section 2.2.  

2.1. 3D acquisition 

In order to analyze the surface of a real-world object in 3-dimensions, it must be scanned 

and converted into digital 3-dimensional data. Laser scanners are very common and highly 

accurate 3D acquisition tools (Parthasarathy et al. 1982; Sequeira et al. 1995; Marszalec & 

Myllyla 1997; Gokturk et al. 2004; Blais et al. 2007). The latter are able to produce high 

resolution, high accuracy scans. However they are usually expensive systems that take a 

long time to complete a full scan, and often require some mechanical system to move the 

laser and acquire readings before accumulation into a point cloud. For lower cost, lower 

scan times, and minimal mechanical complexity, stereoscopic vision systems are a very 

popular way of digitizing a 3-dimensional scene (Murray & Jennings 1997; Murray & Little 

2000; Se et al. 2001). If prominent features are lacking in a scene, such as on the surface of a 

smooth automotive body part, these construction techniques may fail due to a lack of usable 

points. One popular technique to overcome the limitations of using traditional stereoscopic 

imaging is to acquire 3-dimensional models using structured light scanners. This type of 

sensor projects a set of artificial features onto a model or scene that is being scanned, and 

then uses a vision system to acquire the model in 3D. Most structured lighting systems use a 

single camera along with a projector to acquire the 3D points (Rocchini et al. 2001; Zhang et 

al. 2002), or combine a pattern projector with a standard stereo pair of cameras to avoid 

calibration with the projector (Payeur & Desjardins 2009).  

A recent trend in 3D sensing is the use of Microsoft’s Kinect, which is a low-cost portable 

sensor that provides 3D visualization of a scene. Using structured light principles, an 

infrared laser projector generates artificial features onto a scene (which are invisible to the 

human eye), and a CMOS sensor reconstructs a scene through vision techniques. High 

quality scene reconstruction using the Kinect sensor has been studied (Shahram et al. 2011; 

Yan & Didier 2011). Relatively high quality reconstruction of real-world scenes can be 

achieved, yet its accuracy is still too low to detect the slight variations in an automotive 
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panel surface that constitute deformations. Also, due to possible holes and inaccuracies in 

reconstruction using a single image, several frames of reconstructed scenes must be stitched 

together and heavily post-processed to provide a full reconstruction of an automotive part. 

Though preliminary work with the Kinect is promising, more research must be done to 

adapt its use to detecting the fine contours of an automotive panel for deformation 

detection. Given the current state of the technology, and the purposes of this work, the laser 

scanner remains to be the most accurate way to scan 3D models. 

2.2. 3D surface shape analysis 

The most critical component of a surface deformation detection system is surface analysis to 

locate the defects in question. In the current context, no ideal model of the automotive part 

is provided, therefore the algorithm has no a priori knowledge of what the surface should 

look like without deformations. Advanced surface shape analysis techniques must be 

performed to determine the locations of probable deformations.  

Given that the 3-dimensional data can be converted from a range image to a 2-dimensional 

image where each pixel intensity represents the depth of that point on the object from the 

viewpoint, features can be extracted and images can be segmented using traditional 2D 

image processing techniques. Well-known edge detectors, such as the Sobel and Canny 

operators, can highlight the areas that belong to features (Faugeras 1993). The efficacy of 

such algorithms varies greatly, since determining the peaks and valleys in histograms with 

significant noise or varying characteristics is difficult.  

The k-means algorithm is a very well-known clustering algorithm that partitions a dataset 

into a specified number, k, of clusters (Plataniotis & Venetsanopoulos 2000). However, 

selecting the value of k is most important, and in the case of an unknown number of 

deformations, this value cannot be known for sure. Unseeded region growing (Plataniotis & 

Venetsanopoulos 2000) can overcome some of the problems with k-means algorithms by not 

requiring any initial knowledge. Similar to the limitations of thresholding in edge detection, 

gradually changing pixel intensities between actual regions of the image may not be 

sufficient for accurate segmentation.  

These techniques can all be extended to 3 dimensions by using points or voxels instead of 

pixels, and adjacency can be determined by distance or connectivity in a grid or tree, as is 

done by Palagyi and Kuba (Palagyi & Kuba 1999). Also, the data being used as the intensity 

value in an image can be redefined as distance in a range image or 3-dimensional surface 

deformation metrics such as standard deviation of normals or a curvedness value 

(Koenderink & Doorn 1992; Dorai & Jain 1997).  

Various techniques from the field of 3D data analysis can be used for the purpose of 

deformation detection. Simple deformations in a mesh can resemble outliers on a smooth 

surface. Using noise removal techniques to identify areas of noise-like characteristics can be 

beneficial to determining the location of the defect. Schall et al. propose a noise removal 
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method that also provides applications in outlier removal (Schall et al. 2005). The statistical 

method estimates the density of each area of the point cloud, and uses the neighbouring 

points to adapt a probable surface to each point. Since points are moved to their most 

probable location along a surface, the spatial density of the resulting point cloud is relatively 

consistent throughout the surface of the object. An outlier point exists where the spatial 

density in a surrounding is too low. Therefore a basic threshold can determine outliers. 

Though effective, this algorithm is dependent on the sampling density, its parameter 

selection is not intuitive and may cause unpredictable performance, and will fail when 

deformations do not resemble outliers.  

The moving least-squares surface reconstruction technique proposed by Mederos et al. 

(Mederos et al. 2003) uses a hierarchical segmentation technique that finds redundant points 

such that the point cloud density can be reduced before surface reconstruction. This 

segmentation technique results in clusters of points, where the surface variation within each 

cluster is minimal and the boundaries between those clusters could define a significant 

deformation on the surface. Though computationally expensive, analyzing the eigenvalues 

and eigenvectors of the covariance matrix of a cluster of points can estimate local surface 

properties (Hoppe et al. 1992; Shaffer & Garland 2001). A binary space partitioning tree is 

used to segment the model into clusters of points that lie on surfaces of low variation, where 

subdivision is based on the flatness criterion, which represents variation within a group of 

points, as described by Pauly et al. (Pauly et al. 2002). Such an algorithm is effective at 

determining the characteristics of a model for surface reconstruction or resampling, but 

requires an extension to be used for efficient feature extraction, since the boundaries must be 

determined instead of just the clusters. The use of a binary space partitioning tree is very 

effective to separate the mesh, but tends to become too deep of a tree to traverse efficiently, 

since each node can only be subdivided into 2 nodes at a time.  

