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1. Introduction 

As of mid 2001, out of the 34000 spinal injuries that took place in the previous year, over half 

(55%) were cervical spine injuries [18]. Additionally, out of all the cervical spinal injuries 

incurred by patients in the United States every year, 15% of those injuries are fatal [7]. Motor 

vehicle crashes are the leading cause of death for persons under 45 years of age, and the 

number one cause of head and spinal cord injury [1]. This study compiles and analyzes data 

that may be used to assess risk of cervical injury.  

The cervical spine is a very complex anatomical structure. Any neck injury can have 

debilitating, and sometimes life threatening consequences. Although spinal cord injuries 

vary significantly from the injuries of the vertebral column, they result from structural 

deformities and were therefore studied prior to this analysis [21]. For both spinal cord 

injuries and vertebral body fractures, motor vehicle accidents are the most common causes 

of neck injuries in both Canada and the United States (Figure 1). Out of the 1.4 million 

annual American spinal cord injuries, approximately 280,000 of those are motor vehicle 

induced. One out of every five drivers are involved in a traffic accident each year [1]. Figure 

1 illustrates the most common mechanisms for cervical spine injuries. Another interesting 

aspect is the increase in violence, which in turn could impact the number of violence related 

spinal injuries and incidents (shooting, stabbing, etc.) [21]. 

Sports and leisure activities account for a significant amount of neck trauma. They can be 

broken down by both the activities most likely to cause injury, as well as the injuries 

accounted for in specific sports. Understanding what particular actions and motions within 

each activity actually contribute to the risk of injury, has helped improve sporting 

equipment and decrease the number of neck injuries associated with various sports. Table 1 

lists the most common leisure activities associated with neck injuries [20]. Diving and 

surfing involve more injuries than football (Table 1). This is most probably because football 

has grown in popularity since 1989, when this data was originally compiled. 
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Figure 1. Frequency of Activities Causing Cervical Injuries, in Percentage [7] 

From Table 1, it can be seen that many common everyday activities offer the potential for 

serious injury. In diving, fractures and dislocations are the most commonly seen. Not only 

are the diver’s form and function important, but depth of water, angle of entry and head 

velocity also prove crucial to injury severity. Degrees of participation within the various 

sports also play a role in the frequency of injury. Today, more athletes participate in football, 

making the likelihood of injury higher than it was in 1989. 

Table 1. Sports Activities Causing Cervical Spinal Injuries 
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2. Research background: Analysis of cervical spinal tolerances and 

injuries 

With motor vehicle accidents being the leading mechanism behind both spinal cord and 

vertebral fracture injuries, significant research has focused on improving the design and 

safety of automobiles [14]. Vertebral fractures can occur at any level to any degree, and can 

be caused by various types of loading. Figure 2 illustrates the frequency of injury to various 

levels of the cervical spine as well as the type of loading that causes that injury. 

 

Figure 2. Frequency of Fractures per Level, Based on Type of Impact Loading 

This data is also represented by use of the Abbreviated Injury Scale (AIS). Especially in 

the case of automobile and motorcycle accidents, the victim is usually injured because of 

some form of head contact with another object. Many factors contribute to the severity of 

the injury: position of the head and neck, the impact site, the nature of the impacted 

surface and the direction of the cervical spine loading. Determining the relationship 

between all of these variables is very complex and until recently has been based on 

frequency of occurrence data. Table 2 is a summary of the AIS scale characteristics. Figure 

3 illustrates the amount of injuries that occurred in over 100 automobile accidents, in 

which a passenger attained a neck injury of some degree [25]. The degree of the injury is 

indicated by the AIS score.  

With respect to frequency, the 5th and 6th vertebrae of the cervical spine see the most 

injury, and have the most critical injuries (AIS 5). This is the most significant score one 

can achieve and still survive, meaning that the ability to minimalize the chance of injury 

through improved vehicles and vehicle interior is crucial to assessing and preventing 

risk. 
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Table 2. AIS Scoring Details [12] 

 

Figure 3. Automobile Injuries by Cervical Spinal Level and Their Associated AIS Scores 

To assess the potential for injury, the loads that the cervical spine can withstand during 

various activities must first be understood. This can be broken down into the type of loading 

seen during the various activities. There are 5 main types of loading incurred by the cervical 

spine: Flexion-Extension, Compression, Tension, Torsion and Horizontal Shear. The main 

injury mechanisms are shown in Figure 4, while all are described in succeeding sections. 

