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1. Introduction 

Multiple Sclerosis (MS) is a chronic, progressive, immune mediated central nervous system 

(CNS) disorder that affects both adults and children.  MS is characterized by the formation 

of multiple lesions along the nerve fibers in the brain, spinal cord and optic nerves (Bradl 

and Lassmann, 2009; Bruck, 2005; Bruck and Stadelmann, 2005; Chitnis et al., 2009; Hafler, 

2004; Holland, 2009; Mah and Thannhauser, 2010; Pohl et al., 2007).  The precise triggers of 

autoreactive T cell development remain to be fully understood, however, it is clear that 

myelin antigens are the major target (Grau-Lopez et al., 2009).  T cell activation results in 

cytokine release and recruitment of other immune cells that results in tissue damage not 

only to the myelin sheath but, over time and with repeated attacks, to the underlying axons 

as well.  Demyelination and axonal damage impairs or interrupts nerve transmission, giving 

rise to clinical signs and symptoms. 

Clinically, neurological symptoms in patients with MS vary from mild to severe and 

typically include one or more of the following:  sensory symptoms (numbness, tingling, 

other abnormal sensations, visual disturbances, dizziness), motor symptoms (weakness, 

difficulty walking, tremor, bowel/bladder problems, poor coordination, and stiffness), and 

other symptoms such as heat sensitivity, fatigue, emotional changes, cognitive changes and 

sexual symptoms (Bronner et al., 2010).  While some persons have a limited number of 

“attacks” or “relapses” and remain fairly healthy for decades, others may deteriorate rapidly 

from the time of diagnosis, with poor quality of life and shortened lifespan.  There is no way 

of knowing at the clinical onset what course the disease will take (Andersen, 2010; Bradl and 

Lassmann, 2009; Bruck, 2005). 

In this chapter how the autoimmune process is triggered as well as current clinical options 

to try and reduce disease symptoms are addressed.  While the induction of long-term 

durable antigen-specific T cell tolerance is the desired treatment option, such a therapy 
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remains to be clinically developed. Instead, once a diagnosis of MS is made, immune based 

treatment is generally begun, with numerous therapies aimed primarily at inactivating T 

cells and other immune functions. 

2. Multiple Sclerosis triggers and animal models 

The ability for the immune system to differentiate between self and non-self is critical for 

host preservation. Deficits in self-non-self discrimination can result in opportunistic 

infections or immunological over-reactivity resulting in immunopathology and 

autoimmunity. It is therefore, not surprising that multiple genetic factors that influence the 

sensitivity of the immune system are known to trigger autoimmune mediated diseases. 

However it is hypothesized that clinical symptom development may only manifest after 

exposure to certain environmental factors, including viral infection. The interplay of 

genetics and the environment in regards to the development of MS, and other autoimmune 

diseases, has not been completely elucidated. No matter what the potential switch that 

causes MS initiation the activation, proliferation and effector functions of auto-reactive CD4+ 

T cells appears to be critical for disease development and progression (Goverman, 2009; 

Miller and Eagar, 2001; Miller et al., 2001).  

i. Predisposing genetic factors 

The significantly higher concordance rates of MS in monozygotic twins compared to 

dizygotic twins (Hansen et al., 2005; Islam et al., 2006; Willer et al., 2003), the 2-fold increased 

risk of disease development in siblings of affected individuals (Ebers et al., 2004) as well as 

the observed increased susceptibility in offspring from two affected parents, compared to 

those with only one affected parent (Ebers et al., 2000; Robertson et al., 1997) all point to a 

strong genetic component in the pathogenesis of MS. However, like many other complex 

autoimmune diseases, MS is not transferred from parent to offspring via classic Mendelian 

genetics and the disease trait involves a large number of genes (Hoffjan and Akkad, 2010). 