Woo et al. (Woo et al. 2002) introduce a technique based on octree structures, and use 

recursive subdivision of the volume of a 3D mesh to identify features. It removes segments 

of the mesh as the octree is generated, and leaves parts of the mesh that belong to features in 

the final octree data structure. It requires a model with a reconstructed surface and 

partitions the model into subsections which represent varying levels, or scales, of features. 

Surface normal vectors can be calculated for all triangles composing the surface, and 

ultimately for each point by averaging the normals of the triangles that the point belongs to. 

Variations in the orientation of the surface within a given region are estimated from the 

standard deviation of normal vectors within that region. This method facilitates the 

partitioning process. All of the points that make up the surface of the object are initially 

added to the root of the tree structure. The standard deviation of their normals is calculated, 

and compared to a threshold. First the mean normal is computed:  

 Nഥ = ∑ N୧/n୬୧ୀ଴    (1) 

where n is the number of points at the node, Nഥ	is the mean normal, and N୧ is the unit normal 

of point i. Then the standard deviation, σ , of the normals can be estimated as:  
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 σ	 = ට∑ (୒౟ି	୒ഥ)మ౤౟సబ ୬ =	ට∑ (୶౟ି	୶)మା∑ (୷౟ି	୷)మା∑ (୸౟ି	୸)మ౤౟సబ౤౟సబ౤౟సబ ୬  (2) 

A threshold must be defined for the subdivision as the maximum standard deviation 

allowed in a volume before it should be further divided. This threshold is defined by 

the user. If the standard deviation is larger than the threshold, the volume represented 

by the root is divided into 8 octants represented by 8 children being added to the root. 

The points from the root are redistributed based on their spatial location into each of 

the 8 octants, and thus into each of the 8 children of the root. This process is repeated 

recursively for each of the children, and for their children, and so on until either there 

are no children remaining, or a sufficient level of feature details is discovered. The 

depth of the tree determines how detailed the feature level is. Figure 1 details the 

recursive process of the feature segmentation at various scales. The final structure 

provides a tree where the points are distributed amongst the tree nodes. Leaves at 

greater depths represent finer detailed features of the mesh contained in smaller 

volumes. Leaves at lesser depths represent larger scale features contained in larger 

volumes.  

Woo et al.‘s technique is effective, yet because it uses a single threshold value throughout the 

entire tree, its ability to detect features can be unpredictable. A feature has to sufficiently 

affect the standard deviation of the surface normals across the selected volume for the 

method to investigate the mesh at a higher resolution. If this is not the case then the feature 

is not identified. The criteria for setting the threshold is that it must be high enough such 

that smooth curvatures and noise are not detected, but low enough such that the 

deformation features are detected. This remains a subjective criterion that varies with the 

point cloud. Since standard deviation is used, it is hard to find values which meet the 

defined criteria. 

On the other hand, the technique generates broad shallow trees which are easier to traverse, 

as opposed to deep narrow trees generated by binary space partitioning methods such as 

those in (Shaffer & Garland 2001; Mederos et al. 2003). This allows analysis at higher 

resolutions, with reduced computational load. The octree representation allows features to 

be represented in the point cloud dataset as well as in a volumetric grid, giving the 

flexibility of using a variety of techniques for added segmentation.  

Pauly et al. present a technique that allows feature extraction from a 3D object composed of 

surfaces, at various detail levels (Pauly et al. 2003). Weights are assigned to each point in  

the point cloud, representing the amount of local variation in the surface normals. At 

different scales, different local neighbourhood sizes are used. Introducing the idea of feature 

persistence, a threshold can be selected, such that local maxima weights over that threshold 

can be considered feature nodes. As a feature persistently exceeds that threshold,  

across multiple scales, it can be classified as a strong feature, rather than only a small local 

feature.  
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Figure 1. a) Octree segmentation subdivisioning flowchart, b) an example octree where the top node 

represents the entire mesh, and nodes at deeper levels represent subdivisions of the mesh at 

proportionally higher resolutions. 

Results show that this method performs well under noise and is effective at identifying 

prominent features. Also, the idea of feature persistence is interesting, where prominent 

features appear over multiple scales, and can be very important in using multiresolution 

information to identify important features.  

Vosselman et al. (Vosselman et al. 2004) exploit the knowledge of ordered point clouds in the 

form of scan lines, and combine various techniques to segment point clouds by recognizing 

geometric shapes and flat smooth surfaces for the analysis of industrial and city scans from 

LIDAR data. Each scan line is broken into line segments based on orientation and proximity, 

and a plane-of-best-fit equation is calculated. Adjacent scan lines are compared based on 

some similarity criterion to be connected as a planar surface or other shapes such as spheres 

and cylinders. The dependency on ordered point cloud data is a limitation of the technique, 

since data can come from various sources and may not always be in the form of scan lines. 

Also, the very distinct shapes that are being extracted are effective in scans of a city or in an 

industrial setting, but the techniques are less suited to the more curved and variable surfaces 

of automotive body parts, since such shapes do not fall into the category of basic geometric 

primitives.  

Jagannathan and Miller (Jagannathan & Miller 2007) use a metric known as curvedness 

(Koenderink & Doorn 1992; Dorai & Jain 1997) for segmentation, to extract regions of the 

mesh with high curvature. The curvedness is calculated for each point in the mesh. Using 

iterative graph dilation and filtering of outlier curvedness values, the mesh is broken up into 

sub-meshes with similar curvedness values. Based on the results shown, the algorithm has 

(a) (b)
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great success in segmenting 3D models with very large distinct form changes. However, it 

might be difficult to predict the success of this algorithm when faced with finding subtle 

shallow deformations on the surface of a flat or curved mesh, especially when dealing with 

significant noise and acquisition artifacts.  

