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1. Introduction 

This chapter presents advanced analysis methods for space steel frames which consider both 

geometric and material nonlinearities. The geometric nonlinearities come from second-order 

P    and P   effects (see Fig. 1.) as well as geometric imperfections, while the material 

nonlinearities are due to gradual yielding associated with residual stresses and flexure. The 

P    effect results from the axial force acting through the relative displacement of the ends of 

the member, so it is referred to as a member chord rotation effect. The P    effect is 

accounted in the second-order analysis by updating the configuration of the structure during 

the analysis process. The P   effect is caused by the axial force acting through the lateral 

displacement of the member relative to its chord, so it is referred to as a member curvature 

effect. The P   effect can be captured by using stability functions. Since the stability 

functions are derived from the closed-form solution of a beam-column subjected to end forces, 

they can accurately capture the P   effect by using only one element per member. Another 

way to capture the P   effect without using stability functions is to divide the member into 

many elements, and consequently, the P   effect is transformed to the P    effect.  

Geometric imperfections result from unavoidable errors during the fabrication or erection. 

There are three methods to model the geometric imperfections: (1) the explicit imperfection 

modeling, (2) the equivalent notional load, and (3) the further reduced tangent modulus. The 

explicit imperfection modeling for braced and unbraced members is illustrated in Fig. 2(a). For 

braced members, out-of-straightness is used instead of out-of-plumbness. This is due to the 

fact that the P    effect due to the out-of-plumbness is vanished by braces. The limitation of 

this method is that it requires the determination of the direction of geometric imperfections 

which is often difficult in a large structural system. In the equivalent notional load method, the 

geometric imperfections are replaced by equivalent notional lateral loads in proportion to the 

gravity loads acting on the story as described in Fig. 2(b). The drawback of this method is that 

the gravity loads must be known in advance to determine the notional loads before analysis. 

Another way to account for the geometric imperfections is to further reduce the tangent 

modulus. The advantage of this method over the explicit imperfection modeling and 
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equivalent notional load methods is its convenience and simplicity because it eliminates the 

inconvenience of explicit imperfection modeling and equivalent notional load methods. 

 

Figure 1. The P   and P    effects of a beam-column 

 

Figure 2. Geometric imperfection methods 

(a) Explicit imperfection modeling
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Residual stresses are created in the hot-rolled sections due to uneven cooling of the cross-

section. Typical residual stress pattern for a hot-rolled wide flange section is illustrated in 

Fig. 3. When a member is subjected to a compressive force, the fibers which have the highest 

values of compressive residual stress will yield first, and the fibers with the tensile stress 

will yield last. It means that the yielding over the cross-section is a gradual process. Hence, 

the stress-strain curve for a stub column is smooth instead of linear elastic-perfectly 

plastic in the case of coupon as shown in Fig. 4(a). The gradual yielding over the cross-

section is caused not only by residual stress but also by flexure as shown in Fig. 4(b). 

Although the stress-strain relationship of steel is assumed to be linear elastic-perfectly 

plastic, the moment-curvature relationship has a smooth transition from elastic to fully 

plastic. This is because the section starts to yield gradually from extreme fibers which 

have the highest stresses. Material nonlinearities can be taken into account using various 

methods based on the degree of refinement used to represent yielding. The elastic plastic 

hinge method allows a drastic simplification, while the plastic zone method uses the 

greatest refinement.  

 

Figure 3. Typical residual stress pattern for a hot-rolled wide flange section 

In the current design approach, the strength and stability of a structural system and its 

members are treated separately, and hence, the information about the failure modes of a 

structural system is not provided. This disadvantage is overcome by using a second-order 

inelastic analysis called “advanced analysis”. Advanced analysis indicates any methods that 

efficiently and accurately capture the behavior and the strength of a structural system and 

its component members. This chapter will present two advanced analysis methods: (1) the 

refined plastic hinge method and (2) the fiber method. In these methods, the geometric 

nonlinearities are captured using the stability functions, while the material nonlinearities 

are considered using the refined plastic hinge model and fiber model. The benefit of 

employing the stability functions is that it can accurately capture geometrical nonlinear 

effects by using only one element per member, and hence, this leads to a high 

computational efficiency as demonstrated by the works of Thai and Kim (2008; 2009; 

2011b; 2011c; 2011d; 2012). 
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Figure 4. Gradual yielding of steel member 

2. Advanced analysis 

2.1. Stability functions accounting for second-order effects 

Considering a beam-column element subjected to end moments and axial force as shown in 

Fig. 5. Using the free-body diagram of a segment of a beam-column element of length x, the 

external moment acting on the cut section is  

 A B
ext A

M M
M M Py x EIy

L


      (1) 

where  E , I , and L  are the elastic modulus, moment of inertia, and length of an element, 

respectively.  