 

Figure 4. Injury Mechanisms of the Cervical Spine 
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2.1. Flexion-extension 

A lower bound for the risk of injury of the neck under flexion-extension is based on the 

bending moment at the occipital condyle. For extension, noninjurious loading occurs at 35 

ft-lbs (47.3 Nm), with ligamentous injury occurring above 42 ft-lbs (56.7 Nm). For flexion, 

pain can be felt at a load of 44 ft-lbs (59.4 Nm) and the risk of significant structural damage 

occurs around and above 140 ft-lbs (189 Nm). Bending moments of 24 Nm and resultant 

forces of 130 N can be felt without injury, but anything beyond that will most likely result in 

injury [10, 12, 15]. 

2.2. Compression 

This is the most researched type of loading, as a large amount of data can be found on 

compressive load analysis until failure is reached. The type of axial loading and the degree of 

constraint imposed on the contacting surfaces causes the results to vary among investigators. It 

has however been proven that compression-flexion and compression-extension injuries occur 

under smaller axial loads than pure compressive injuries. Bilateral facet dislocations can occur 

at loads of 1720 ± 1230 N, with flexion injuries occurring at approximately 2000 N. When 

dealing with pure compression, injuries have been reported under loads of 4810 ± 1290 N of 

loading. The average peak head and neck loads that can be reached before structural injury 

occurs are 5.9 ± 3.0 kN and 1.7 ± 0.57 kN, respectively [10, 14].  

2.3. Tension 

Tension loading is not a commonly studied area of research. Past studies have indicated that 

the cervical spine has a tensile loading tolerance of 1135 N. With respect to automobile 

accidents, the average cranial accelerations are usually between 40 and 50 g [11]. This results 

in an estimated traction load of the Atlas (C1) of 1600 – 2000 N [3]. These types of loads 

produce disc damage, joint capsule tears and skull and vertebral fractures. The mean force 

at failure of intervertebral discs is 581 ± 220 N, but much still needs to be identified with 

respect to the amount of tensile force the vertebral bodies, and the entire cervical spine can 

withstand [19].  

2.4. Torsion 

The estimated lower bounds of axial torsional tolerance are between 13.6 ± 4.5 Nm and 17.2 

± 5.1 Nm [13]. This amount of torque produces upper cervical spinal injuries. It has also 

been estimated that the cervical spine can withstand approximately 114 ± 6.3⁰ of rotation 

before injury occurs [6, 24]. 

2.5. Horizontal shear 

Another area not too commonly researched is the amount of horizontal shear needed to 

produce cervical spinal injury. Most of this research is conducted to learn more about the 
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mechanisms that cause occipito-atlantoaxial injuries. Transverse ligament rupture has been 

seen to occur at a load of 824 N, with anterior shear of the atlas [5]. Odontoid fractures 

reportedly occur at 1510 ± 420 N of shear force [4]. Additional, higher tolerances have been 

reported up to 5500 ± 2500 N when the shear force is applied at the chest [2].  

3. Methods – Assessing the probability of injury 

In this section graphical presentation of risk of injury presented. Envelops pertaining to risk 

free and high risk injury needs to be established. Based on the data compiled here, and by 

others [14] the succeeding curves have been developed to establish the amount of existing 

risk associated with various types of cervical spinal loading. The first set of curves in Figure 

5 illustrate the tolerance of tensile loads of 5 different human body types, (mannequins were 

used to test and extract data for each of these body types), based on the amount of time the 

load is applied. The Hybrid III Family of Mannequins is a well established group used for 

testing the effects of various types of loading on different sized bodies. Within this family 

are five mannequins: (i) A 3 Year Old, (ii) a 6 Year Old, (iii) a Small Adult, (iv) a Midsize 

Adult and (v) a Large Adult. Table 3 displays the characteristics of each particular 

mannequin. 

 

Figure 5. Tension Loading of Five Different Body Types Retrieved from Dummy Data [13] 

No height is given for the 3 and 6 year old mannequins because their development was 

based largely in part on estimates and approximations. This remains a difficult parameter to 

analyze because so little data exists on the effects of accidents on children. Figure 5 displays 

the Axial Tension (Newtons) Tolerance of the mannequins with respect to time 

(milliseconds). 
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Anything above each individual curve in Figure 5 indicates the potential for significant neck 

injury due to tension loading, while anything below indicates that significant neck injury 

due to loading is highly unlikely. Compression and shear data was analyzed and compiled 

in a similar fashion, to develop the curves in Figures 6 and 7, respectively. Anything above 

each individual curve indicates the potential for significant neck injury due to compression 

loading, while anything below means that significant neck injury due to loading is highly 

unlikely. 