Until recently, most gene variations associated with increased or decreased susceptibility 

were thought to be within the human leukocyte antigen (HLA) loci (Ramagopalan et al., 

2009). However, recent studies have also identified risk-conferring alleles within several 

non-HLA genes (Nischwitz et al., 2011). Importantly, most of these genes are known to play 

important roles in T cell activation and function, which further supports the concept that a 

dysfunctional immune process is involved in the initiation and progression of MS 

(Nischwitz et al., 2011). 

ii. HLA genes 

Allelic variations within the major histocompatibility complex (MHC) exert the greatest 

individual effect on the risk of MS (Ramagopalan et al., 2009). Initial studies published in 

1972 identified the HLA Class I antigens HLA-A*03 and HLA-B*07 as risk-conferring alleles 

(Jersild et al., 1972; Naito et al., 1972). Between 1973 and 1976, several studies reported a 

significant link between the HLA Class II gene HLA-DR2 and MS (Jersild et al., 1973; 

Terasaki et al., 1976; Winchester et al., 1975). This has been further subtyped into a strong 
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and consistent association between the HLA-DRB5*0101, HLA-DRB1*1501, HLA-DQA1*0102 

and HLA-DQB1*0602 extended haplotype and disease (Fogdell et al., 1995). As these genes 

are tightly linked, early genetic studies failed to identify which of these alleles confers the 

greatest risk for MS (Hoppenbrouwers and Hintzen, 2011). However, statistically-powered 

studies conducted in the past decade, including several international genome-wide 

association studies (GWAS), have identified HLA-DRB1*1501 as the major risk conferring 

gene for the development of MS (2007; 2009; Hafler et al., 2007; Lincoln et al., 2005; 

Oksenberg et al., 2004; Sawcer et al., 2011).  

Other HLA-DR2 alleles that confer susceptibility in some populations include HLA-DRB1*17 

and HLA-DRB1*08, however the effects of these alleles are modest compared to HLA-

DRB1*1501 (Dyment et al., 2005; Modin et al., 2004). Some variants are also reported to 

confer protection from the development of MS, including HLA-DRB1*14, HLA-DRB1*01, 

HLA-DRB1*10 and HLA-DRB1*11 (Brynedal et al., 2007; Dyment et al., 2005; Ramagopalan et 

al., 2007). 

iii. Non-HLA genes 

Early gene linkage studies failed to validate associations between non-HLA genes and the 

development of MS, potentially due to the small individual contribution of each gene to 

disease (Nischwitz et al., 2011). However, in recent years, several GWAS have identified 

polymorphisms within a number of non-HLA genes that play an important role in the 

development of MS (Pravica et al., 2012). These include genes that are involved in cytokine 

pathways, such as those encoding the IL-2, IL-7, IL-12 and TNF receptors, which are 

important for T cell development, homeostasis, proliferation and differentiation (2009; 

Baranzini et al., 2009; Sawcer et al., 2011).  

Also, variations within genes coding for co-stimulatory molecules, such as CD40, CD58, 

CD80 and CD86, which promote the activation of T cells, were also implicated in 

susceptibility to MS (2009; Baranzini et al., 2009; Sawcer et al., 2011). Polymorphisms within 

genes encoding for molecules such as STAT3 and TYK2, which are involved in several 

signal transduction pathways including those that mediate T cell activation and Th17 

differentiation, were also linked with the development of MS (2009; Baranzini et al., 2009; 

Sawcer et al., 2011). 

Variations within other genes that can affect T cell functioning, including CD6, CLEC16A, 

and the vitamin D alpha hydroxylase gene CYP27B1 are also implicated in the pathogenesis 

of MS (2009; Baranzini et al., 2009; Sawcer et al., 2011).  Although the individual contribution 

of each gene to the development of MS is modest, the identification of such genes is critical, 

as they will provide novel targets or approaches for therapeutic intervention in MS 

(Nischwitz et al., 2011).  

There is clearly further research to be performed to better understand the role of genetics 

and MS development. However the data clearly show that genes associated with T cell 

activation and other immune functions certainly highlight the importance of targeting 

immune factors when treating disease.  
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3. Environmental factors 

Although it is clear that genetics play a key role in determining susceptibility to MS, 

concordance rates between monozygotic twins (i.e. with identical genomes) varies between 6 

and 30 percent (Dyment et al., 2004). This suggests that other non-inheritable factors play an 

important role in the initiation of the auto-reactive immune response. A number of 

infectious and non-infectious stimuli have been identified as key factors that increase the 

risk of MS development.  

i. Infectious factors 

For many years, underlying infections have been implicated in the induction of the 

autoreactive CD4+ T cell response that leads to MS (Kakalacheva and Lunemann, 2011). 

Roles for several pathogens, including Epstein Barr Virus (EBV), Human Herpes Virus-6 

(HHV-6) and Varicella Zoster Virus (VZV) have been investigated. There is considerable 

evidence that links EBV with the initiation and progression of MS (Ascherio and Munger, 

2007a, b; Dyment et al., 2004). EBV infects over 90% of the world population and causes 

infectious mononucleosis (IM) in a large proportion of individuals, which is characterized 

by glandular fever and the massive expansion of virus-specific T cells (Vetsika and Callan, 

2004). Pooled data from 18 clinical studies revealed a significant link between IM and an 

elevated risk of MS (Kakalacheva et al., 2011).  