Döring et al. tackle a similar problem to this work, by detecting deformations on car body 

panels (Döring et al. 2004). The deformation extraction is only briefly explained as finding 

the differences between the point cloud and an inertial surface approximation of a low 

polynomial degree. The experiments in this paper work under similar assumptions to this 

chapter, in that there is no ideal model or a priori knowledge to compare to the model being 

analyzed. Surface deformations must be extracted by analysis of the model surface against 

what is assumed to be a smooth ideal surface instead of being compared to an existing 

model of what the surface should look like. This chapter is more concerned with the 

extraction of surface deformations than the classification, while Döring et al.’s work 

emphasizes the classification of the feature as one of many types of known deformations. 

3. Automated surface deformation detection 

3.1. General deformation detection framework 

The proposed system takes a 3D mesh as an input, and outputs the sections of the mesh which 

are deformations of interest along with whether they are a ding or a dent. Given that no CAD 

model of the ideal surface is considered available, the proposed system must locate and 

classify the deformations of interest using assumptions based on common characteristics of 

dings and dents. Since some assumptions regarding size and scale of deformations cannot be 

made without more information, a minimal and intuitive set of parameters must be set by the 

operator to ensure accurate detection with minimal human intervention. This also ensures that 

design features of the automotive panel are not accidentally extracted as deformations, since 

they are generally much larger than the deformations of interest and can easily be separated 

by size and scale. The outputs of the proposed system are passed onto a robotic deformation 

marking system briefly discussed in section 3.2.  

The proposed system contains 3 major components, as shown in Figure 2.The surface shape 

analysis component is tasked with dividing the 3D mesh into sections and analyzing each 

one for the magnitude of the deformation contained in that section. The segmentation 

component combines sections from the surface shape analysis which seemingly belong to 

the same deformation. The classification component classifies each segment from the 

segmentation as either a ding or dent, and removes segments which do not meet the criteria 

of being a deformation of interest, such as vehicle design features and acquisition noise. 

 

Figure 2. System diagram of proposed deformation detection system. 
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3.2. Experimental platform and setup 

The more extensive research project that this work is part of involves the development of an 

automated deformation detection and marking system (Borsu et al. 2010). The primary 

objective is to identify deformations over an automotive panel and physically mark those 

deformations while the automotive part moves along an assembly line.  

The 3D acquisition subsystem provides the deformation detection subsystem with 3D point 

cloud or mesh information. The deformation detection subsystem, which is the focus of this 

chapter, analyzes the surface of the automotive body panel and determines the locations and 

type of all deformations of interest. The robotic marking subsystem tracks the moving 

automotive panel along the assembly line, and marks the deformations with a robotic arm 

(Borsu 2010). The relationships between the subsystems are shown in Figure 3.  

 

Figure 3. Relationship between subsystems for automated deformation detection and marking. 

The automated deformation detection and marking system is created on a smaller scale in a 

lab setting. This serves as a test bed for the developed techniques, and demonstrates that 

they can work in a real-world setting. An image of the setup is shown in Figure 4.  

To represent the idea of a moving assembly line, a PC-operated sled system is used and 

simulates a shortened conveyor in a lab setting. One of several real or imitation automotive 

panels is mounted on the sled system to imitate a real automotive panel. At the beginning of 

the assembly line, when the automotive panel is static, a structured light sensor is used to 

generate a dense 3D reconstruction of the surface of the automotive panel (Boyer 2009; 

Boyer et al. 2009). The deformation detection subsystem processes this 3D data, and acquires 

the location of the deformations. The panel continues moving along the sled system and is 

tracked by the robotic marking system (Borsu & Payeur 2009; Borsu 2010). Then, based on 

the locations automatically provided by the deformation detection subsystem, the robotic 

manipulator is positioned to smoothly mark deformations on the automotive panel surface.  

3.3. Data sets 

A 3D acquisition system provides the only input used by the deformation detection system 

to identify the location of deformations of interest. A detailed discussion of the 3D sensing  
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Figure 4. Experimental lab setup. 

systems used for acquiring the shape of the automotive body panels is beyond the scope of 

this chapter. For laboratory evaluation, a custom structured light sensor (Boyer 2009;  

Boyer et al. 2009; Payeur & Desjardins 2009) is used in combination with slightly enlarged 

dings and dents deformations artificially affixed on the test panels. Alternatively,  

higher resolution datasets collected by industrial partners with an active laser range sensor 

on real automotive panels is also used to demonstrate the capability of adaptation of the 

proposed approach to different scales and its independence from the 3D acquisition  

system. Surface reconstruction, performed with the ball-pivoting algorithm proposed by 

Bernadini et al. (Bernardini et al. 1999), is used to generate a mesh triangulation out of the 

acquired 3D points. The output of this module is provided as input to the deformation 

detection subsystem, which is the starting point for the original work presented in this 

chapter. 

Real-world test data is important to determine the effectiveness of the approach, since  

any 3D acquisition system does not provide ideal meshes for this application. The reflective 

characteristics of the surface, the subtle variations in its shape, and the large distance  

the panel is positioned from the sensor, cause the acquisition system to introduce  

an abundance of noise and acquisition artifacts. These real-world meshes serve as test  

cases for non-optimal acquisition and surface characteristics resulting from the acquisition  

errors.  

The first real-world mesh is a desktop computer casing panel modified by hammering 3 

dents into it. Though this is not an automotive part, it simulates real-world deformations on 

a relatively flat surface. The panel is 20cmx15cm and each dent is circular, with dimensions 
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of approximately 2cm in diameter and 0.25cm in depth. The computer casing panel was 

scanned at two different resolutions, with the high resolution version containing 14 626 

points and the low resolution version containing 3647 points. Since it might be unrealistic to 

expect an accurate extraction of deformations from this mesh, a filtered version of the low 

resolution scan is created using a Laplacian smoothing filter to remove the noise while 

maintaining the deformations. The meshes are shown in Figure 5 with deformations circled. 

The amount of surface variation, holes along the boundaries, and noise are all visible in the 

images of the computer casing panel meshes.  