 

Figure 5. Beam-column with double-curvature bending 

(a) Due to residual stress (b) Due to flexure
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Using 2 /k P EI , Eq. (1) is rewritten as 

 2 A B AM M M
y k P x

EIL EI


     (2) 

The general solution of Eq. (2) is 

 1 2 2 2
sin cos A B AM M M

y C kx C kx x
EILk EIk


     (3) 

The constants 1C  and 2C  are determined using the boundary conditions    0 0y y L   

 1 2

cos

sin

A BM kL M
C

EIk kL


   and 2 2

AM
C

EIk
  (4) 

Substituting Eq. (4) into Eq. (3), the deflection y  can be written as 

 
2 2

1 cos 1 1
sin cos 1 sin

sin sinA B

kL x x
y kx kx M kx M

kL L kL LEIk EIk

   
         

   
 (5) 

and rotation y  is given as 

 
1 cos 1 1 1 1

cos sin cos
sin sinA B

kL
y kx kx M kx M

EIk kL kL EIk kL kL

            
   

 (6) 

The end rotation A  and B  can be obtained as 

 

 

 

1 cos 1 1 1 1
0 (a)

sin sin

1 1 1 1 cos 1
(b)

sin sin

A A B

B A B

kL
y M M

EIk kL kL EIk kL kL

kL
y L M M

EIk kL kL EIk kL kL





           
   
           
   

 (7) 

Eq. (7) can be written in matrix from as 

 1 2

2 1

A A

B B

M S SEI

M S SL




            
        

 (8) 

where 1S  and 2S  are the stability functions defined as 

 

 

 
1

2

sin cos
(a)

2 2cos sin

sin
(b)

2 2cos sin

kL kL kL kL
S

kL kL kL

kL kL kL
S

kL kL kL




 



 

 (9) 

1S  and 2S  account for the coupling effect between axial force and bending moments of the 

beam-column member. For members subjected to an axial force that is tensile rather than 

compressive, the stability functions are redefined as 
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 

 
1

2

cosh sinh
(a)

2 2cosh sinh

sinh
(b)

2 2cosh sinh

kL kL kL kL
S

kL kL kL

kL kL kL
S

kL kL kL




 



 

 (10) 

Eqs. (9) and (10) are indeterminate when the axial force is zero (i.e. 0kL  ). To overcome 

this problem, the following simplified equations are used to approximate the stability 

functions when the axial force in the member falls within the range of -2.0 ≤   ≤ 2.0 

 

 

2 22

1

2 22

2

(0.01 0.543) (0.004 0.285)2
4 (a)

15 4 8.183

(0.01 0.543) (0.004 0.285)
2 (b)

30 4 8.183

S

S

    
 

    
 

 
   

 

 
   

 

 (11) 

where  22 2/ ( ) /eP P P EI L kL     . For most practical applications, it gives 

excellent correlation to the "exact" expressions given by Eqs. (9) and (10). However, for   

other than the range of -2.0 ≤   ≤ 2.0, the conventional stability functions in Eqs. (9) and 

(10) should be used. The incremental member force and deformation relationship of a 

three-dimensional beam-column element under axial force and end moments can be 

written as 

 

 

1 2

2 1

1 2

2 1

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

y y

y y

yA yA
y y

y y
yB yB

z zzA zA
z z

zB zB

z z
z z
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L

EI EI
S SP

L L
M EI EI

S S
M L L

EI EIM
S S

L LM

EI EIT
S S

L L

GJ

L













 

 

 


 

 

 

 
 
 
 
    
   
   
                        
 
 
 
 










 (12) 

where P , yAM , yBM , zAM , zBM , and T  are the incremental axial force, end 

moments with respect to y  and z  axes, and torsion, respectively;  , yA , yB , zA , 

zB , and   are the incremental axial displacement, the end rotations, and the angle of 

twist, respectively; 1nS  and 2nS  are stability functions with respect to n  axis  ,n y z  

given in Eqs. (9) and (10); and EA , nEI , and GJ  denote the axial, bending, and torsional 

stiffness, respectively. 
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2.2. Refined plastic hinge model accounting for inelastic effects 

The refined plastic hinge model is an improvement of the elastic plastic hinge one. Two 

modifications are made to account for a smooth degradation of plastic hinge stiffness: (1) the 

tangent modulus concept is used to capture the residual stress effect along the length of the 

member, and (2) the parabolic function is adopted to represent the gradual yielding effect in 

forming plastic hinges. The inelastic behavior of the member is modeled in terms of member 

force instead of the detailed level of stresses and strains as used in the plastic zone method. 

