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1. Introduction 

In earthquake resistant structural steel design, there are two commonly used structural 

systems. “Moment resisting frames” consist of beams connected to columns with moment 

resisting (i.e., rigid) connections. Rigid connection of a steel beam to a steel column requires 

rigorous connection details. On the other hand, in “braced frames”, the simple (i.e., pinned) 

connections of beams to columns are allowed since most of the earthquake forces are carried 

by steel braces connected to joints or frame elements with pinned connections. The load 

carrying capacity of a braced frame almost entirely based on axial load carrying capacities of 

the braces. If a brace is under tension in one half-cycle of an earthquake excitation, it will be 

subjected to compression in the other half cycle. Provided that the connection details are 

designed properly, the tensile capacity of a brace is usually much higher than its 

compressive capacity. In fact, the fundamental limit state that governs the behavior of such 

steel braces under seismic forces is their global buckling behavior under compression.  

After detailed evaluation, if a steel braced structure is decided to have insufficient lateral 

strength/stiffness, it has to be strengthened/stiffened, which can be done by increasing the 

load carrying capacities of the braces. The key parameter that controls the buckling capacity 

of a brace is its “slenderness” (Salmon et al., 2009). As the slenderness of a brace decreases, 

its buckling capacity increases considerably. In order to decrease the slenderness of a brace, 

either its length has to be decreased, which is usually not possible or practical due to 

architectural reasons, or its flexural stiffness has to be increased. Flexural stiffness of a brace 

can be increased by welding steel plates or by wrapping fiber reinforced polymers around 

the steel section. Analytical studies (e.g., Timoshenko & Gere, 1961) have shown that it 
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usually leads to more economic designs if only the partial length, instead of the entire 

length, of the brace is stiffened. This also eliminates possible complications in connection 

details that have to be considered at the ends of the member. 

Nonuniform structural elements are not only used in seismic strengthening and rehabilitation 

of existing structures. In an attempt to design economic and aesthetic structures, many 

engineers and architects nowadays prefer to use nonuniform structural elements in their 

structural designs. However, stability analysis of such nonuniform members is usually much 

more complex than that of uniform members (e.g., see Li, 2001). In fact, most of the design 

formulae/charts given in design specifications are developed for uniform members. Thus, 

there is a need for a practical tool to analyze buckling behavior of nonuniform members. 

This study investigates elastic buckling behavior of three-segment symmetric stepped 

compression members with pinned ends (Fig. 1) using three different approaches: (i) 

analytical, (ii) numerical and (iii) experimental approaches. As already mentioned, such a 

member can easily be used to strengthen/rehabilitate an existing steel braced frame or can 

directly be used in a new construction. Surely, the use of stepped elements is not only 

limited to the structural engineering applications; they can be used in many other 

engineering applications, such as in mechanical and aeronautical engineering. 

In analytical studies, first the governing equations of the studied stability problem are derived. 

Then, exact solution to the problem is obtained. Since exact solution requires finding the 

smallest root of a rather complex characteristic equation which highly depends on initial 

guess, the governing equation is also solved using a recently developed analytical technique 

by He (1999), which is called Variational Iteration Method (VIM). Many researchers (e.g., 

Abulwafa et al., 2007; Batiha et al., 2007; Coskun & Atay, 2007, 2008; Ganji & Sadighi, 2007; 

Miansari et al., 2008; Ozturk, 2009 and Sweilan & Khader, 2007) have shown that complex 

engineering problems can easily and successfully be solved using VIM. Recently, VIM has also 

been applied to stability analysis of compression and flexural members. Coskun and Atay 

(2009), Atay and Coskun (2009), Okay et al. (2010) and Pinarbasi (2011) have shown that it is 

much easier to solve the resulting characteristic equation derived using VIM. In this paper, by 

comparing the approximate VIM results with the exact results, the effectiveness of using VIM 

in determining buckling loads of multi-segment compression members is investigated. 

The problem is also handled, for some special cases, using widely known structural analysis 

program SAP2000 (CSI, 2008). After determining the buckling load of a uniform member 

with a hollow rectangular cross section, the stiffness of the member is increased along its 

length partially in different length ratios and the effect of such stiffening on buckling load of 

the member is investigated. By comparing numerical results with analytical results, the 

effectiveness of using such an analysis program in stability analysis of multi-segment 

elements is also investigated. 