Furthermore, in individuals that concurrently tested positive for IM and the HLA allele 

HLA-DRB1*1501, the risk of developing MS was increased by 7-fold (Kakalacheva and 

Lunemann, 2011). Also, an increased proportion of MS patients are seropositive for EBV, 

however, it is important to note that not all patients are seropositive which suggests that 

EBV infection is not critical for the development of disease (Kakalacheva and Lunemann, 

2011; Kakalacheva et al., 2011). Nevertheless, taken together these studies support the 

concept that EBV infection may at least increase the risk of MS development in genetically 

susceptible individuals. The mechanisms by which EBV infection trigger the autoreactive 

immune response are unclear, but some data suggest that CD4+ T cells in MS patients are 

specific for an increased range of EBV nuclear antigens, which frequently recognize myelin 

peptides (Lang et al., 2002; Olson et al., 2001). Further investigations into the role of infection 

in the development of disease are needed to show definitively the role of virus infection in 

the pathogenesis of MS.  

ii. Non-infectious factors 

Smoking and Vitamin D have been identified as the two primary non-infectious 

environmental factors that can contribute to MS susceptibility. Although the elevated risk of 

MS development in individuals who smoke was originally identified in a study in the 1960’s 

(reviewed in (Wingerchuk, 2012)), it has become more prominent in recent years. Smoking is 

argued to increase the chance of MS development by a factor of 1.5 (Wingerchuk, 2012). In 

addition, patients that smoke increase the potential for rapid MS development. In a recent 

Belgium study, patients that smoked were more likely to develop a score of 6 on the 

Extended Disability Status Scale. This represents an increased potential to develop 
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intermittent or unilateral constant assistance (cane, crutch or brace) required to walk 100 

meters without resting (D'Hooghe M et al., 2012). The amount or timing of cigarette 

exposure to enhance MS risk remains to be defined, with linkage between smoking and MS 

remaining a predominately epidemiological observation. Further research is required to 

better define the role and process of smoking exposure in MS development and progression.  

Vitamin D is a potent immunomodulatory molecule that has been shown to affect numbers 

and activity of regulatory T cells. Several epidemiological studies have identified a 

significant link between the incidence of MS and distance from the equator (Kurtzke et al., 

1979; Miller et al., 1990; Vukusic et al., 2007). Although MS occurred more frequently at high 

latitudes, this effect was negated in populations that consumed a vitamin D-rich diet 

(Agranoff and Goldberg, 1974; Swank et al., 1952; Westlund, 1970). These findings are 

supported by a large study in which high serum levels of the vitamin D metabolite 25(OH)D 

were shown to correspond with a significantly decreased risk of MS (Munger et al., 2006). In 

a separate study, low serum levels of 25(OH)D were associated with relapse and the degree 

of disability in MS patients (Smolders et al., 2008a). 

A possible explanation for these findings is the indirect immunomodulatory functions of 

vitamin D on T cells (Bartels et al., 2010; Smolders et al., 2008b). Also, T cells express vitamin 

D receptors (VDR), suggesting a direct vitamin D- T cell interaction resulting in T cell 

regulation (Cantorna, 2011). Indeed, a recent study using the EAE mouse model 

demonstrated that vitamin D could inhibit auto-reactive T cells, which express high levels of 

VDR, but did not affect numbers of regulatory T cells, which express low levels of VDR 

(Mayne et al., 2011). An earlier study also showed that survival of EAE-induced mice could 

be prolonged with vitamin D injection (Hayes, 2000). 

4. Epitope spreading and disease progression 

Multiple sclerosis is initiated by the activation of auto-reactive CD4+ T cells specific for a 

single or few myelin epitopes in the CNS (Vanderlugt and Miller, 2002). Inflammation 

caused by this initial response recruits and activates other CD4+ T cell clones specific for a 

range of other self-epitopes, a process which is referred to as “epitope spreading” (Lehmann 

et al., 1992). This process occurs, within experimental settings, in a hierarchical fashion, 

likely the result of differential antigen liberation, processing and presentation by various 

antigen-presenting cell (APC) populations. In addition the availability of self-reactive CD4+ 

T cell clones throughout the course of disease is also important. Epitope spreading was 

originally described and characterized in the Experimental Autoimmune Encephalomyelitis 

(EAE) model of MS, but also occurs in Theiler’s murine encephalomyelitis virus induced 

demeylinating disease (TMEV-IDD) (Lehmann et al., 1992; Miller et al., 2001; Miller et al., 

1997b; Vanderlugt et al., 2000). Evidence has also accumulated supporting the existence of 

epitope spreading within the human context.  