 

Figure 5. a) Indented computer casing panel, b) high resolution scan, c) low resolution scan, and  

d) filtered low resolution scan, with deformations circled.  

A mock car door was crafted out of cardboard, consisting of a curved body, a door handle, 

and a window frame. The door is approximately 70cmx78cm. Three dings, made up of 

paper were stuck to the door at various positions, where each ding is circular and 

approximately 1cm in diameter and 1cm in depth. The scanned car door contains 32 202 

points. A Laplacian filtered version is also used. The filtered and unfiltered versions are 

shown in Figure 6 with deformations circled.  

The car door is acquired well, with the deformations, door handle, surface variation and 

window frame all appearing. There is lots of surface variation along the borders due to 

acquisition errors, and a significant amount of noise, which may interfere with isolating the 

deformations from parts of the noise as the peaks of the noise are almost as high as the 

peaks of the deformations. The filtered version reduces noise levels by minimizing the peaks 

and further separating them from the deformation peaks.  

(a) (b)

(c) (d)
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Figure 6. a) Car door sample, b) unfiltered mesh with deformations circled, and c) filtered mesh. 

These real-world meshes are adequate to test the proposed system’s behavior when applied 

upon meshes with noise, acquisition artifacts, and real-world characteristics. However, it 

does not provide a comprehensive enough set of data to test the various situations that the 

system might be exposed to. For this reason, a set of artificial test meshes were generated, 

with characteristics that were not found in the acquired real-world meshes, but that may 

occur in other real-world meshes. These artificial meshes resemble deformations of interest, 

of various sizes and scale, under different surface conditions. These meshes also attempt to 

test the functionality of the system while working under ideal acquisition scenarios where 

there is no noise and no acquisition artifacts.  

A flat mesh with a small dent was created as well as a flat mesh with a large ding, as shown 

in Figure 7. Similarly, a curved surface mesh with a small dent and a curved mesh with a 

large ding were created, as shown in Figure 8. The flat meshes are used to determine if the 

designed algorithms can detect small scale as well as large scale deformations. The curved 

meshes help determine if the designed algorithms can detect a deformation in spite of a 

curved or uneven surface around it.  

 

Figure 7. a) Flat mesh with small dent, b) flat mesh with large ding. 

(a) (b) (c)

(a) (b)
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Figure 8. a) Curved surface with small dent, b) curved surface with large ding. 

4. Octree-based surface shape analysis 

The criticial component of the proposed defect detection system is its surface shape analysis 

module. The goal of the latter is to break the mesh up into pieces and determine which of 

those pieces likely belong to the defects in question, as shown in Figure 9.  

The outcome of the methods presented in this section is the labeling of all parts of the mesh 

as either belonging to a feature or not. This module does not determine what collection of 

mesh pieces define a deformation, however it will determine which mesh pieces likely 

contain part of a deformation. The output of the shape analysis module is therefore passed 

to the segmentation phase, as depicted in Figure 2, to determine which collection of mesh 

pieces defines a deformation. 

 

Figure 9. a) Mesh with oval feature, b) mesh broken into pieces, and c) feature extraction results. 

This chapter proposes an original surface shape analysis technique that is based on octrees 

for the automated deformation detection framework. The octree-based technique divides the 

mesh into cubic volumes and analyzes the mesh contained in those volumes to determine if 

they belong to a feature. Taking inspiration from the octree-based segmentation method 

proposed by Woo et al. (Woo et al. 2002), as explained in section 2.2, a number of 

improvements are proposed. 

The original technique represents the entire volume surrounding a point cloud in the root 

node of a tree. Then, by evaluating the standard deviation of the point normals, σ, against a 

threshold, it determines whether there should be a subdivision of that volume into eight 

octants. When subdivided, each of the resulting octants is a volume, and is represented by a 

(a) (b)

(a) (b) (c)
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child node. The points in the original volume are redistributed into the new octants, based 

on their position, and stored in the child node which represents the new volume it belongs 

to. This process is repeated for each node, until a tree of sufficient depth is generated or no 

more volumes require subdivision. 

The original technique is designed to find significant changes in a 3D point cloud, such as 

sharp edges. However, deformation detection for dings and dents over automotive body 

panels requires detection of slight variations over a smooth surface, which may not be 

consistent over multiple resolutions. For this reason, the original technique must be 

revisited. Two major aspects are introduced in this work to enhance the algorithm’s 

flexibility and performance for the purposes of the application considered in the present 

work: i) using a triangle-based analysis rather than a point-based analysis of surface shape, 

and ii) defining non-uniform weighting of surface normals. These enhancements will be 

discussed in sections 4.1 and 4.2, respectively. A third improvement is also proposed, that 

uses the octree to aggregate multi-resolution information into performing the feature 

extraction after the tree generation is complete. This will be discussed in section 4.3. 

4.1. Triangle-based analysis 

The original method (Woo et al. 2002) operates directly on the 3D point cloud, with 

knowledge of the reconstructed surface, to calculate the appropriate values for subdivision 

of the octree. The calculation of the point normal uses all the triangles surrounding  

the point, and the subdivision of the octree relies on the standard deviation of the point  

normals contained inside each node. The triangles surrounding a point provide several  

pieces of information about the surface, yet reducing this information to a point normal  

using an averaging calculation acts as a smoothing filter, inherently inducing a loss of  

valuable surface information as shown in Figure 10. In the context of the present work  

where deformations to be detected are of a small size compared to the remainder of the  

panel surface curves, such a filter should not be included directly in the feature extraction  

 

Figure 10. a) Point normal describing a flat surface, b) same point normal describing a non-flat surface, 

c) triangle surface normals describing a flat surface, and d) different triangle surface normals describing 

a non-flat surface. 

a) b)

c) d)
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technique. For these reasons, a first improvement that is proposed consists of using more 

information to describe the surface of a model by relying on the triangles for surface 

calculations rather than on points.  

4.2. Non-uniform weighting of surface normals 

The second strategy to enhance the performance of the algorithm proposed in (Woo et al. 

2002) consists in using information about the size of the triangles represented by the surface 

normals to improve the standard deviation, σ, calculation from Eq. 2.  