Finally, buckling loads of uniform and three-segment stepped steel compression members 

with hollow rectangular cross section are determined experimentally. In the experiments, 

the “stiffened” columns are prepared by welding additional steel plates over two sides of 

the member in such a way that the addition of the plates predominantly increases the 
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smaller flexural rigidity of the cross section, which governs the buckling behavior of the 

member. By changing the length of the stiffening plates, i.e., by changing the stiffened 

length ratio, the degree of overall stiffening is investigated in the experimental study. The 

experimental study also shows in what extent the ideal conditions assumed in analytical and 

numerical studies can be realized in a laboratory research. 

 

Figure 1. Three-segment symmetric stepped compression member with pinned ends 

 

Figure 2. “Equivalent” two-segment stepped compression member with one end fixed (clamped), the 

other hinged 
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2. Analytical studies on elastic buckling of a three-segment stepped 

compression member with pinned ends 

2.1. Derivation of governing (buckling) equations 

Consider a three-segment symmetric stepped compression member subjected to a 

compressive load P applied at its top end, as shown in Fig. 1. Assume that both ends of the 

member are pinned; i.e., free to rotate. Also assume that the top and bottom segments of the 

member have identical flexural stiffness, EI1, while that of the middle segment may be 

different, say EI2. As long as the stiffness variation along the height of the member is 

symmetric about the mid-height, the buckled shape of the member is also symmetric about 

the same point as shown in Fig. 1. When such a symmetry exists, the buckling load of the 

three-segment member can be obtained by analyzing the simpler two-segment member 

shown in Fig. 2a. This “equivalent” two-segment member has a fixed (clamped) boundary 

condition at its bottom end whereas its top end is free. From comparison of Fig. 1 and Fig. 

2a, one can also see that the length of the equivalent two-segment member equals to the 

half-length of the original three-segment member, i.e., L=H/2. Similarly, L2=a/2. Since the 

analysis of a two-segment column is much simpler than that of a three-segment column, the 

analytical study presented in this section is based on the equivalent two-segment member. 

The undeformed and deformed shapes of the equivalent two-segment member under uniform 

compression are illustrated in Fig. 2a. The origin of x-y coordinate system is located at the 

bottom end of the column. Since the stiffnesses of two segments of the column can be different 

in general, each segment of the column has to be analyzed separately. Equilibrium equation at 

an arbitrary section in Segment I can be written from the free body diagram shown in Fig. 2b: 
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In Eq. (1) and Eq. (2), w1 is lateral displacement of Segment I at any point,  is the lateral 

displacement of the top end of the member, i.e.,  = w1 (x = L). Eq. (2) is valid for L2  x  L. 

Similarly, from Fig. 2c, the equilibrium equation at an arbitrary section in Segment II can be 

written as 
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where w2 is the displacement of Segment II in y direction. Eq. (3) is valid for 0 x L2. For 

easier computations, the buckling equations in Eq. (2) and Eq. (3) can be written in 

nondimensional form as follows: 
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      2 2
1 1 1 1 andw w           2 2

2 2 2 2w w      (4) 

with 

 1 1 andk L   2 2k L   (5) 

where /x x L , 1 1 /w w L , 2 2 /w w L , / L   and prime denotes differentiation with 

respect to x . Since both of the differential equations in Eq. (4) are in second order, the 

solutions will contain four integration constants. Considering that  is also unknown, the 

solution of these buckling equations requires five conditions to determine the resulting five 

unknowns. Two of these conditions come from the continuity conditions where the flexural 

stiffness of the column changes and the remaining three conditions are obtained from the 

boundary conditions at the ends of the column. At x=L2, the lateral displacement and slope 

functions have to be continuous, which requires 
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x s x s

w w
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where 2 /s L L . As far as the boundary conditions are concerned, for a clamped-free 

column, the end conditions can be written in nondimensional form as: 
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Thus, Eq. (4) with Eq. (6) and Eq. (7) constitutes the governing equations for the studied 

stability problem. 