1. Epitope spreading in EAE 

Experimental autoimmune encephalomyelitis is induced in susceptible murine strains by 

immunization with myelin peptides in conjunction with adjuvant (Miller et al., 2010). This 
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disease initiation method, with a single and defined myelin peptide allows for the 

observation and measurement of changing T cell specificities over time (Vanderlugt and 

Miller, 2002). Using this model epitope spreading has been described as a hierarchical event, 

with a defined path through which T cells specific for certain epitopes emerge. Epitope 

spreading is a critical phenomenon in the SJL model of EAE, as it is responsible for the 

relapsing remitting pattern of disease (Vanderlugt and Miller, 2002).  

The first study to demonstrate epitope spreading was reported in 1992 by Lehmann and 

colleagues (Lehmann et al., 1992), in which susceptible (SJLxB10.PL)F1 mice were immunized 

with guinea-pig MBP. T cell responses in the draining lymph node and spleen were 

measured 9 days after immunization. At this time point, T cells only responded to MBPAc1-11, 

and not MBP35-47, MBP81-100 or MBP121-140. In comparison, T cells isolated from the spleen 40 

days after immunization responded to all of these peptides. These findings demonstrate that 

epitopes that are initially hidden or sequestered during the initial phase of disease can 

become liberated as disease progresses (Lehmann et al., 1992).  

Studies in our laboratory have also characterized epitope spreading in EAE induced by 

immunization of SJL mice with the immunodominant PLP epitope PLP139-151(Vanderlugt et 

al., 2000). In this model, T cell responses are initially specific for PLP139-151. However, the first 

relapse, which occurs within 30-40 days after immunization, coincides with T cell responses 

against PLP178-191. During the second relapse, which occurs between 50-70 days after 

immunization, T cells are also shown to respond to MBP84-104. Understanding of the epitope 

spreading hierarchy has allowed for epitope specific therapeutic targeting in EAE. The 

induction of tolerance against relapse-associated peptides blocks the progression of disease, 

even though PLP139-151 responses remain intact (Vanderlugt et al., 2000). These observations 

highlight the role of changing T cell specificities in mediating chronic disease as well as the 

need for therapeutic strategies that address these specific T cells populations (Vanderlugt 

and Miller, 2002).  

2. Epitope spreading in TMEV-IDD 

Theiler’s murine encephalomyelitis virus- induced demyelinating disease is induced by 

intracranial inoculation of SJL/J mice with TMEV, resulting in low-level chronic CNS 

infection that progresses into myelin-specific autoimmune disease (Getts et al., 2010). The 

initial CD4+ T cell-mediated immune response against chronic TMEV infection of the CNS 

causes significant damage to myelin, which in turn results in the activation of myelin-

specific T cell clones (Karpus et al., 1995; Miller et al., 1997a). Similar to EAE, this occurs in a 

hierarchical order, beginning with the immunodominant PLP139-151 epitope (Miller et al., 

1997b). Subsequent T cell reactivity against other peptides, including PLP178-191, PLP56-70 and 

MOG92-106 has been demonstrated as disease progresses (Miller et al., 2001).  

These findings correspond with antigen presentation by CNS APC. These cells present viral 

peptides but not myelin peptides up to day 40 post-immunization, at which time point there 

are still no clinical signs of disease and no evidence of myelin destruction (Katz-Levy et al., 

1999; Katz-Levy et al., 2000). However, by day 90 post-infection, microglia and macrophages 
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isolated from the CNS present both viral and myelin antigens to T cells in vitro (Katz-Levy et 

al., 1999; Katz-Levy et al., 2000).  

In further support of epitope spreading after TMEV inoculation, tolerance induction to 

multiple myelin epitopes using MP-4 during ongoing TMEV-IDD in SJL mice was shown to 

significantly attenuate disease progression, reduce demyelination and decrease CNS 

leukocyte infiltration (Neville et al., 2002).  