As a result, the refined plastic hinge method retains the simplicity of the elastic plastic hinge 

method, but it is sufficiently accurate for predicting the strength and stability of a structural 

system and its component members. 

2.2.1. Gradual yielding due to residual stresses 

The Column Research Council (CRC) tangent modulus concept is employed to account for 

the gradual yielding along the member length due to residual stresses. The elastic modulus 

E  (instead of moment of inertia I ) is reduced to account for the reduction of the elastic 

portion of the cross-section since the reduction of the elastic modulus is easier to implement 

than a new moment of inertia for every different section. The rate of reduction in stiffness is 

different in the weak and strong direction, but this is not considered since the dramatic 

degradation of weak-axis stiffness is compensated for by the substantial weak-axis plastic 

strength. This simplification makes the present method more practical. The CRC tangent 

modulus tE  can be written as 

 

1.0 for 0.5 (a)

4 1 for 0.5 (b)

0 for (c)

t y

t y y
y y

t y

E E P P

P P
E E P P P

P P

E P P

 

 
    
 
 

 

 (13) 

Equation (13) is plotted in Fig. 6. The tangent modulus tE  is reduced from the elastic value 

when 0.5 yP P . 

2.2.2. Gradual yielding due to flexure 

The tangent modulus concept is suitable for the member subjected to axial force, but not 

adequate for cases of both axial force and bending moment. A gradual stiffness degradation 

model for a plastic hinge is required to represent the partial plastification effects associated 

with flexure. The parabolic function is used to represent the smooth transition from elastic 

stiffness at the onset of yielding to the stiffness associated with a full plastic hinge. The 

parabolic function   representing the gradual stiffness degradation is obtained based on a 

calibration with plastic zone solutions of simple portal frames and beam-columns. It should 

be noted that only a simple relationship for   is required to describe the degradation in 
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stiffness associated with flexure. Although more complicated expressions for   can be 

proposed, simple expression for   is needed for keeping the analysis model simple and 

straightforward.  

 

Figure 6. Stiffness reduction due to residual stress 

 

Figure 7. Stiffness degradation function 

The value of parabolic function   is equal to 1.0 when the element is elastic, and zero when 

a plastic hinge is formed. The parabolic function   can be expressed as (see Fig. 7.) 

  
1.0 for 0.5 (a)

(b)4 1 for 0.5 1.0

(c)0 for 1

 
   

 

 

   

 

  (14) 

where   is the force-state parameter which can be expressed by AISC-LRFD or modified 

Orbison yield surfaces as (seeFig. 8.). 

For AISC-LRFD yield surface (AISC, 2005) 
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8 8 2 2
for (a)

9 9 9 9
2 2

for (b)
2 9 9

y z y z

y z y z

p m m p m m

p
m m p m m





    

    
  (15) 

For modified Orbison yield surface (McGuire et al., 2000) 

 2 2 4 2 2 6 2 4 23.5 3.0 4.5z y z y z yp m m p m p m m m        (16) 

where / yp P P , /z z pzm M M  (strong-axis), /y y pym M M  (weak-axis); Py, Myp, Mzp are 

axial load, and plastic moment capacity of the cross-section about y  and z  axes. 

 

 

 
 

 
Figure 8. Plastification surface 

When the force point moves inside or along the initial yield surface  0.5  , the element 

remains fully elastic (i.e. no stiffness reduction, 1.0  ). If the force point moves beyond the 

initial yield surface and inside the full yield surface  0.5 1.0  , the element stiffness is 

reduced to account for the effect of plastification at the element end. The reduction of 

element stiffness is assumed to vary according to the parabolic function in the Eq. (15b). 

When member forces violate the plastic strength surface  1.0  , the member forces will 

be scaled down to move the force point return the yield surface based on incremental-

iterative scheme. 