2.2. Exact solution to buckling equations 

Since the differential equations given in Eq. (4) are relatively simple, it is not too difficult to 

obtain their exact solutions, which can be written in the following form: 

    1 1 1 2 1sin cos andw C x C x      and    2 3 2 4 2sin cosw C x C x      (8) 

where Ci (i=1-4) are integration constants to be determined from continuity and end 

conditions. From the first and second conditions given in Eq. (7), one can find that  

 3 0andC   and 4C    (9) 

Then, using Eq. (6), the other integration constants are obtained as: 
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Finally, the last condition given in Eq. (7) results in 

   1
2 1

2

tan tan 1 0s s


  


             
 (11) 

For a nontrivial solution, the coefficient term must be equal to zero, yielding the following 

characteristic equation for the studied buckling problem: 

   1
2 1

2

tan tan 1s s


 


         (12) 

Since 1 2 2 1/ /EI EI   , if the stiffness ratio n is defined as 2 1/n EI EI , Eq. (12) can be 

written in terms of 1 (square root of nondimensional buckling load of the equivalent two-

segment element in terms of EI1), n (stiffness ratio) and s (stiffened length ratio) as follows: 

  1 1tan 1 tan
s

s n
n

 
       

 (13) 

One can show that the buckling load of the three-segment stepped compression member 

with length H shown in Fig. 1 can be written in terms of that of the equivalent two-segment 

member with length L=H/2 shown in Fig. 2a as 

 1
2

wherecr

EI
P

H
  2

14   (14) 

In other words,  is the nondimensional buckling load of the three-segment compression 

member in terms of EI1. 

2.3. VIM solution to buckling equations 

According to the variational iteration method (VIM), a general nonlinear differential 

equation can be written in the following form: 

      Lw x Nw x g x   (15) 

where L is a linear operator and N is a nonlinear operator, g(x) is the nonhomogeneous term. 

Based on VIM, the “correction functional” can be constructed as 

           1

0

x

n n n nw x w x Lw Nw d          (16) 

where     is a general Lagrange multiplier that can be identified optimally via variational 

theory, nw  is the n-th approximate solution and nw  denotes a restricted variation, i.e., 

0nw   (He, 1999). As summarized in He et al. (2010), for a second order differential 

equation such as the buckling equations given in Eq. (4),     simply equals to 
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    x     (17) 

The original variational iteration algorithm proposed by He (1999) has the following 

iteration formula: 

           1

0

x

n n n nw x w x Lw Nw d         (18) 

In a recent paper, He et al. (2010) proposed two additional variational iteration algorithms 

for solving various types of differential equations. These algorithms can be expressed as 

follows: 
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Thus, the three VIM iteration algorithms for the buckling equations given in Eq. (4) can be 

written as follows: 
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where i is the segment number and can take the values of one or two. It has already been 

shown in Pinarbasi (2011) that all VIM algorithms yield exactly the same results for a similar 

stability problem. For this reason, considering its simplicity, the second iteration algorithm 

is decided to be used in this study. 

Recalling that 1 2/ n    and 2
14  , the iteration formulas for the buckling equations of 

the studied problem can be written in terms of  and n as follows: 
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As an initial approximation for displacement function of each segment, a linear function 

with unknown coefficients is used: 

 1,0 1 2w C x C   and 2,0 3 4w C x C   (23) 

where Ci (i=1-4) are to be determined from continuity and end conditions. After conducting 

seventeen iterations, 1,17w  and 2,17w  are obtained. Substituting these approximate solutions 

to the continuity equations in Eq. (6) and to the end conditions in Eq. (7), five equations are 

obtained. Four of them are used to determine the unknown coefficients in terms of  , while 

the remaining one is used to construct the characteristic equation for the studied problem: 

   0F       (24) 

where  F   is the coefficient term of  . For a nontrivial solution  F   must be equal to 

zero. The smallest possible real root of the characteristic equation gives the nondimensional 

buckling load ( 2
1/PH EI  ) of the three-segment compression member in the first 

buckling mode. 

2.4. Comparison of VIM results with exact results 

For various values of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H), 

nondimensional buckling loads of a three-segment compression member with pinned ends 

are determined both by using Eq. (13) and VIM. VIM results are compared with the exact 

results in Table 1.  