3. Epitope spreading in MS 

Evidence of epitope spreading in human MS patients is growing, with a number of small 

studies at least supporting a potential for epitope spreading in human disease. A study by 

Tuohy and colleagues conducted over several years followed peripheral T cell responses to 

myelin epitopes in three patients with isolated monosymptomatic demyelinating syndrome 

(IMDS) (Tuohy et al., 1997; Tuohy et al., 1999a; Tuohy et al., 1999b). T cell autoreactivity to 

several myelin epitopes was initially shown to be strong, waning with time. However, when 

two of these three patients progressed to clinically-defined MS, peripheral T cells isolated 

from these patients showed expanded reactivity to different myelin peptides than originally 

observed during the patients IMDS stage (Tuohy et al., 1997; Tuohy et al., 1999a; Tuohy et al., 

1999b). A separate study by Goebels and colleagues investigated MBP-specific responses of 

five MS patients over 6-7 years (Goebels et al., 2000). Two of these patients showed a focused 

T cell response that broadened over the course of 6 years, thus providing evidence of 

epitope spreading in human disease. The pattern was non-consistent, however, with two 

patients showing a broad epitope response that fluctuated over time, with the other patient 

exhibiting a very focused response to a cluster of MBP epitopes. Together the data suggest 

that unlike the EAE model, patient T cell epitopes exhibit strong heterogeneity with the 

precise epitope spreading hierarchy likely to be variable between patients. Not 

withstanding, the liberation of antigens and activation of novel T cell clones over time in MS 

patients supports the role of epitope spreading in human MS patients (Goebels et al., 2000). 

5. Current clinical strategies in Multiple Sclerosis to modify the course of 

disease 

The pathologic role of T cells in driving MS has resulted in numerous therapies aimed at 

inactivating T cells and/or the induction of T cell tolerance. Tolerance induction in 

autoimmune disease refers to a reinstatement of sustained, specific non-responsiveness of 

the native immune system to self-antigen. Manipulation of T cell activation and 

differentiation pathways has been at the center of current tolerance induction theory, and 

the basis of tolerance induction utilizing current immunosuppressive agents. Over recent 

years, experimental models have shown that it is possible to exploit the mechanisms that 

normally maintain immune homeostasis and tolerance to self-antigens, as well as to 

reintroduce tolerance to self-antigen in an autoimmune setting (Getts et al., 2011; Kohm et al., 

2005; Podojil et al., 2008; Turley and Miller, 2007).   However, in the clinical setting the 

utilization of co-stimulatory blockade, soluble peptide, altered peptide ligands among 

others have yielded disappointing results. As such while the induction of tolerance remains 
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the optimal future treatment for MS current therapies are focused on agents that are disease 

modifying.  

Over the last three decades a number of broad acting immune modifying therapeutic 

options have been developed and introduced to treat MS patients. None of these therapeutic 

options is a cure, currently available therapies aim instead to prevent or at least reduce the 

frequency of relapsing inflammatory events, with the idea of reducing impact of disease on 

overall quality of life over time (Miller and Rhoades, 2012; Rio et al., 2011). In addition to the 

clear efficacy requirement long-term safety is also paramount for any MS therapy, with 

typical MS patients requiring treatment for many decades. The available MS therapies may 

be divided based on function into “immune modulatory” or “disease modifying” drugs 

(DMFs) as well as classic immune suppressive substances. In addition, a third group has 

recently emerged, which includes monoclonal antibodies (biologics). These drugs act by 

direct interference with specific immune system functions or by broad immune subset 

depletion. DMFs are typically used early in the course of the disease, whereas immune 

suppressive drugs and biologics are mostly viewed as treatment options in those patients 

with abnormally high disease activity, a high risk of sustained disability and/or show poor 

response to the front line therapeutics (Table 1). 

The most widely used disease modifying drugs are Interferon- (IFN) and glatiramer 

acetate (GLAT) (Johnson, 2012). Both drugs were approved after large phase III studies, 

which were conducted in the 1990s. These studies proved the efficacy of these drugs in 

relapsing remitting MS. IFN- and GLAT reduce the relapse rate in relapsing remitting MS 

patients by up to 50% (Boster et al., 2011; Johnson, 2012; Limmroth et al., 2011). Furthermore, 

both agents significantly slowed the progression of disease and have an excellent safety 

profile allowing for long-term utilization. However, there remain a number of 

administration and efficacy issues with these drugs. Administration is required weekly at a 

minimum via subcutaneous or intramuscular injection, resulting in significant discomfort to 

patients. In addition, while IFN- and GLAT have relatively comparable efficacy, there is 

some patient to patient variability.  For example a patient that is not responsive to IFN- 

may be responsive to GLAT and vice versa. Unfortunately no marker exists that may predict 

those populations that should be prescribed IFN- over GLAT or GLAT over IFN-. 