When the parabolic function for a gradual yielding is active at both ends of an element, the 

incremental member force and deformation relationship in Eq. (12) is modified as 
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 
 

 (17) 

where 
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 

 

 

  



  

  



  

 (18) 

where A  and B  are the values of parabolic functions at the ends A and B, respectively.  

2.3. Fiber model accounting for inelastic effects 

The concept of fiber model is presented in Fig. 9. In this model, the element is divided into a 

number of monitored sections represented by the integration points. Each section is further 

divided into m  fibers and each fiber is represented by its area iA  and coordinate location 

corresponding to its centroid  ,i iy z . The inelastic effects are captured by tracing the 

uniaxial stress-strain relationship of each fiber on the cross sections located at the selected 

integration points along the member length. 

The incremental force and deformation relationship, Eq. (12), which accounts for the P   

effect can be rewritten in symbolic form as 

 

    eF K d      (19) 

where 
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  
T

yA yB zA zBF P M M M M T         
 (20) 

  
T

yA yB zA zBd               
 (21) 

 
 

 
 

Figure 9. Fiber hinge model 
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 (22) 
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in which the axial stiffness EA , bending stiffness nEI , and torsional stiffness GJ  of the fiber 

element can be obtained as  

 

 

1 1

2

1 1

2

1 1

2 2

1 1

(a)

(b)

(c)

(d)

h m

j i i
j i j
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y j i i i
j i j

h m

z j i i i
j i j

h m

j i i i i
j i j

EA w E A

EI w E A z

EI w E A y

GJ w y z G A

 

 

 

 

 
   

 

 
   

 

 
   

 

 
  

  

 

 

 

 

 (23) 

in which h  is the total number of monitored sections along an element; m  is the total 

number of fiber divided on the monitored cross-section; jw  is the weighting factor of the 
thj  section; iE  and iG  are the tangent and shear modulus of thi  fiber, respectively; iy  and 

iz  are the coordinates of thi  fiber in the cross-section. The element stiffness matrix is 

evaluated numerically by the Gauss-Lobatto integration scheme since this method allows 

for two integration points to coincide with the end sections of the elements. Since inelastic 

behavior in beam elements often concentrates at the end of member, the monitoring of the 

end sections of the element is advantageous from the standpoint of accuracy and numerical 

stability. By contrast, the outermost integration points of the classical Gauss integration 

method only approach the end sections with increasing order of integration, but never 

coincide with the end sections and, hence, result in overestimation of the member strength 

(Spacone et al., 1996). 

Section deformations are represented by three strain resultants: the axial strain   along the 

longitudinal axis and two curvatures z  and y  with respect to z  and y  axes, 

respectively. The corresponding force resultants are the axial force N  and two bending 

moments zM  and yM . The section forces and deformations are grouped in the following 

vectors: 

 Section force vector  
T

z yQ M M N     (24) 

 Section deformation vector  
T

z yq        (25) 

The incremental section force vector at each integration points is determined based on the 

incremental element force vector  F  as 

      Q B x F      (26) 
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where  B x    is the force interpolation function matrix given as 

 

 
 

0 0 0 / 1 / 0

( ) 0 / 1 / 0 0 0

1 0 0 0 0 0

x L x L

B x x L x L

 
 

     
 
 

 (27) 

The section deformation vector is determined based on the section force vector as 

    1

secq k Q


      (28) 

where seck    is the section stiffness matrix given as 

 

 

 

 

2

1 1 1

2
sec

1 1 1

1 1 1

m m m

i i i i i i i i i i
i i i

m m m

i i i i i i i i i i
i i i

m m m

i i i i i i i i
i i i

E A y E A y z E A y

k E A y z E A z E A z

E A y E A z E A

  

  

  

 
 

 
 
      
 
   

  

  

  

 (29) 

Following the hypothesis that plane sections remain plane and normal to the longitudinal 

axis, the incremental uniaxial fiber strain vector is computed based on the incremental 

section deformation vector as 

    e q       (30) 

where     is the linear geometric matrix given as follows 

 

1 1

2 2

1

1

... ... ...