 

 

Table 1. Comparison of VIM predictions for nondimensional buckling load () of a three-segment 

compression member with exact results for various values of stiffness ratio (n=EI2/EI1) and stiffened 

length ratio (s=a/H) 

Exact VIM Exact VIM Exact VIM Exact VIM

100 15.344 15.344 27.052 27.052 59.843 59.843 225.706 225.706

10 14.675 14.675 24.006 24.006 44.978 44.978 85.880 85.880

5 13.978 13.978 21.109 21.109 33.471 33.471 46.651 46.651

2.5 12.721 12.721 16.694 16.693 21.275 21.275 24.186 24.186

1.67 11.632 11.632 13.642 13.642 15.406 15.406 16.306 16.306

1.25 10.689 10.689 11.471 11.471 12.039 12.039 12.297 12.297

s

0.2 0.4 0.6 0.8n
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As it can be seen from Table 1, VIM results perfectly match with exact results, verifying the 

efficiency of VIM in this particular stability problem. It is worth noting that it is somewhat 

difficult to solve the characteristic equation given in Eq. (13) since it is highly sensitive to the 

initial guess. While solving this equation, one should be aware of that an improper initial 

guess can result in a buckling load in higher modes. On the other hand, the characteristic 

equations derived using VIM are composed of polynomials, all roots of which can be 

obtained more easily. This is one of the strength of VIM even when an exact solution is 

available for the problem, as in our case.  

2.5. VIM results for various stiffness and stiffened length ratios 

Table 2 tabulates VIM predictions for nondimensional buckling load of a three-segment 

stepped compression member for various values of stiffness (n) and stiffened length (s) 

ratios. The results listed in this table can directly be used by design engineers who 

design/strengthen three-segment symmetric stepped compression members with pinned 

ends. 

 

 

Table 2. VIM predictions for nondimensional buckling load () of a three-segment column for various 

values of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H) 

At this stage, it can be valuable to investigate the amount of increase in buckling load due to 

partial stiffening of a compression member. Fig. 3 shows variation of increase in critical 

buckling load, with respect to the uniform case, with stiffened length ratio for different 

values of stiffness ratio. From Fig. 3, it can be inferred that there is no need to stiffen entire 

0.1 0.2 0.25 0.3333 0.5 0.75 0.9999

1 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696 9.8696

1.5 10.5592 11.3029 11.6881 12.3342 13.5322 14.6186 14.8044

2 10.9332 12.1571 12.8290 14.0255 16.5379 19.2404 19.7392

2.5 11.1676 12.7211 13.6051 15.2433 19.0149 23.7328 24.6740

3 11.3282 13.1202 14.1651 16.1557 21.0707 28.0942 29.6088

4 11.5338 13.6465 14.9165 17.4239 24.2442 36.4193 39.4784

5 11.6599 13.9775 15.3962 18.2587 26.5469 44.2105 49.3480

7.5 11.8311 14.4372 16.0711 19.4641 30.1728 61.3848 74.0220

10 11.9181 14.6750 16.4240 20.1076 32.2453 75.4700 98.6960

20 12.0504 15.0419 16.9731 21.1249 35.6828 109.4880 197.3920

50 12.1307 15.2680 17.3139 21.7652 37.9220 138.1940 493.4800

100 12.1577 15.3444 17.4295 21.9836 38.6944 148.2010 986.9600

n
s
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length of the member to gain appreciable amount of increase in buckling load especially if n 

is not too large. For n=2, increase in buckling load when only half length of the member is 

stiffened is more than 80 % of the increase that can be gained when the entire length of the 

member is stiffened. Fig. 3 also shows that if n increases, to get such an enhancement in 

buckling load, s has to be increased. For example, when n=10, the stiffened length of the 

member has to be more than 75% of its entire length if similar enhancement in member 

behavior is required. In fact, this can be seen more easily from Fig. 4 where the increase in 

buckling load is plotted in terms of stiffness ratio for various stiffened length ratios. Fig. 4 

shows that if the stiffened length ratio is small, there is no need to increase the stiffness ratio 

too much. As an example, if only one-fifth of the entire length of the member is to be 

stiffened, increase in buckling load when n=2 is more than 80% of that when n=10. On the 

other hand, if 75 % of the entire length is allowed to be stiffened, increase in buckling load 

when n=2 is approximately 25% of that when n=10.  