When using 3D scanning that provide a non-uniform sampling density, the original 

technique will assign equal weight to every point. As a result, there might be more points to 

describe a certain region within a volume, and the variation in that region is more strongly 

accounted for in the σ calculation than in other regions, even if there is no disparity in the 

surface area represented by these regions, as shown in Figure 11.  

 

Figure 11. Non-uniformly distributed scan points. The right half of mesh contributes more to the 

standard deviation value than the left half due to higher density of points/triangles. 

A solution to this problem is achieved by using the area of each triangle as a weight to 

calculate the mean normal and σ values. This approach helps to minimize the effect of small 

noisy areas, to overcome the effect of non-uniformly distributed points, and to provide a 

more accurate representation of the surface variation over the region being analyzed.  

First, the area of each triangle is calculated: 

 a୧ = ଵଶ |v୧ଵ	 ×	v୧ଶ| (3) 

where vi1 and vi2 are any two of the edge vectors that define a triangle, Ti. Then the weighted 

average normal is calculated over all the triangles that are contained within a given node of 

the octree, with the area of each triangle serving as a weight: 

 A = ∑ a୧୬୧ୀ଴ 	  (4) 

 Nഥ =෍ ୟ౟୅ N୧୬୧ୀ଴   (5) 
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where n is the number of triangles contained in the volume represented by the node of 

interest in the octree, N	ഥ is the weighted average normal, and N୧ is the unit normal of each 

triangle. Finally, the weighted standard deviation, σ, of the normals can be estimated as: 

 σ	 = ට∑ ୟ౟(୒౟ି	୒ഥ)మ౤౟సబ ୅ =	ට∑ ୟ౟(୶౟ି	୶)మା∑ ୟ౟(୷౟ି	୷)మା∑ ୟ౟(୸౟ି	୸)మ౤౟సబ౤౟సబ౤౟సబ ୅  (6) 

As in the original method, if σ is greater than the defined threshold for that resolution, the 

volume is subdivided for further investigation at a higher resolution, until the entire tree has 

been generated. This improvement makes the standard deviation values more accurately 

represent the amount of deformation within a volume. Figure 12 compares non-uniform 

weighting to uniform weighting. Detected regions containing deformations are marked in 

red over surface maps corresponding to various levels of resolution in the octree. Deeper 

levels in the octree correspond to finer details in the 3D surface mesh. 

It can be seen that uniform weighting (upper line) is not as effective at extracting the 

complete set of deformations. By octree resolution level 10, none of the deformations are 

extracted with uniform weighting. The non-uniform weighting scheme, with similar 

thresholding, more consistently extracts the deformations across all resolution scales. 

 

Figure 12. Deformation detection performance at octree resolution levels 4, 6, 8, and 10 under: uniform 

weighting (top), and non-uniform weighting (bottom). Actual deformation locations are circled on left 

hand-side images, and detected deformations are marked in red. 

4.3. Aggregate standard deviation 

Even with the aforementioned improvements of triangle-based analysis and non-uniform 

surface normal weighting, deformations extraction using an octree-based distribution of 3D 

scan points requires the determination of the appropriate thresholds. Based on the 

thresholds alone, it is difficult to predict what features will remain and what features will be 

removed by the time the deeper and higher resolution levels of the octree are reached. A 

slight threshold change can produce drastically different results. In general, a more robust 

technique is required to deal with meshes with varying characteristics, involving an 

intuitive relationship between the threshold and the results. 
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The proposed aggregate standard deviation variation of the octree-based technique allows 

the generation of the tree in its entirety, without limiting subdivision to only nodes that 

meet a certain threshold. Then, all nodes at selected resolutions of the fully generated tree 

can be extracted and those with low surface variation can be removed. A new metric is 

introduced to measure multi-resolution surface variation.  

Before the new metric is detailed, it is important to show how the algorithm can be applied 

using the standard deviation, σ, as the main metric. Analyzing the histogram of the σ values 

can help in selecting a proper threshold to isolate feature nodes. Histograms are computed 

to separate the range between the lowest σ and highest σ values at a given octree resolution 

level into 256 equally divided bins. In the histograms, the x-axis represents the bins, where 

bin 1 is the lowest range of σ values and bin 256 is the highest, and the y-axis represents the 

number of nodes with σ values in each bin. In Figure 13, standard deviation values are 

mapped as a grayscale representation. Black pixels represent low deviation, and white 

pixels represent large deviation. Therefore, the nodes containing deformations appear in the 

higher bins. Over most surfaces, the majority of the nodes are mapped to non-feature nodes, 

such that the bulk of the normal distribution gets classified as non-feature nodes, that is 

nodes with low σ values. Using the computer casing panel scan as an example, Figure 13 

represents the σ values on the mesh as intensity values, along with its histogram, a selected 

threshold, and the thresholding results. Nodes with σ values above the threshold are 

extracted as features, which leads to the extraction of the three deformations along with 

some extra noisy areas. 

 

Figure 13. a) Image of surface shape standard deviation mapped as intensities for the low resolution 

computer casing panel sample encoded in octree at resolution level 6, b) corresponding histogram of σ 

values with selected threshold, and c) extracted features including three deformations. 

Relying on σ values alone does make use of the multi-resolution capabilities of the octree 

structure and places a lot of emphasis on the proper selection of the threshold at a given 

resolution. As described in section 2.2, Pauly et al. (Pauly et al. 2002) proposed the idea of 

multi-resolution feature persistence, where a strong feature can be retained only if it is 

persistently detected across multiple adjacent scales. In order to combine some of the key 

concepts of multi-resolution feature persistence with the octree-based feature extraction 

technique, it is proposed in this work that the characteristics of nodes are accumulated 

(a) (b) (c) 
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across multiple resolution levels of the octree. The accumulated standard deviation of the 

surface normals for an octree node is estimated as follows:  

 σୡ୦୧୪ୢ୰ୣ୬ =	∑ ஢౟௡୬୧ୀ଴    (7) 

 s = (σ)(σ୮ୟ୰ୣ୬୲)(σୡ୦୧୪ୢ୰ୣ୬) (8) 

where s is the aggregate standard deviation value, σ is the standard deviation value of 

surface normals in the current node, σ୮ୟ୰ୣ୬୲ is the standard deviation value of surface 

normals in the parent node, σ୧ is the standard deviation value of surface normals in the ith 

child, and n is the number of children that are not empty, such that only nodes that contain 

3D points are considered not to bias the metric. σୡ୦୧୪ୢ୰ୣ୬ is calculated as the average 

standard deviation value of the node’s non-empty children. Note that σ	values are 

calculated using non-uniform weighting as detailed in section 4.2. At any given scale, each 

node will contain a value representing the accumulated standard deviation, s, of a certain 

volume of the mesh located under itself in the octree structure.  

