
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

0

VHDL Design Automation
Using Evolutionary Computation

Kazuyuki Kojima
Saitama University

Japan

1. Introduction

This chapter describes the automatic generation method of VHDL which lays out the control
logic of a control system. This framework releases a designer from the work of describing the
VHDL directly. Instead, the designer inputs the equation of motion of a system and target
operation.

In this chapter, first, FPGA, CPLD, VHDL and evolutionary computation are outlined. This
is basic knowledge required for an understanding of this chapter. Next, the framework
of automatic generation of FPGA using evolutionary computation is described. VHDL
description is expressed by several kinds of data structures called a chromosome. VHDL
expressed in a chromosome is changed using evolutionary computation and changes to a
more suitable code for controller purposes. Finally two example applications are shown.
The first one is the controller for a simple inverted pendulum. After that, the framework
is applied to a more complicated system, an air-conditioning system. The simulation results
show that the controller automatically generated using this framework can control the system
appropriately.

2. Computer-aided controller design using evolutionary computation

2.1 FPGA/CPLD/ASIC and VHDL

CPLDs and FPGAs are both sorts of programmable LSIs. The internal logic of both can be
designed using HDL. The ASIC is one example of a device that can be designed using HDL
in the same way as programmable LSIs. CPLDs and FPGAs can be immediately evaluated on
the system for the designed logical circuit. In addition, they are flexible for the rearrangement
of a specification. These merits make them suitable for the intended use in the case of a
rapid prototyping. For this reason, a CPLD is used as a controller. However, the proposed
framework is applicable to all devices that can be designed by HDL. VHDL is one of the most
popular HDLs and is therefore used in this paper.

The logic described by VHDL is verified and synthesized using a simulator or a logic synthesis
tool so that it can be written into a device. When CPLD or FPGA serves as target devices,
the programming code which determines the function of the target device can be, through a
download cable, written into it in order to obtain the target LSI easily. The VHDL for a simple
logical circuit is shown in Fig. 1.

18

2 Will-be-set-by-IN-TECH

library IEEE;

use IEEE.std_logic_1164.all;

entity HALF_ADDER is

port(

A,B : in std_logic;

S,CO : out std_logic);

end HALF_ADDER;

architecture DATAFLOW of HALF_ADDER is

signal C, D : std_logic;

begin

C <= A or B;

D <= A nand B;

CO <= not D;

S <= C and D;

end DATAFLOW;

library IEEE;

use IEEE.std_logic_1164.all;

entity HALF_ADDER is

port(

A,B : in std_logic;

S,CO : out std_logic);

end HALF_ADDER;

architecture DATAFLOW of HALF_ADDER is

signal C, D : std_logic;

begin

C <= A or B;

D <= A nand B;

CO <= not D;

S <= C and D;

end DATAFLOW;

A

B S

CO

A

B S

CO

Fig. 1. VHDL for simple logical circuit

2.2 Genetic algorithm

The genetic algorithm used as a basis of this framework is outlined below (Fig. 2). The
decision-variable vector x of an optimization problem is expressed with the sequence of N
notations sj(j = 1, · · · , N) as follows:

x : s = s1s2s3 · · · sN (1)

It is assumed that symbol string is a chromosome consisting of N loci. sj is a gene in the
j-th locus and value sj is an allelomorph. The value is assumed to be a real number, a mere
notation, and so on of the group of a certain integer or a certain range of observations as an
allelomorph. The population consists of K individuals expressed with Eq. (1). Individual
population p(n) in generation n changes to individual population p(n + 1) in next generation
n + 1 through the reproduction of a gene. If reproduction in a generation is repeated and
if the individual who expresses solution x nearer to an optimum value is chosen with high
probability, then the value increases and an optimum solution is obtained (Goldberg, 1989;
Koza, 1994).

2.3 Evolvable hardware

Higuchi et al. proposed evolvable hardware that regards the architecture bit of CPLD as a
chromosome of a genetic algorithm to find a better hardware structure by genetic algorithm
(Higuchi et al., 1992). They applied this to myoelectric controllers for electrical prosthetic
hands, image data compression and so on (Kajitani et al., 2005; Sakanasi et al., 2004). This
approach features coding of an architecture bit directly for a chromosome. The designer
must determine which CPLD is used beforehand, implicitly determining the meaning of the
architecture bit. If hardware is changed for the problem of circuit scale or structure, it is
necessary to recalculate evolutionary computation.

Henmi et al. evolved a hardware description language (HDL) called structured function
description language (SFL) and applied it to robot walking acquisition (Hemmi et al., 1997).

358 Automation

VHDL Design Automation Using Evolutionary Computation 3

Crossover

Mutation

Selection

n th generation n+1 th generation

0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0
Chromosome

Gene

x: s = s1 s2 s3 … sN

p(n) p(n+1)

Crossover

Mutation

Selection

n th generation n+1 th generation

0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 00 1 0 0 0 1 1 1 0 1 0 0 1 0 1 0
Chromosome

Gene

x: s = s1 s2 s3 … sN

p(n) p(n+1)

Fig. 2. Genetic algorithm overview

The basic motion, called an "action primitive", must be designed in a binary string. In
our approach, the designer needs only to define I/O pins for CPLD. VHDL rather than an
architecture bit is coded directly onto the chromosome, so the chromosome structure does not
depend on CPLD scale or type, and after VHDL is generated automatically, CPLD is selected
appropriately to the VHDL scale. Pin assignment is set after VHDL generation.