1m m

y z

y z

y z

 
       
 
  

 (31) 

Once the incremental fiber strain is evaluated, the incremental fiber stress is computed 

based on the stress-strain relationship of material model. The tangent modulus of each fiber 

is updated from the incremental fiber stress and incremental fiber strain as 

 i
i

i

E
e





 (32) 

Eq. (32) leads to updating of the element stiffness matrix eK    in Eq. (22) and section 

stiffness matrix seck    in Eq. (29) during the iteration process. Based on the new tangent 
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modulus of Eq. (32), the location of the section centroid is also updated during the 

incremental load steps to take into account the distribution of section plasticity. The section 

resisting forces are computed by summation of the axial force and biaxial bending moment 

contributions of all fibers as 

  

 
1

1

1

m

i i i
i

z m

R y i i i
i

m

i i
i

A y

M

Q M A z

N

A













 
 

  
        

   
   

 
  







 (33) 

2.4. Shear deformation effect 

To account for transverse shear deformation effect in a beam-column element, the member 

force and deformation relationship of beam-column element in Eq. (12) should be modified. 

The flexibility matrix can be obtained by inversing the flexural stiffness matrix as 

 

 

2 2

2 2

jj ij

ii jj ij ii jj ijMA A

MB Bij ii

ii jj ij ii jj ij

k k

k k k k k k M

Mk k

k k k k k k




 
 

                      
    

 (34) 

where MA  and MB  are the slope of the neutral axis due to bending moment. The 

flexibility matrix corresponding to shear deformation can be written as  

 

 

1 1

1 1
S SSA A

SB B

S S

GA L GA L M

M

GA L GA L




 
                    
  

 (35) 

where SGA  and L  are shear stiffness and length of the element, respectively. The total 

rotations at the two ends A  and B  are obtained by combining Eqs. (34) and (35) as 

 

 MA SAA

MB SBB

 
 

                            
 (36) 

The basic force and deformation relationship including shear deformation is derived by 

inverting the flexibility matrix as  
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2 2

2 2

2 2

2 2

ii jj ij ii s ii jj ij ij s

ii jj ij s ii jj ij sA A

B Bii jj ij ij s ii jj ij jj s

ii jj ij s ii jj ij s

k k k k A GL k k k k A GL

k k k A GL k k k A GLM

M k k k k A GL k k k k A GL

k k k A GL k k k A GL




     
 

                              
 

       

 (37) 

The member force and deformation relationship can be extended for three-dimensional 

beam-column element as  

 

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

iiy ijyyA yA

ijy jjyyB yB
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
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                           

     
         
        

  

 (38) 

in which 
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 (39) 

where syA  and szA  are the shear areas with respect to y  and z  axes, respectively. 

2.5. Element stiffness matrix 

The incremental end forces and displacements used in Eq. (38) are shown in Fig. 10(a). The 

sign convention for the positive directions of element end forces and displacements of a 
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frame member is shown in Fig. 10(b). By comparing the two figures, the equilibrium and 

kinematic relationships can be expressed in symbolic form as 

 
   
   

6 12

6 12

(a)

(b)

T

n

L

f T F

d T d





   
   

 (40) 

where  nf  and  Ld  are the nodal force and nodal displacement vectors of the element 

expressed as 

 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

{ } { } (a)

{ } { } (b)

T
n n n

T
L

f r r r r r r r r r r r r

d d d d d d d d d d d d d




 (41) 

and  F  and  d  are the basic member force and displacement vectors given in Eqs. (20) 

and (21), respectively. 
6 12

T


    is a transformation matrix written as 

 
6 12

1 0 0 0 0 0 1 0 0 0 0 0

0 0 1 / 0 1 0 0 0 1 / 0 0 0

0 0 1 / 0 0 0 0 0 1 / 0 1 0

0 1 / 0 0 0 1 0 1 / 0 0 0 0

0 1 / 0 0 0 0 0 1 / 0 0 0 1

0 0 0 1 0 0 0 0 0 1 0 0

L L

L L
T

L L

L L



 
  
 

       
  

  

 (42) 

 

Figure 10. Force and displacement notations 
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Using the transformation matrix, the nodal force and nodal displacement relationship of 

element may be written as 

    n n Lf K d     (43) 

where nK    is the element stiffness matrix expressed as 

 12 12 6 12 6 6 6 12[ ] [ ] [ ] [ ]T
n eK T K T     (44)  

It should be noted that Eq. (43) is used for the beam-column member in which side-sway is 

restricted. If the beam-column member is permitted to sway, additional axial and shear 

forces will be induced in the member. These additional axial and shear forces due to 

member sway to the member end displacements can be related as 

    s s Lf K d     (45) 

where sK    is the element stiffness matrix due to member sway expressed as 

 

12 12

s s

s T

s s

G G
K

G G


                       (46) 

in which 
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 
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 

 (47) 

By combining Eqs. (43) and (47), the general force-displacement relationship of beam-

column element obtained as 
 

    L Lf K d     (48) 

where 

 

      L n sf f f   (49) 

 n sK K K             (50) 
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2.6. Solution algorithm 

The generalized displacement control method proposed by Yang and Shieh (1990) appears 

to be one of the most robust and effective method because of its general numerical stability 

and efficiency. This method is adopted herein to solve the nonlinear equilibrium equations. 