Currently trial and error serve as the best strategy for physicians to use when determining 

the optimal treatment regimen.  

The exact mechanism(s) through which GLAT or IFN- modify disease progression in MS 

patients are not completely defined, with multiple mechanisms likely to be involved. There 

is evidence suggesting IFN- can inhibit T-cell co-stimulation and activation (Chen et al., 

2012). In an experimental setting, IFN- inhibits immune-cell migration by increasing 

soluble Intercellular Adhesion Molecule 1 (ICAM-1) and Vascular Cell Adhesion Molecule-1 

(VCAM-1), as well as by decreasing very late antigen-4 (VL4-4) on the cell surface of T cells. 

It has also been shown that IFN- can stabilize the blood brain barrier by reducing matrix 

metalloproteinase-9, an important tissue degradation enzyme.  

GLAT is a randomized mixture of synthetic polypeptides consisting of the amino acids l-

alanine, l-lysine, l-glutamic acid and l-tyrosine. GLAT was originally designed to induce CNS 
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inflammation in animals by stimulating the myelin auto-antigen MBP, however, subsequent 

studies showed that the product appeared to be a protective immunomodulator. The ability 

for this drug to prevent relapses and disease progression is supported by large clinical 

studies. Mechanistically, GLAT may compete with myelin peptides for access to peptide 

binding cleft in MHC complex (Racke and Lovett-Racke, 2011). In addition to MHC binding, 

GLAT may stimulate a TH2 environment through its ability to modulate APC such as 

dendritic cells and monocytes (Miller et al., 1998). Evidence for the ability of GLAT to induce 

a TH2 biased immune response includes the finding that GLAT promotes the expression of 

anti-inflammatory cytokines such as IL-10 and TGF- in the CNS of MS patients (Neuhaus et 

al., 2001). More recent studies revealed that GLAT elevates the levels of T-regulatory (Tregs) 

cells and reduces the levels of potentially harmful Th-17 cells (Lalive et al., 2011). 

It is difficult to establish the long-term efficacy of drugs in MS because the disease can be 

highly variable and unpredictable. Still, the available long-term observational data point 

toward a significant prevention and delay of disability in most MS patients treated with 

either GLAT or IFN- over a long time. Furthermore, there is sparse evidence that the early 

treatment reduces the long-term mortality of MS patients (Goodin et al., 2012). 

More recently, new disease-modifying drugs have become or are expected to soon be 

available (Buck and Hemmer, 2011; Fox and Rhoades, 2012) (Table 1). These drugs include 

more convenient agents that can be applied orally and may have enhanced efficacy in 

regards to reducing patient disease activity relative to GLAT or IFN-  (Killestein et al., 2011) 

(Hartung and Aktas, 2011). However, the long-term safety profiles of these substances 

remains questionable, with more time needed to adequately address the safety profile of 

these agents.  

If front line disease modifying therapies fail to provide sufficient relief, therapeutic 

escalation to include more effective therapies has to be considered (Repovic and Lublin, 

2011). The most effective currently available therapy for escalation is the monoclonal 

antibody Natalizumab (Tysabri®). Natalizumab acts via the blockade of the VLA-4 receptor, 

which plays a significant role in leukocyte migration into the brain parenchyma (Rudick and 

Sandrock, 2004). Clinical studies with Natalizumab have shown this drug to have high 

efficacy in terms of its ability to prevent disease relapses and progression (Chaudhuri and 

Behan, 2003; O'Connor et al., 2004). However, this efficacy comes at the cost of some 

significant safety issues. For example severe JC-Virus mediated encephalitis called 

“progressive multifocal leukencephalopathy” (PML) has been recorded in numerous 

patients receiving Natalizumab. This severe complication occurs in approximately 1:1000 

patients. PML is severe, not only because it can potentiate MS symptoms, but because it can 

cause death (Berger and Koralnik, 2005; Langer-Gould et al., 2005; Ransohoff, 2005). As a 

result of this treatment related risk, Natalizumab utilization is usually reserved for patients 

with highly active MS, who do not respond sufficiently to standard disease modifying 

therapies and subsequently likely to suffer rapid disease progression (Kappos et al., 2011a; 