 

 

 

 

 

 
 

 

 

 

 

Figure 3. Variation of increase in buckling load with stiffened length ratio (s) for various values of 

stiffness ratio (n) 
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Figure 4. Variation of increase in buckling load with stiffness ratio (n) for various values of stiffened 

length ratio (s) 

3. Numerical studies on elastic buckling of a three-segment stepped 

compression member with pinned ends 

In order to obtain directly comparable results with the experimental results that will be 

discussed in the following section, in the numerical analysis, the reference “unstiffened” 

member is selected to have a hollow rectangular cross section, namely RCF 120x40x4, the 

geometric properties of which is given in Fig. 5a. The length of the steel (with modulus of 

elasticity of E=200 GPa) columns is chosen to be 2 m., which is the largest height of a 

compression member that can be tested in the laboratory due to the height limitations of the 

test setup. Elastic stability (buckling) analysis is performed using a well-known commercial 

structural analysis program SAP2000 (CSI, 2008). 

Fig. 5b shows numerical solutions for the buckled shape and buckling load, Pcr,num,n=1 = 156.55 

kN, of the uniform column. Exact value of the buckling load Pcr for this column can be 

computed from the well-known formula of Euler; 2 2/crP EI L , which gives Pcr,exact,n=1 = 

157.42 kN. The error between the numerical and exact analytical result is only 0.5 %, which 

encourages the use of this technique in determining the buckling load of “stiffened” 

members.  
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Figure 5. Geometric properties and buckling load of the uniform column (n=1) analyzed in numerical 

study 

a. cross sectional properties (in meters)

b. buckling load (in kN) 
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In the experimental study, in addition to the unstiffened members, three different types of 

stiffened columns are tested. In these specimens, the stiffness ratio is kept constant (n2) 

while the stiffened length ratio is varied. The stiffnesses of the three-segment members are 

increased by welding rectangular steel plates, with 100 mm width and 3 mm thickness as 

shown in Fig. 6a, to the wider faces of the hollow cross section. The length of the stiffening 

plates is 0.4 m in members with s=0.2, approximately 0.67 m in members with s=0.3333 and 

1.0 m in members with s=0.5. This stiffening method increases the cross sectional area of the 

section about 1.56 times and major and minor axis flexural rigidities of the cross section, 

respectively, about 1.36 and 1.96 times. In the numerical analysis, the geometrical properties 

of the cross section for the stiffened region of the column have to be increased in these 

ratios. In SAP2000 (CSI, 2008), this step can easily be performed by using “property/stiffness 

modification factors” command (Fig. 6a). It is to be noted that axis-2 is still the minor axis of 

the member, so the buckling is expected to be observed about this axis, as in the uniform 

column case. Fig. 6b shows the buckled shape and buckling load (Pcr,num,n=1.96,s=0.2 = 192.30 kN) 

of the stiffened members when one-fifth of the entire length of the member is stiffened as 

illustrated in Fig. 6a; i.e., when n=1.96 and s=0.2. Similar analyses on members with s=0.3333 

and s=0.5 yield buckling loads of Pcr,num,n=1.96,s=0.3333 = 220.42 kN and Pcr,num,n=1.96,s=0.5 = 258.93 kN, 

respectively. If these values of buckling loads for stiffened elements are normalized with 

respect to the buckling load for the uniform member (Pcr,num,n=1 = 156.55 kN), the amount of 

increase achieved in buckling load in each stiffening scheme is computed approximately as 

1.23 when s=0.2, 1.41 when s=0.3333 and 1.65 when s=0.5. To compare numerical results with 

analytical results, buckling loads for three-segment symmetric stepped columns with n=1.96 

are determined using VIM for various values of s and increase in buckling load with varying 

s is plotted in Fig. 7. It can be seen that the approximate results obtained through numerical 

analysis exactly match with VIM solutions. The effectiveness of the numerical analysis in 

solving this special buckling problem is examined further for different values of n and s. The 

results are presented in Table 4, which indicates very good agreement between the 

analytical and numerical results. 