 

Figure 6. Compression Loading on the Neck [13] 

 

Figure 7. Shear Neck Loading Data [13] 
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Each of the curves for compression, tension and shear loading were analyzed. From these 

curves, specific data points were extrapolated and both standard deviations and standard 

error for each point were calculated. The extrapolated data for compression, tension and 

shear loading are illustrated in Figures 8, 9, and 10 respectively.  

 

Figure 8. Extrapolated Compression Loading Data 

 

Figure 9. Extrapolated Tension Loading Data 

From the standard deviations, ranges of loading were developed for each of the following 

three scenarios: (i) no injury or minor injury will occur, (ii) A moderate injury is likely to 

occur and (iii) an unsurvivable injury is likely to occur. For the purposes of comparison, 

no/minor injury in this analysis refers to an injury that rates from 0 to 1 on the AIS scale. 
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Similarly, a moderate injury refers to AIS 2-5 and an unsurvivable injury, to AIS 6. These 

three scenarios were plotted for compression, tension and shear loading for the five different 

body types previously mentioned. 

 

Figure 10. Extrapolated Data for Shear Loading 

4. Probability of risk 
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were set up to study the probability of the five different dummy types being exposed to 

various compressive, tensile and shear forces. Because of their reliance on repeated 

computation of random or pseudo-random numbers, these methods tend to be used when it 

is unfeasible or impossible to compute an exact result with a deterministic algorithm [22]. 

Applied forces were randomly generated for 1000 simulations. The simulation means and 

standard deviations were studied. Ranges of force values known to produce responses in 

the 3 “Injury Zones” were tested against the simulation means to determine the probability 

of exposure to the varying degrees of compressive, tensile and shear forces.  

The risk of injury of being exposed to a force that would place the dummy in each of the 

three previously discussed injury zones (No Injury Likely, Moderate Injury Likely and 

Unsurvivable Injury Likely) were developed thereafter. 

5. Results 

Axial loading, whether tension or compression, can pose a significant risk of injury as seen 

by the ISO-13232 (Figure 11) testing and analysis procedures [23]. Figure 12 shows the axial 

neck force time responses as measured in a laboratory head impact test and computer 

simulation. In figure 12, it can be seen that after only 5 milliseconds, the largest compressive 

force is exerted on the neck of the rider. After only 15 milliseconds, the rider is then exposed 

to the highest tensile forces; a direct result of the neck rebounding from compression. And 
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finally, after approximately 30-35 milliseconds, the reactive forces level off. This plot 

illustrates that the majority of force exposure in impact scenarios occurs within the first 30 

milliseconds. It is thus important to focus on the risk of injury during that time frame.  

 

Figure 11. ISO-13232 Axial neck Force Time Responses Measured in a Laboratory Head Impact Test 

and Computer Simulation [23] 

 

Figure 12. Mid Size Adult Risk of Injury Criteria 
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Trends are apparent when the five mannequins are all compared under the same type of 

loading. Under compression, they all exhibit a linear tolerance to loading. For the mid size 

adult, an instantaneous force between 3700 and 4300 N indicates a significant injury is likely. 

Anything above 4300 N, illustrates a higher risk of an unsurvivable injury. The linear 

descending trend remains apparent throughout the first 32 milliseconds of force duration. 

At 32 milliseconds, it only takes a force between 1000 N and 1600 N to expose the adult to a 

risk of significant injury. At 1600 N, applied for 32 ms means that an adult is at very high 

risk of an unsurvivable injury. As the applied compressive load increases with respect to 

time, the probability of injury linearly increases.  

When exposed to tension, a descending, “bi-linear” relationship is seen. Instantaneous 

forces below 3900 N pose no significant risk of injury. Anything between 3900 N and 4500 N 

indicates a considerable risk of injury. Finally anything above 4500 N illustrates a dangerous 

risk of unsurvivable injury. A slightly decreasing linear trend occurs between 0 and 35 ms. 

At this point in load duration, the linearity changes, the decreasing slope becomes 

aggressive and the risk of injury becomes more severe. At 35 ms, it takes between 3500 N 

and 4100 N to see a significant risk of injury, but as time increases to 60 milliseconds, only a 

force of 1100 N is needed to generate a significant risk of moderate injury. In the first half of 

the plot, a very gradual decrease in load tolerance with respect to time is evident, but after a 

load duration of 35 milliseconds, the slope of linearity significantly decreases, indicating 

that a much higher probability of injury exists.  