The incremental form of the equilibrium equation can be rewritten for the j th iteration of 

the i th incremental step as  
 

      1 1
ˆi i i i

j j j jK D P R 
       (51) 

where 1
i
jK 

 
   is the tangent stiffness matrix,  ijD  is the displacement increment vector, 

 P̂  is the reference load vector,  1i
jR   is the unbalanced force vector, and i

j  is the load 

increment parameter. According to Batoz and Dhatt (1979), Eq. (51) can be decomposed into 

the following equations: 

    1
ˆ ˆi i

j jK D P
      (52) 

    1 1
i i i
j j jK D R 

      (53) 

      ˆi i i i
j j j jD D D      (54) 

Once the displacement increment vector  ijD  is determined, the total displacement vector 

 ijD  of the structure at the end of j th iteration can be accumulated as 

      1
i i i
j j jD D D    (55) 

The total applied load vector  ijP  at the j th iteration of the i th incremental step relates to 

the reference load vector  P̂  as 

    ˆi i
j jP P   (56) 

where the load factor i
j  can be related to the load increment parameter i

j  by  

 
1

i i i
j j j     (57) 

The load increment parameter i
j  is an unknown. It is determined from a constraint 

condition. For the first iterative step  1j  , the load increment parameter i
j  is determined 

based on the generalized stiffness parameter  GSP  as 

 1
1 1
i GSP   (58) 

where 1
1  is an initial value of load increment parameter, and the GSP  is defined as 
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ˆ ˆ

T

T
i i

D D
GSP

D D

 


 
 (59) 

For the iterative step  2j  , the load increment parameter i
j  is calculated as 

 
   
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1
1

1
1

ˆ

ˆ ˆ

T
i i

ji
j T

i i
j

D D

D D






 
 

 
 (60) 

where  1
1

ˆ iD   is the displacement increment generated by the reference load at the first 

iteration of the previous incremental step; and  ˆ i
jD and  ijD  denote the displacement 

increments generated by the reference load and unbalanced force vectors, respectively, at 

the j th iteration of the i th incremental step, as defined in Eqs. (52) and (53). 

3. Numerical examples 

In this section, three numerical examples are presented to verify the accuracy and efficiency 

of two proposed analysis methods: (1) the refined plastic hinge method and (2) the fiber 

method. The predictions of strength and load-displacement relationship are compared with 

those generated by commercial finite element packages and other existing solutions. The 

first example is to show how the stability functions capture the P   effect accurately and 

efficiently. The second one is to show how well the refined plastic hinge model and fiber 

hinge model predict the strength and behavior of frames. The last one is to demonstrate the 

capability of two proposed methods in predicting the strength and behavior of a large-scale 

twenty-story space frame. Five integration points along the length of a member and eighty 

fibers on the cross-section are used in the fiber model. 

3.1. Elastic buckling of columns 

The aim of this example is to show the accuracy and efficiency of the stability functions in 

capturing the elastic buckling loads of columns with different boundary conditions. Fig. 11 

shows cantilever and simply supported columns. The section of columns is W8×31. The 

Young’s modulus and Poisson ratio of the material are 200,000E   MPa and 0.3  , 

respectively. The buckling load of the columns is obtained using the load-deflection 

analysis. The geometric imperfection is modeled by equivalent notional lateral loads as 

shown in Fig. 11.  

Fig. 12 shows the load-displacement curves of the columns predicted by the present element 

and the cubic frame element of SAP2000. Since the present element is based on the stability 

functions which are derived from the closed-form solution of a beam-column subjected to 

end forces, it can accurately predict the buckling load of columns with different boundary 

conditions by using only one element per member. Whereas the cubic frame element of 
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SAP2000, which is based on the cubic interpolation functions, overpredicts the buckling loads 

by 18% and 16% for the cantilever column and simply supported column, respectively, when 

the columns are modeled by one element per member. The load-displacement curves shown 

in Fig. 12 indicate that SAP2000 requires more than five cubic elements per member in 

modeling to match the results predicted by the present element. This is due to the fact that 

when the member is divided into many elements, the P   effect is transformed to the P    

effect, and hence, the results of cubic element are close to the obtained results. 