 

Table 3.  Comparison of numerical results with analytical (exact and approximate (VIM)) results for 

increase in buckling load for a three-segment compression member with pinned ends for various values 

of stiffness ratio (n=EI2/EI1) and stiffened length ratio (s=a/H) 

n Exact VIM SAP2000 Exact VIM SAP2000 Exact VIM SAP2000

1.5 1.18 1.18 1.18 1.37 1.37 1.38 1.48 1.48 1.48

2 1.30 1.30 1.30 1.68 1.68 1.68 1.95 1.95 1.93

2.5 1.38 1.38 1.38 1.93 1.93 1.92 2.40 2.40 2.38

3 1.44 1.44 1.44 2.13 2.13 2.13 2.85 2.85 2.80

5 1.56 1.56 1.56 2.69 2.69 2.67 4.48 4.48 4.35

7.5 1.63 1.63 1.63 3.06 3.06 3.03 6.22 6.22 5.94

10 1.66 1.66 1.67 3.27 3.27 3.24 7.65 7.65 7.20

s=0.25 s=0.5 s=0.75
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Figure 6. Geometric properties and buckling load a three-segment stepped column with stiffened 

length ratio s=0.2 and stiffness ratio n=1.96 

a. area/stiffness modifiers for the stiffened region of the column

b. buckling load (in kN) 
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Figure 7. Increase in critical buckling load for various stiffened length ratios (s) when stiffness ratio is n 

 1.96 (VIM results) 

4. Experimental studies on elastic buckling of a three-segment stepped 

compression member with pinned ends 

The experimental part of the study is conducted in the Structures Laboratory of Civil 

Engineering Department in Kocaeli University. Test specimens are subjected to 

monotonically increasing compressive load until they buckle about their minor axis in a 

test setup specifically designed for such types of buckling tests (Fig. 8). Due to the height 

limitations of the test setup, the length of the test specimens is fixed to 2 m. To observe 

elastic buckling, “unstiffened” (uniform) reference specimens are selected to have a rather 

small cross section; hollow rectangular section with side dimensions of 120 mm x 40 mm 

and wall thickness of 4 mm, as shown in Fig. 5a. In addition to the three unstiffened 

specimens, named B0-1, B0-2 and B0-3, three sets of “stiffened” specimens, each of which 

consists of three columns with identical stiffening, are tested. To obtain comparable 

results, the stiffness ratio of the stiffened specimens is kept constant (n2) while their 

stiffened length ratios (s) are varied in each set. Such stiffening is attained by welding 

rectangular steel plates, with 100 mm width and 3 mm thickness as shown in Fig. 6a, to 

the wider faces of the hollow cross sections of the test specimens, in different lengths. The 

length of the stiffening plates is 0.4 m for the members with stiffened length ratio s=0.2, 

which are named B1-1, B1-2 and B1-3, approximately 0.67 m for the members with 

s=0.3333, named B2-1, B2-2 and B2-3, and 1.0 m for the members with s=0.5, named B3-1, 

B3-2 and B3-3.  
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Figure 8. Test setup 

As shown in Fig. 8, the test specimens are placed between the top and bottom supports in 

the test rig, which is rigidly connected to the strong reaction wall. To ensure minor-axis 

buckling of the test columns, the supports are designed in such a way that the rotation is 

about a single axis, resisting rotation about the orthogonal axis. In other words, the supports 

behave as pinned supports in minor-axis bending whereas fixed supports in major-axis 

bending. The compressive load is applied to the columns through a hydraulic jack placed at 

the top of the upper support. During the tests, in addition to the load readings, which are 

measured by a pressure gage, strains at the outermost fibers in the central cross section of 

each column are recorded via two strain gages (SG1 and SG2) (see Fig. 8). 
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The buckled shapes of the tested columns are presented in Fig. 9 and Fig. 10. As shown in 