The shear loading relationship increases in complexity, as it is “tri-linear” in nature. The first 

third of the plot demonstrates a strong descending linear relationship. An instantaneous 

force of 2900 N poses a good chance for a moderate to severe injury. Any force above 3300 N 

instantaneously applied shows a very high risk for an unsurvivable injury. Initially, as with 

all the mannequin types, a gradual decrease in shear loading tolerance is evident. After 

approximately 25 milliseconds, the tolerance to shear force plateaus. From 25 to 35 

milliseconds of load duration, a force of only 1300 N is needed to substantiate the chance for 

a moderate injury. Anything above 1800 N indicates that the risk of an unsurvivable injury 

occurring is quite high. Any load duration beyond 35 ms, sees another decreasing linear 

trend. It is at the point of 45 ms, that a force of only 900 N is needed to pose significant 

threat of injury on the neck. This curve behavior illustrates the neck’s ability to resist 

twisting just prior to complete fracture. 

Because the probability of injury trends for the five mannequins were similar, only the 

loading curves for the mid size adult are shown (Figures 12).  

Injury due to shear loading seems to happen at much smaller loads for all body types 

than injuries caused by the other types of loading. For example, the 3 year old 

experiences instantaneous injury from a tension or a compression load of approximately 

1400 N; however the shear load needed to induce injury is only approximately 1000 N. 

As age and physique increase, a body’s tolerance to loading also increases. For example, 

the 6 year old mannequin does not experience instantaneous injury due to compressive 
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loading until a load of 1700 N is applied. This is higher than the load that a 3 year can 

forebear, but much less than the 4400 N needed to cause compressive injury to a large 

adult.  

The risk of injury has been presented graphically with respect to the types and 

magnitudes of forces that are more likely to cause injury, based on age and load 

duration. The succeeding tables depict the average probability of injury, based on body 

and loading types. For each Monte Carlo Simulation performed, probability of injury 

was calculated for a variety of time steps, starting with 0 milliseconds and concluding 

with a time value known to cause serious injury (i.e. for compressive loads, a concluding 

time of 32 milliseconds was used for all five mannequin types). The probabilities listed in 

Tables 3-6 were calculated by averaging the results of the Monte Carlo Simulations for 

each time step. These values were averaged for the purpose of data consolidation. As can 

be seen in Tables 4-6, the bigger the mannequin, or human body type, the higher the 

probability that no injury will occur, and the less likely that an unsurvivable injury will 

take place. 

 

Table 3. The Hybrid III Family of Mannequins Data 

 

Table 4. Probability of Injury Caused by Compression 

Mannequin Height

(ft, in) (lbs) (kg)

3 Yr Old -- 33 15

6 Yr Old -- 47 21

Small Adult 5'0'' 110 50

Midsize Adult 5'10'' 170 77

Large Adult 6'2'' 223 100

Weight

Hybrid III Family

Dummy No Injury Injury Likely Unsurvivable

3 Yr Old 27/100 9/100 64/100

6 Yr Old 32/100 11/100 57/100

Small 29/100 12/100 59/100

Midsize 45/100 17/100 38/100

Large 49/100 18/100 32/100

Probability of Compressive Injury
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Table 5. Probability of Injury Caused by Tension 

 

Table 6. Probability of Injury Caused by Shear Force 

6. Discussion 

In each of the five cases, for the five different body types, data was compiled from 

previously published loading curves to determine what type of loading has the chance to 

cause a significant cervical spinal injury. Shear loading produces a much higher risk of 

injury on the neck at much lower loads when compared to compressive and tensile loading. 

If, for example, a compressive load were instantaneously applied to a mid size adult, but 

wasn’t maintained, it takes approximately 3600 N to even enter the region that indicates 

there is a potential for significant injury. If that force were, however, a shear force, it only 

takes approximately 2900 N to enter that region (Figure 12). In each of the five body types, 

the safe and seriously injured regions are well defined. The middle regions, however are 

those most uninvestigated. They illustrate that injury is fairly likely to occur, but do not 

illustrate the severity of the injury depending on where one lies within that region. The 

probability definitions (Tables 4-6) supplement these risk injury curves by providing some 

scenarios in which various compressive, tensile and shear forces can cause significant injury.  