Using the computer casing panel scan as an example, Figure 14 shows how thresholding the ݏ values at a single resolution can be successful in isolating areas of interest. The histogram 

shown is in the same format as the histogram of Figure 13, but maps s values into pixel 

intensities instead of σ values. 
 

 

Figure 14. a) Intensities corresponding to aggregate standard deviation, s, in low resolution computer 

casing panel sample at resolution level 6 of the octree, b) ݏ histogram with threshold, and c) extracted 

features including three deformations. 

The aggregate standard deviation, s, value provides a greater separation between feature 

nodes and non-feature nodes than the local standard deviation, σ, only. A more accurate 

separation also adds tolerance to non-optimal thresholds. To compare the tolerance to non-

optimal thresholds when using the σ value against using the s value for feature extraction, the 

algorithm is applied on the filtered low resolution computer casing panel mesh with both 

metrics at octree resolution level 5. A suitable threshold was determined such that the results 

are comparable between using the σ and s values respectively. Then, using the histogram, 

thresholds which are 50 bins in either direction of the selected threshold are used to determine 

(a) (b) (c) 
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how that affects the extraction results. When using the σ metric, a threshold of 0.223 is used, 

which corresponds to bin 163. Then, a threshold of 0.157, corresponding to bin 113, and a 

threshold of 0.289, aligned with bin 213 are also applied. When using the s metric, a threshold 

of 0.295 is used, which corresponds to bin 176. Then, a threshold of 0.214, corresponding to bin 

126, and a threshold of 0.377, aligned with bin 226 are also applied. Figure 15 shows the results 

using σ for feature extraction, and Figure 16 shows the results using s for feature extraction.  

 

Figure 15. a) Deformed regions detected over computer casing panel at resolution level 5 of the octree 

with a) optimal σ threshold, b) optimal σ threshold minus 50 bins, and c) optimal σ threshold plus 50 

bins. 

 

Figure 16. a) Deformed regions detected over computer casing panel at resolution level 5 of the octree 

with a) optimal s threshold, b) optimal s threshold minus 50 bins, and c) optimal s threshold plus 50 bins. 

This case demonstrates that a change in threshold setting affects the deformation detection 

method more extensively when using the local standard deviation, σ, value as a metric than 

when using the proposed aggregate standard deviation, s, value. When using the σ value as 

a metric, the surface analysis captures more noise and transient features when the threshold 

is lowered, and removes all of the deformations when the threshold is increased. When 

using s as a metric, the outcome of the surface analysis does not change significantly with 

the different thresholds, as the deformations are all still present and no significant 

additional surface variation is detected. As a consequence, when thresholds need to be 

selected from experimentation, the expected results with aggregate standard deviation are 

much less sensitive to changes in threshold setting than with the enhancement described in 

section 4.2 alone. The increase in robustness when compared to non-optimal thresholding, 

and the significant separation between non-deformation areas and deformation areas in the 

s metric, justify the use of s over σ as a metric. 

Also, since only three levels of the octree need to be analyzed for thresholding, in 

accordance with Eq. 8, only the level of the octree at which the nodes are being extracted 

(a) (b) (c)

(b)(a) (c)
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and thresholded, along with the levels immediately above and below, must be generated. By 

selectively generating only the necessary levels of the tree from the 3D points cloud, the 

efficiency of the algorithm is improved significantly. The increase in intuitiveness of the 

thresholding parameter setting and the efficiency over the original octree-based method of 

Woo et al. (Woo et al. 2002), which thresholds nodes during tree generation as opposed to 

after tree generation, also support the development and application of the algorithm 

introduced in this work.  

To demonstrate the effectiveness of the proposed algorithm, in addition to the results 

presented above on the computer casing panel, the method is applied to the more 

challenging unfiltered mesh of the car door with the aggregate standard deviation threshold 

set at 0.155, for the octree resolution level 6. The results are shown in Figure 17. The same 

algorithm is also applied to the artificial curved meshes, with the threshold set at 0.002, at 

resolution level 5 of the octree, and the results are shown in Figure 18.  

 

Figure 17. a) Intensity map corresponding to s values on unfiltered car door octree at resolution level 6, 

and b) features extracted including the three deformations of interest. 

 
 

Figure 18. Feature extracted, at resolution level 5, on artificial curved mesh with a) small dent, and  

b) large ding. 

In terms of deformation extraction effectiveness, provided that the correct threshold is 

selected, the algorithm performs similarly on both the filtered and unfiltered car door 

meshes. It also extracts many of the edges around the door and window frame. These edges 

are very rough areas in the meshes due to the limitations of the acquisition system, and 

generate large s values in their surroundings, resulting in them being extracted. Despite 

these small issues with the noisy data, the algorithm isolates the deformations well while 

increasing robustness and decreasing memory usage when compared to using only the 

previous octree-based method enhancements. 

(a) (b)

(a) (b)
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5. Segmentation and classification 

When using the octree-based surface shape analysis technique described in section 4, each 

node records information determining whether it belongs to a feature or not. Among the 

nodes that correspond to a deformation, those that contain pieces of a same deformation 

must eventually be grouped together to segment the deformation from the rest of the panel 

surface scan, as shown in Figure 19. 

Finally, before the entire system outputs the segments that contain deformations, each of 

them must be classified as a ding or a dent as that is one of the primary objectives of the 

proposed solution. The octree-based feature extraction requires the classification component 

to handle this task by receiving the segments containing the deformations of interest as an 

input and labeling them as dings or dents for the output. A two-step segmentation and 

classification strategy is proposed to achieve this goal.  