Fig. 9a, uniform columns buckle in the shape of a half-sine wave, which is in agreement 

with the well-known Euler’s formulation for ideal pinned-pinned columns. In contrast to 

ideal columns, however, test columns have not buckled suddenly during the tests. This is 

mainly due to the fact that all test specimens have unavoidable initial crookedness. Even 

though the amount of these imperfections remain within the tolerances specified by the 

specifications, they cause bending of the specimens with the initiation of loading. This is 

also apparent from the graphs presented in Fig. 11. These graphs plot strain gage 

measurements taken at the opposite sides of the column faces (SG1 and SG2) during the 

test of each specimen with respect to the applied load values. The divergence of strain 

gage readings (SG1 and SG2) from each other as the load increases clearly indicates onset 

of the bending under axial compression. This is compatible with the expectations since as 

stated by Galambos (1998), “geometric imperfections, in the form of tolerable but 

unavoidable out-of-straightness of the column and/or eccentricity of the axial load, will 

introduce bending from the onset of loading”. Even though the test columns start to bend 

at smaller load levels, they continue to carry additional loads until they reach their 

“buckling” capacities, which are characterized as the peak values of their load-strain 

curves. 

The buckling loads of all test specimens are tabulated in Table 4. When the buckling loads 

of three uniform columns are compared, it is observed that the buckling load for 

Specimen B0-3 (150.18 kN) is larger than those for Specimens B0-1 (129.60 kN) and B0-2 

(128.49 kN). When Fig. 11a is examined closely, it can be observed that strain gage 

measurements start to deviate from each other at larger loads in Specimen B0-3 than B-01 

and B0-2. Thus, it can be concluded that the capacity difference among these specimens 

occurs most probably due to the fact that the initial out-of-straightness of Specimen B0-3 is 

much smaller than that of B-01 and B-02. When the load-strain plots of the stiffened 

specimens (Fig. 11b-d) are examined, similar trends are observed for specimens with 

larger load values in their own sets, e.g., B2-1 and B2-3 in the third set, B3-1 in the forth 

set. These differences can also be attributed partially to the initial out-of-straightness. 

Unlike uniform columns, stiffened columns have additional initial imperfections due to 

the welding process of the stiffeners. It is now well known that welding cause 

unavoidable residual stresses to develop within the cross section of the member, which, in 

turn, can change the behavior of the member significantly. Since the columns with larger 

stiffened length ratios have longer welds, they are expected to have more initial 

imperfection. The effects of initial imperfections can also be seen from the last column of 

Table 4, where the ratios of experimental results to the analytical results which are 

obtained for ideal columns are presented. 

For better comparison, experimental (Pcr,exp) and analytical (Pcr,analy) buckling loads are 

also plotted in Fig. 12. As shown in the figure, all test results lay below the analytical 

curve. 
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Figure 9. Buckled shapes of unstiffened and stiffened (with s=0.2) test specimens  

a. Unstiffened columns

b. Stiffened columns with s=0.2
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Figure 10. Buckled shapes of stiffened test specimens with s=0.3333 and s=0.5 

a. Stiffened columns with s=0.3333

b. Stiffened columns with s=0.5
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Figure 11. Load versus strain gage measurements for the test specimens 

a. Unstiffened columns 

b. Stiffened columns with s=0.2

c. Stiffened columns with s=0.3333

d. Stiffened columns with s=0.5 

Strain (m/m) Strain (m/m) 

Strain (m/m) Strain (m/m) Strain (m/m) 

Strain (m/m) Strain (m/m) Strain (m/m)

Strain (m/m) Strain (m/m) Strain (m/m) 

Strain (m/m)
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Table 4. Experimental buckling loads for uniform and stiffened columns compared with the analytical 

predictions 

 

 

Figure 12. Experimental results compared with analytical and modified analytical buckling loads 

It is important to note that most design specifications modify the buckling load equations 

derived for ideal columns to take into account the effects of initial out-of-straightness of the 

columns in the design of compression members. As an example, to reflect an initial out-of-

straightness of about 1/1500, AISC (2010) modifies the “Euler” load by multiplying with a 

factor of 0.877 in the calculation of compressive capacity of elastically buckling members 

Specimen s Pcr,exp (kN) Pcr,analy (kN) Pcr,exp / Pcr,analy

B0-1 129.60 0.823

B0-2 128.49 0.816

B0-3 150.18 0.954

B1-1 166.31 0.862

B1-2 177.44 0.919

B1-3 176.32 0.914

B2-1 190.23 0.858

B2-2 153.52 0.692

B2-3 188.56 0.850

B3-1 241.96 0.930

B3-2 194.12 0.746

B3-3 172.43 0.663

157.420

192.98

0.5 260.10

0.3333 221.78

0.2
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(Salmon et al., 2009). By applying a similar modification to the analytical results obtained in 

this study for ideal three-segment compression members, a more realistic analytical curve is 

drawn. This curve is plotted in Fig. 12 with a label ‘0.877 Pcr,analy’. From Fig. 12, it is seen that the 