It was important to recognize that not all body types are commonly subjected to forces of 

dangerous magnitude. For example, a 3 year old would most likely be secluded from 

Dummy No Injury Injury Likely Unsurvivable

3 Yr Old 39/100 7/100 54/100

6 Yr Old 41/100 11/100 49/100

Small 61/100 12/100 27/100

Midsize 67/100 11/100 23/100

Large 79/100 7/100 14/100

Probability of Tensile Injury

Dummy No Injury Injury Likely Unsurvivable

3 Yr Old 24/100 9/100 67/100

6 Yr Old 30/100 10/100 60/100

Small 35/100 11/100 55/100

Midsize 45/100 15/100 40/100

Large 48/100 14/100 38/100

Probability of Shear Injury
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situations that could cause him or her to endure such forces, unless the situation was 

unexpected such as an automobile accident. A large adult, however might perform 

everyday lifting and pushing tasks that make him or her more likely to encounter high 

compressive, tensile or shear forces. To take this form of exposure into consideration, Pert 

distributions (instead of normal distributions) were utilized in the Monte Carlo simulations. 

Pert distributions help identify associated risk and the likelihood of particular situations 

occurring, such as various types of people enduring any of a combination of applied loads. 

This made the results of the simulations more accurate and appropriate for this particular 

study. 

Verifying these Monte Carlo simulations with experimental data was the next step with 

respect to this research. Cadaveric data was obtained from the literature to validate the 

accuracy of the Monte Carlo models [9]. As can be seen in Figure 12, the higher the 

applied force, the greater the probability of injury. Probability of injury was therefore 

plotted with respect to applied force for all five mannequin types under all three types of 

loading. A relationship was developed that indicated how probability of injury changed 

with respect to applied force. To relate the mechanisms of injury to a more common 

means of risk evaluation, equations were developed relating the applied force to the 

Abbreviated Injury Scale (AIS). The probability of achieving an injury with an AIS score 

between 2 and 5 can now be determined simply by knowing the applied force and using 

the following equations:  

( ≥ 2) = 11 + ( . . ( ) × 100% 

( ≥ 3) = 11 + ( . . ( ) × 100% 

( ≥ 4) = 11 + ( . . ( ) × 100% 

( ≥ 5) = 11 + ( . . ( ) × 100% 

In the above equations, Nij refers to the normalized force. For the purposes of risk analysis, 

the normalized force is identified as the applied force, divided by the critical force, or forced 

deemed as having the minimum magnitude needed to induce injury. 

Both cadaveric and mannequin data of applied force and the resulting probability of various 

AIS scores was plotted for each type of force. The results of these plots can be seen in 

Figures 13-15 for compression, tension and shear loading, respectively. In Figure 13, it can 

be seen that it takes approximately 4000 N of compressive force to generate a 30% risk of an 

AIS≥2 injury.  

Comparatively, from Figure 15, it only takes approximately 3000 N of shear to generate that 

same 30% risk of an AIS≥2 injury. This again confirms that shear force poses a much higher 

probability of significant injury over the other types of forces at much lower magnitudes. 
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This collection of plots sets a solid foundation for understanding what types of loading 

over what periods of time can injure someone, as well as the probability of someone 

experiencing different magnitudes of force over different time intervals. It is evident in 

the comparison of mannequin to cadaver data that mannequin testing does supply an 

accurate representation of a body’s response to the various types of loading. Additionally 

it provides a more realistic means for studying a person’s tolerance to force. The graphic 

schemes defined in this research have helped to identify the most common mechanisms of 

cervical spine injury.  

 

Figure 13. Figure 13: Cadaver and Mannequin Compression Loading Data 

 

Figure 14. Figure 14: Cadaver and Mannequin Data for Tension Loading 
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Figure 15. Cadaver and Mannequin Data for Shear Loading 

7. Conclusions 

This research presents a summary of various conditions under which the cervical injury takes 

place. The automobile accidents proved the most frequent cause of cervical injury in both 

Canada and the United States. Data from these countries was analyzed and envelopes where 

injury takes place graphically presented. Five different body types were used to help illustrate 

what types of loading are most likely to cause injury when they are applied over varying 

amounts of time. In all cases, shear loading causes the most risk for injury at smaller loads 

when compared to tensile and compressive loads. Although injury curves establish a good 

starting point for identifying risks, more research is needed to fully understand to what degree 

someone can be injured when exposed to these types of loads. Monte Carlo Method was used 

to simulate the probability of someone being exposed to different magnitudes of forces and 

different types of loading and their representative AIS scores in terms of new mathematical 

equations. These models were then developed to relate applied force to probability of injury at 

differing levels on the AIS. For all body types, the shear force mechanism posed the highest 

probability of injury, needing far less force to generate the potential for serious damage. It was 

also determined that the comparison of mannequin and cadaveric data, that mannequin testing 

provides an accurate means for assessing a person’s probability of injury for all body types. 
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