 

Figure 19. a) Original deformation, b) octree-based surface shape analysis results, and c) octree-based 

segmentation. 

5.1. Single-resolution segmentation based on octrees 

If the scale of the desired deformations is known, an appropriate resolution of the octree can 

be selected to extract those deformations. Since different depths of the octree correspond to 

different spatial resolutions, selecting all nodes at a certain depth (defined as octree levels in 

the previous section) will provide a voxel representation of the object at that scale. However, 

the appropriate resolution level to segment the deformation must generally be lower than 

the resolution level considered for the surface shape analysis described previously. Indeed 

small discontinuities in the deformation should not be detected and segmented as 

individual deformations based on the connectivity between nodes in the higher resolution 

version of that deformation. On the other hand, the segmentation resolution must be 

sufficiently high to avoid deformations being grouped with non-deformations, and to 

reduce the size of small segments defining features such as noise, in order to avoid 

confusion with the actual deformations during the classification phase.  

After the feature extraction removes all non-feature voxels at the desired resolution, 

grouping is performed. These remaining voxels are denoted as feature voxels. Sets of feature 

voxels are grouped together to define a deformation based on adjacency, since each voxel 

(a) (b) (c) 
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contains a piece of a deformation. Since the voxels are cells of a 3-dimensional grid, adjacent 

voxels can be determined based on their coordinates in the 3-dimensional grid and looking 

for voxels at adjacent coordinates to the current one. By extending the idea of blob 

extraction, which is a well-known 2-dimensional image processing algorithm, to three 

dimensions, adjacent feature voxels can be grouped together. The final result is a set of voxel 

groups, where each group represents a segment containing a deformation. 

The proposed octree-based method is applied on the flat mesh with a small deformation of 

Figure 7a to extract the small deformation until octree resolution level 8. The segmentation 

results are shown in Figure 20. Figure 21 shows the segmentation applied at octree 

resolution level 6 on feature extraction results on the indented computer casing panel high 

resolution surface mesh. 

These results demonstrate that the segmentation can group the required voxels to properly 

define the deformations. On the artificial mesh, applying segmentation at resolution level 6 

segments the deformation clearly. On the other hand, the segmentation at resolution level 4 

shows that the deformation is still located, but covers a larger surface than the actual 

deformation. This is because the resolution considered is lower, therefore the voxel 

containing the deformation is larger and entirely marked. Similarly successful results are 

achieved on the computer casing panel, with all deformations being successful grouped. 

 

Figure 20. a) Octree-based feature extraction, at octree resolution level 8, on the flat mesh with small 

deformation, b) bounding box of segmented deformation at octree resolution level 6, and c) bounding 

box of segmented deformation at octree resolution level 4. 

 

Figure 21. Bounding boxes defining the areas segmented as actual deformations on the filtered high 

resolution computer casing panel surface mesh at resolution octree level 6. 

5.2. Classification 

Classification represents the final phase of the proposed deformation detection process. It 

helps determine whether the identified segments are dings or dents. It also provides abilities 

(a) (b) (c)
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to ensure that the extracted segments are indeed deformations of interest. Ideally, the 

previous steps of surface shape analysis and segmentation have already removed most non-

deformation areas. But in case some erroneous deformation areas remain, the classification 

phase provides the necessary filtering stage to remove those areas and reduce false 

positives. Complex classification methods, such as using neural networks as proposed by 

Döring et al. (Döring et al. 2004), or spin image signatures as attempted by Assfalg et al. 

(Assfalg et al. 2007), could be implemented at this stage. However this work focuses on 

simpler and more computationally efficient solutions that take advantage of the fact that 

accurate results have already been obtained by the surface shape analysis and segmentation 

components.  

5.2.1. Classification of the type of deformation 

To measure the shape characteristics of the segments, a basic understanding of the 

orientation of the segment must be determined. A least-squares plane-of-best-fit fitted to the 

3D points contained in a segment, specifically the boundary points, is used to determine the 

orientation of the shape represented by a given segment. Since the boundary points are on 

the outside edges of the segment, they would more likely belong to the regular surface of 

the automotive panel than to the deformation. This leads to a plane best fitted to the surface 

of the automotive panel around the deformation, and determines the general orientation of 

the surface shape that is contained in the segment. A descriptor, called the point-count 

descriptor, uses the number of points that share a similar positional relationship to the 

plane-of-best-fit in estimating the direction of variation of the surface contained in the 

segment. If a majority of the points contained in the segment are above the plane-of-best-fit, 

that is, in the direction of the normal vector, the deformation is classified as a ding. If a 

majority of the points are below the plane-of-best-fit, that is in the opposite direction to the 

normal vector, the deformation is classified as a dent.  

In any classification, a certainty measure is also important. The percentage of the points that 

are above the plane-of-best-fit in the case of a ding, or below the plane-of-best-fit in the case 

of a dent, provides the certainty measure on the classification. This way, if there are a similar 

number of points that are above and below the plane-of-best-fit, the certainty measure is 

close to 50%, indicating uncertainty. 

To test the classification technique’s ability to determine whether a deformation is a ding or 

a dent, it is applied on deformation segments of every mesh using the point-count 

descriptor, and the results are compared. Non-ideal extraction and segmentation results are 

presented in Figure 22, while the resulting classifications are presented in Table 1.  

Over the artificial flat and curved meshes, it can be seen that the classification is correct. 

These results show that the classification behaves well on artificial models, corresponding to 

an acquisition system with minimal noise and acquisition artifacts. For the real world 

meshes (car door and computer panel), the descriptor accurately classifies each of the dents 

on the computer casing except for one, which is recognized as a ding rather than a dent. This 
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can be attributed to the non-ideal feature extraction, as classification is dependent on the 

quality of the latter step. However, the certainty measure reflects the inaccuracy of the 

classification by being close to 50%, lower than that of the correctly classified deformations. 

Overall, it can be seen that the classification provides proper results even when feature 

extraction and segmentation results are non-ideal.  