“modified” analytical curve almost “averages” most of the test results. The larger discrepancies 

observed in stiffened specimens with s=0.3333 and s=0.5 are believed to be resulted from the 

residual stresses locked in the specimens during welding of the steel stiffening plates, which 

highly depends on quality of workmanship. For this reason, while calculating the buckling 

load of a multi-segment compression member formed by welding, not only the initial out-of-

straightness of the member, but also the effects of welding have to be taken into account. 

Considering that stiffened columns will always have more initial imperfections than uniform 

columns, it is suggested that a smaller modification factor be used in the design of multi-

segment columns. Based on the limited test data obtained in the experimental phase of this 

study, the following modification factor is proposed to be used in the design of three-segment 

symmetric steel compression members formed by welding steel stiffening plates:  

  0.877 0.2MF s   (25) 

where s is the stiffened length ratio of the compression member, which equals to the weld 
length in the stiffened members. Thus, the proposed buckling load (Pcr,proposed) for such a 
member can be computed by modifying the analytical buckling load (Pcr,analy) as in the 
following expression:  

 , ,cr proposed cr analyP MF P   (26) 

The proposed buckling loads for the multi-segment columns tested in the experimental part 

of this study are computed using Eq. (26) with Eq. (25) and plotted in Fig. 12 with a label 

‘Pcr,proposed’. For easier comparison, a linear trend line fitted to the experimental data is also 

plotted in the same figure. Fig. 12 shows perfect match of design values of buckling loads 

with the trend line. While using Eq. (25), it should be kept in mind that the modification 

factor proposed in this paper is derived based on the limited test data obtained in the 

experimental part of this study and needs being verified by further studies. 

5. Conclusion  

In an attempt to design economic and aesthetic structures, many engineers nowadays prefer 

to use nonuniform members in their designs. Strengthening a steel braced structure which 

have insufficient lateral resistant by stiffening the braces through welding additional steel 

plates or wrapping fiber reinforced polymers in partial length is, for example, a special 

application of use of multi-segment nonuniform members in earthquake resistant structural 

engineering. The stability analysis of multi-segment (stepped) members is usually very 

complicated, however, due to the complex differential equations to be solved. In fact, most 

of the design formulae/charts given in design specifications are developed for uniform 

members. For this reason, there is a need for a practical tool to analyze buckling behavior of 

nonuniform members.  
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In this study, elastic buckling behavior of three-segment symmetric stepped compression 

members with pinned ends is analyzed using three different approaches: (i) analytical, (ii) 

numerical and (iii) experimental approaches. In the analytical study, first the governing 

equations of the studied stability problem are derived. Then, exact solution is obtained. 

Since exact solution requires finding the smallest root of a rather complex characteristic 

equation which highly depends on initial guess, the governing equations are also solved 

using a recently developed analytical technique, called Variational Iteration Method (VIM), 

and it is shown that it is much easier to solve the characteristic equation derived using VIM. 

The problem is also handled, for some special cases, by using widely known structural 

analysis program SAP2000 (CSI, 2008). Agreement of numerical results with analytical 

results indicates that such an analysis program can also be effectively used in stability 

analysis of stepped columns. Finally, aiming at the verification of the analytical results, the 

buckling loads of steel columns with hollow rectangular cross section stiffened, in partial 

length, by welding steel plates are investigated experimentally. Experimental results point 

out that the buckling loads obtained for ideal columns using analytical formulations have to 

be modified to reflect the initial imperfections. If welding is used while forming the stiffened 

members, as done in this study, not only the initial out-of-straightness, but also the effects of 

welding have to be considered in this modification. Based on the limited test data, a 

modification factor which is a linear function of the stiffened length ratio is proposed for 

three-segment symmetric steel compression members formed by welding steel plates in the 

stiffened regions.  
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