Keegan, 2011). Finally, Natalizumab must be given chronically for it to maximize its clinical 

effect. Patients that stop taking Natalizumab usually relapse, with patients developing 

symptoms similar to those experienced before Natalizumab therapy was initiated   
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Substance Indication Side-Effects Comments 

Interferon- Scheme 1. RR-MS, CIS Scheme 2. Flu-like 

symptoms 

Scheme 3. good safety 

profile, inconvenient 

administr., moderate efficacy  

(Sanford and Lyseng-

Williamson, 2011) 

Scheme 4. Glatirameracetate Scheme 5. RR-MS, CIS Scheme 6. Local 

irritation,  

Scheme 7. good safety 

profile, inconvenient 

administr., moderate efficacy  

(Lalive et al., 2011) 

Scheme 8. Fingolimod Scheme 9. RR-MS or 

escalation in RR-MS1 
 

Scheme 10.  

Lymphopenia, 

arrhythmia, macular 

edema 

Scheme 11. Increased relapse 

reduction compared to IFN- 

(Singh et al., 2011) (Jeffery et 

al., 2011) 

Scheme 12. Natalizumab Scheme 13. Escalation 

in RR-MS 

Scheme 14. Infections

, hepatopathy, allergic 

response, PML 

Scheme 15. Excellent 

efficacy, severe viral 

encephalitis as a dangerous 

side-effect 

(Keegan, 2011; Pucci et al., 

2011) 

Scheme 16. Mitoxantrone Scheme 17. Escalation 

in RR-MS, 

PP-MS, SP-MS, with 

fast progression 

Scheme 18. Leukope

nia, infections, 

cardiomyopathy, 

leukemia 

Scheme 19. Immunosupressi

ve escalation option. Option 

in progressive MS courses 

(Rizvi et al., 2004; Stuve et al., 

2004) 

Scheme 20. Cyclophosphamide Scheme 21. Escalation 

in RR-MS, 

PP-MS, SP-MS, with 

fast progression 

Scheme 22. Leukope

nia, infections 

Scheme 23. Therapeutic 

option if other escalation 

therapies including 

mitoxantrone fail (Rinaldi et 

al., 2009; Weiner et al., 1984) 

Scheme 24. Teriflunomide Scheme 25. RR-MS?  

(phase-III trial 

ongoing) 

Scheme 26.  

lymphopenia, 

hepathopathy 

Scheme 27. (Warnke et al., 

2009; Wood, 2011) 

Scheme 28. BG-12 (fumaric acid) Scheme 29. RR-MS?  

(phase-III trial 

ongoing) 

Scheme 30.  

gastrointestinal 

complaints 

Scheme 31. (Kappos et al., 

2008; Papadopoulou et al., 

2010) 

Scheme 32. Laquinimode Scheme 33. RR-MS? 

(phase-III trial 

ongoing) 

Scheme 34.  

Hepatopathy, 

thrombosis? 

Scheme 35. (Thone and Gold, 

2011) 

Scheme 36. Ocrelizumab Scheme 37. Escalation 

therapy? 

(trials ongoing) 

Scheme 38. Severe 

infections and sepsis 

possible, allergic 

response 

Scheme 39. (Chaudhuri, 

2012; Kappos et al., 2011b) 
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Scheme 40. Daclizumab Scheme 41. RR-MS, 

escalatation? 

(trials ongoing) 

Scheme 42.  

Cutaneous rash, 

infections 

Scheme 43. Increased relapse 

reduction compared to IFN- 

likely (Stuve and Greenberg, 

2010) 

Scheme 44. Alemtuzumab Scheme 45. Escalation 

therapy? 

(trials ongoing) 

Scheme 46. Induction 

of autoimmune 

diseases, infections 

(Cossburn et al., 2011)

Scheme 47. Increased relapse 

reduction compared to IFN- 

(Coles et al., 2012; Klotz et al., 

2012) 

RR-MS: relapsing remitting Multiple sclerosis, CIS: clinical isolated syndrome, PP-MS: primary progressive Multiple 

Sclerosis, SP-MS: secondary progressive Multiple Sclerosis, 1: Fingolimod is recommended as a first-line treamtent in 

the US but as an escalation therapy in the EU  

Table 1.   