 

Figure 11. Steel columns  

3.2. Two story space frame 

A two-story space subjected to combined action of gravity load and lateral load is depicted 

in Fig. 13 with its geometric dimension. The Young modulus, Poisson ratio, and yield stress 

of material are 19,613E   MPa, 0.3  , and 98y   MPa, respectively. This frame was 

previously analyzed by De Souza (2000) using the force-based method with fiber model. De 

Souza (2000) used one element per member in the modeling. The B23 element of ABAQUS is 

also employed to model this frame. Each framed member is modeled by one present 

element. The aim of this example is to demonstrate capability of the present element in 

capturing the effects of both geometric and material nonlinearities. 

The ultimate loads of the frame obtained by different methods are presented in Table 1. The 

load-displacement responses of the frame are also plotted in Fig. 14. It can be seen that the 

results of the present element are well compared with those of De Souza (2000) using the 

force-based method. It should be noted that only one element per member is used in present 

study and De Souza (2000). The B23 element of ABAQUS overestimates ultimate strength of 

this frame if each framed member is modeled by less than fifty B23 elements. The difference 

between B23 element and present element is negligible when more than fifty B32 elements 

are used, and the ultimate strength and load-displacement curve obtained by ABAQUS and 

present study are then close each other. 
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Figure 12. Load-displacement curves of steel columns 
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Figure 13. Two-story space frame 

 

Figure 14. Load- displacement curves of two-story space frame 
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Method Ultimate load (kN) Difference (%) 

De Souza (2000) 128.05 - 

ABAQUS (5 element/member) 140.26 9.53 

ABAQUS (20 element/member) 132.19 3.23 

ABAQUS (50 element/member) 130.74 2.10 

Present (refined plastic hinge model) 128.50 0.35 

Present (fiber model) 128.82 0.60 

Table 1. Comparison of ultimate load of two-story space frame 

3.3. Twenty-story space frame 

The last example is a large scale twenty-story space steel frame as shown in Fig. 15. The aim 

of this example is to demonstrate the capability of two proposed methods in predicting the 

strength and behavior of large-scale structures. A50 steel with yield stress of 344.8 Mpa, 

Young’s modulus of 200 Gpa, and Poisson’s ratio of 0.3 is used for all sections. The load 

applied to the structure consists of gravity loads of 4.8 kN/m2 and wind loads of 0.96 kN/m2 

acting in the Y-direction. These loads are converted into concentrated loads applied at the 

beam-column joints. The obtained results are also compared with those generated by Jiang 

et al. (2002) using the mixed element method. 

Jiang et al. (2002) used both the plastic hinge and spread-of-plasticity elements to model this 

structure to shorten the computational time because the use of a full spread-of-plasticity 

analysis is very computationally intensive. When a member modeling by one plastic hinge 

element detected yielding to occur between the two ends, it was divided into eight spread-

of-plasticity elements to accurately capture the inelastic behavior. In this study, each framed 

member is modeled by only one proposed element. The load-displacement curves of node A 

at the roof of the frame obtained by the present elements and mixed element of Jiang et al. 

(2002) are shown in Fig. 16. The ultimate load factor of the frame is also given in Table 2. A 

very good agreement between the results is seen. 

 
 

Method Ultimate load factor Difference (%) 

Jiang et al. (2002)  1.000 - 

Present (refined plastic hinge model) 1.021 2.10 

Present (fiber model) 1.0002 0.02 

Table 2. TAnalysis result of twenty-story space frame 
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Figure 15. Twenty-story space frame 
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Figure 16. Load-displacement curves of twenty-story space frame 

4. Conclusion 

This chapter has presented two advanced analysis methods for space steel frames. In these 

methods, the geometric nonlinearities are captured using the stability functions, while the 

material nonlinearities are considered using the refined plastic hinge model and fiber 

model. The benefit of using the stability functions is that they require only one element per 

member, and hence, minimize the modeling and solution time. The advantage of refined 

plastic hinge model is its simplicity and efficiency. However, it is limited to steel material. 

Although the fiber model is a little bit time consuming compared to the refined plastic hinge 

model, it can be used for both steel and concrete or concrete-filled steel tubular structures as 

shown in the works of Thai & Kim (2011a).  
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