 

Figure 22. Octree-based feature extraction and single-resolution segmentation applied on a) computer 

casing panel mesh with dent segments labeled, b) car door mesh with ding segments labeled, c) flat 

mesh with large ding segment labeled, d) flat mesh with small dent segment labeled, e) curved mesh 

with small dent segment labeled, and f) curved mesh with large ding segment labeled. 

 

Model 
Actual 

Point-Count Descriptor 

Estimates 

Type Type Certainty 

Car Door    

Def 1 Ding Ding 0.636 

Def 2 Ding Ding 0.644 

Def 3 Ding Ding 0.609 

Computer Casing Panel    

Def 1 Dent Ding 0.502 

Def 2 Dent Dent 0.511 

Def 3 Dent Dent 0.546 

Flat Mesh    

Small Dent Dent 0.583 

Large Ding Ding 0.896 

Curved Mesh    

Small Dent Dent 0.667 

Large Ding Ding 0.558 

Table 1. Comparison of actual deformation characteristics and the results of classification following 

octree-based feature extraction and segmentation. 

(a) (b) (c)

(d) (e) (f)
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5.2.2. Additional classification 

Though it is not the primary goal of the classification stage, the latter also allows fine-tuning 

of certain parameters by the operator as a final effort to ensure that only deformations of 

interest are outputted as marked segments. In the process of analyzing descriptors to 

determine whether a segment is a ding or a dent, segments that do not meet the 

characteristics of either can be removed. Certain well-known characteristics of deformations 

can be taken into account to remove non-deformation areas that remain.  

The combined surface area of the mesh contained in a segment makes a suitable 

descriptor of deformations of interest. Thresholding the surface area is another effective 

strategy for the removal of noise and acquisition artifacts, as those erroneous extracted 

segments typically cover only very small surface area. Similarly, thresholding surface area 

also proves effective in removing large surface features that do not correspond to 

deformations expected over an automotive body panel at the assembly stage, such as 

actual door handles or aesthetic curves. The latter cover much larger surface areas than 

dings and dents. 

After the orientation of the shape contained in the segment is determined, as detailed in 

section 5.2.1, and the plane-of-best-fit provides the shape its own local coordinate system, 

characteristics such as the deformation size in the x, y, and z directions can be measured 

relative to the shape’s local coordinate system to provide an estimate of the shape’s height, 

width, and depth. Noise typically has a small depth, while features like door handles have a 

larger depth and width relative to the deformations of interest. Applying thresholds on 

these parameters further increases the reliability of isolating only segments that contain 

actual deformations.  

Though a certain dependency on the setting of threshold values remains, the combination of 

these descriptors that provide a large amount of information about the various shapes 

contained in the extracted segments proves to be an excellent technique to improve the 

reliability of the feature extraction process. In order to demonstrate the relevance of using 

the final classification phase to further refine the selection of actual deformation segments, 

here focusing on dings and dents over smoothly curved surface meshes, some cases of poor 

feature extraction scenarios are artificially created using the experimental models described 

in section 3.3, but with non-optimal parameters for feature detection and segmentation. The 

resulting non-deformation areas that get included into detected segments are used to test 

the classification system’s ability to distinguish between actual deformations and non-

deformations.  

Figure 23 depicts a non-optimal case where many false positives are detected and 

segmented as potential deformation areas over the car door surface mesh, and shows how 

the classification is able to remove them. By setting the parameters of the additional 

classification to remove depths less than 8.5mm or greater than 17mm, most of the broad 

curvatures on the panel, the door handle, and the small noisy areas are removed. Also, 
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setting the parameters to remove segments with surface area less than 2800 mm2 or 

segments with surface area greater than 5200 mm2 results in further non-deformation 

areas being removed. In spite of the non-optimal tuning of the quality inspection system, 

only one additional area, influenced by the boundary effect around the lower left-hand 

side of the panel, is preserved as a potential deformation segment in Figure 23b. This 

represents a major improvement from the 40+ erroneous segments initially identified in 

Figure 23a.  

 

Figure 23. a) Deformation and non-deformation areas initially segmented on the car door mesh,  

b) additional classification removes most non-deformation areas. 

6. Conclusion 

In this chapter, an original feature detection, segmentation and classification framework is 

proposed to process 3D point clouds and corresponding surface meshes in order to meet 

the advanced requirements of an automated deformation detection system for use in the 

context of automotive panels quality control over an assembly line. The requirements in 

place are that such a system must be able to detect deformations of interest, using 3D 

analysis, without knowledge of the ideal surface and without any comparative CAD 

models. The deformations must also be classified as dings or dents. The proposed 

approach assumes that the operator possesses a minimal knowledge about the 

approximate size and scale of these deformations of interest in the context of the specific 

application. The proposed technique then makes optimal use of this additional 

information to refine the deformation isolation process which leads to an accurate 

separation of ding and dent deformations from desirable aesthetic design features that 

typically appear over automotive panels. 

A variety of techniques were reviewed for the deformation detection pipeline. An octree-

based technique is revisited and refined for surface shape analysis. A single-resolution 

segmentation method is also presented to refine the location of deformations. Finally, a 

classification approach is proposed and a complete experimental evaluation is performed on 

every stage of the surface inspection procedure. The complete pipeline is effective in 

identifying the location of deformations of interest, and classifying them as dents or dings 

when presented with a 3D mesh of a surface.  

(a) (b)
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Experiments were conducted on both artificial and real-world test data, offering a set of 

meshes encompassing various characteristics. These experiments demonstrated that the 

proposed approach can be used in both ideal circumstances, such as finding a large 

deformation over a flat, noiseless mesh, as well as in more complex circumstances, such 

as finding small deformations over a noisy, smoothly curved surface, with acquisition 

artifacts and holes. The experimental results demonstrate that the proposed framework 

is scalable, effective and robust to meshes with noise and acquisition artifacts, along with 

non-ideal surfaces containing shape variations other than the deformations of interest. 

The proposed technique is therefore suitable for integration in an automated 

deformation detection and marking system for quality control on automotive panels 

assembly lines.  
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