(O'Connor et al., 2011). The chronic treatment requirement increases patient risk and 

highlights the ongoing conundrum for all MS therapies, which is how to balance immune 

modulation efficacy with safety. The emergence of PML with Natalizumab is one striking 

example, however, more recent cardiac issues have been associated with the recently 

approved oral DMF, ingolomid (Gilyena), highlighting the point that all therapies focused 

on immune intervention require diligent safety studies.  

The need for safer therapies, combined with animal data showing the ability for short course 

immune induction therapy (SCIIT) to induce long term disease remission, has supported a 

new approach to treating MS. SCIIT is a therapeutic strategy employing rapid, specific, 

short-term modulation of the immune system usually using a biologic therapeutic to induce 

long term T cell non-responsiveness. Alemtuzumab clinical studies are leading the way in 

employing this therapeutic concept. In this example, a one week dosing regimen with 

Alemtuzumab has been in phase 2 and 3 studies shown to have a long term dramatic impact 

on disease, reducing disease relapses for over a year (Coles et al., 2008; Hauser, 2008; 

Moreau et al., 1996). The ability for long lasting relapse prevention even after the treatment 

is discontinued is the primary objective of SCIIT. Unfortunately, from an immunological 

perspective, tolerance is the result of a number of T cell reprogramming pathways, not 

induced by Alemtuzumab. Alemtuzumab functions through long term whole scale immune 

cell depletion. While this drug may have great efficacy it come has added consequences 

including the potential for JC-virus infection, cancer and up to 20% of patients may develop 

other autoimmune diseases (notably Thyroiditis). As such newer therapies are required that 

focus on immune reprogramming and less on immune depletion. Some potential candidates 

in development may include Daclizumab (Wynn et al., 2010), Ocrelizumab (Chaudhuri, 

2012; Kappos et al., 2011b) or the anti-alpha beta T cell receptor antibody, TOL101 (Table 1).  

In situations where all other avenues have been exhausted and disease continues to progress 

at an unusually rapid rate, physicians may prescribe the chemotherapy drugs mitoxantrone 

or cyclophosphamide (Neuhaus et al., 2006; Perini et al., 2006; Rinaldi et al., 2009; Stuve et al., 

2004; Theys et al., 1981). These drugs are often considered as final options due to their potent 

immunosuppressive and other serious effects. These drugs can suppress both cell-mediated 

and humoral immunity and often result in lymphopenia, increasing malignancy and 
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infection risk. Results from smaller clinical studies suggest, that treating with these 

immunosuppressive drugs at the very beginning of the disease and in addition to immune 

modulating drugs might have a beneficial impact on the course of the disease. However, the 

harmful side effects associated with these drugs means their use is usually restricted to 

patients that have failed other treatment options, such as Natalizumab. 

6. Summary 

Multiple Sclerosis (MS) is a chronic, progressive, immune mediated central nervous system 

disorder that affects both adults and children. The precise triggers of autoreactive T cell 

development remain to be fully understood, however, it appears that a host of genetic and 

environmental factors contribute to disease development. Disease initiation may be the 

result of a single myelin specific T cell clone being activated, however, animal models and 

preliminary human data suggest that epitope spreading which results in the activation of 

numerous myelin specific T cells is important for disease progression. Therapies capable of 

inducing T cell tolerance, thereby rendering these myelin specific T cells inactive remain to 

be developed for human use. Instead a number of disease modifying agents are available, 

with GLAT and IFN- being the primary front line MS treatments. In those patients 

refractory to these therapies or who show a rapid disease progression, escalation to more 

broad acting therapies, such as Natalizumab may be considered. Unfortunately, while 

escalating therapies may have enhanced efficacy this comes with increases in safety 

concerns. In progressive MS patients whereby all other therapies have failed or no longer 

show efficacy more toxic chemotherapeutic agents are usually the last resort.  

Currently within the field of MS treatment, reduction of relapse rates by around 50% is 

considered to be a success. As such even patients who are considered treatment successes 

suffer relapses. During these relapses CNS damage and epitope spreading continue to occur 

with further neurological impairment the result. Future therapies need to have a higher 

objective and bring the relapse rate down by 75-100%. This goal may not be out of reach 

with short course Alemtuzumab therapy shown to induce disease remission for an extended 

period of time. While the safety profile of this drug remains highly questionable, the 

observed efficacy certainly generates promise that safer more efficacious therapeutic options 

for MS treatment may soon be available. 
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