2.4 Controller design framework using evolutionary computation

The study of optimizing rewritable logical-circuit ICs, such as CPLD, using a genetic
algorithm has increased. The framework that changes an internal logic circuit IC configuration
to attain evolution is called evolvable hardware (EHW). With this framework, the designer
needs only to define the criteria used to evaluate a controller. We explain the controller design
framework using evolutionary computation with XC95144 (Xilinx, 1998) as the test device.
Internal blocks of XC95144 are shown in Fig. 3. XC95144 is a small CPLD that has 144 pins
(117 user input-outputs), 144 macro cells and 3200 usable gates. A designer chooses input and
output signals from 117 user I/Os and assigns these pins. Each signal is defined for each I/O.
If CPLD is used in control, sensors and actuators can be associated with CPLD I/O pins (Fig.
4). Here, I/O pins are associated with two sensors and one actuator. The sensor values are
inputs to CPLD as two 16-bit digital signals and a 10-bit digital signal is output as a reference
signal to the actuator.

VHDL, which describes internal CPLD logic, is encoded on a chromosome. An example of
the VHDL generated is shown in Fig. 5, corresponding to Fig. 4. This VHDL consists of
three declarations — (a) entity declaration, (b) signal declaration, and (c) architecture body.
CPLD I/O signals are defined in (a) and internal CPLD signals are in (b). Signals mainly used
in VHDL are a std_logic type and a std_logic_vector type. The std_logic type
is used when dealing with a signal alone and the std_logic_vector type is used when
dealing with signals collectively. The std_logic and the std_logic_vector types should
be combined to optimize maintenance and readability. A description of VHDL can be restored
if all of the input output signals and internal signals are used as the same std_logic type
and only the number is encoded on a chromosome. The number of input signals, output

359VHDL Design Automation Using Evolutionary Computation

4 Will-be-set-by-IN-TECH

JTAG Port

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O/GCK

I/O/GSR

I/O/GTS

JTAG
Controller

In-System Programming Controller

I/
O

 B
lo

c
k
s

F
a

s
tC

O
N

N
E

C
T

 S
w

it
c
h

 M
a

tr
ix

3
1

18

54

18

54

18

54

18

54
3

1

4

Function
Block 1

Function
Block 2

Function
Block 3

Function
Block 4

Macrocells
1 to 18

Macrocells
1 to 18

Macrocells
1 to 18

Macrocells
1 to 18

117

Fig. 3. XC95144 architecture
I/

O
 B

lo
c
k
s

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Sensor1 (16 bit input)

Actuator1 (10 bit output)

Sensor2 (16 bit input)

Fig. 4. Example of CPLD application

signals and internal signals are encoded on the head of a chromosome (Fig. 6). In Fig. 4, two
input signals are set up with 16 bits and an output signal with 10 bits.

A chromosome that represents a VHDL assignment statement is shown in Fig. 7. A
chromosome structure corresponding to a process statement is shown in Fig. 8. The value
currently described is equivalent to the process statement in which "DI009" and "DI014" are
enumerated in the sensitivity list.

360 Automation

VHDL Design Automation Using Evolutionary Computation 5

000: ---

001: -- VHDL for I/P controller generated by _hiGA_AC with _hiGA.dll

002: -- (c) 2011, Saitama Univ., Human Interface Lab., programmed by K.Kojima

003: -- Chromo#:E/50 Length:13 Inputs:32 Outputs:10 Signals:2

004: -- Simulation: Initial condition: 180.0, dt=0.0100

005: ---

006: library IEEE;

007: use IEEE.std_logic_1164.all;

008: use IEEE.std_logic_arith.all;

009: use IEEE.std_logic_unsigned.all;

010:

011: entity GA_VHDL is

012: port(

013: DI000 : in std_logic;

014: DI001 : in std_logic;

015: DI002 : in std_logic;

016: DI003 : in std_logic;

017: DI004 : in std_logic;

018: DI005 : in std_logic;

019: DI006 : in std_logic;

020: DI007 : in std_logic;

021: DI008 : in std_logic;

022: DI009 : in std_logic;

023: DI010 : in std_logic;

024: DI011 : in std_logic;

025: DI012 : in std_logic;

026: DI013 : in std_logic;

027: DI014 : in std_logic;

028: DI015 : in std_logic;

029: DI016 : in std_logic;

030: DI017 : in std_logic;

031: DI018 : in std_logic;

032: DI019 : in std_logic;

033: DI020 : in std_logic;

034: DI021 : in std_logic;

035: DI022 : in std_logic;

036: DI023 : in std_logic;

037: DI024 : in std_logic;

038: DI025 : in std_logic;

039: DI026 : in std_logic;

040: DI027 : in std_logic;

041: DI028 : in std_logic;

042: DI029 : in std_logic;

043: DI030 : in std_logic;

044: DI031 : in std_logic;

045: DO000 : out std_logic;

046: DO001 : out std_logic;

047: DO002 : out std_logic;

048: DO003 : out std_logic;

049: DO004 : out std_logic;

050: DO005 : out std_logic;

051: DO006 : out std_logic;

052: DO007 : out std_logic;

053: DO008 : out std_logic;

054: DO009 : out std_logic

055:);

056: end GA_VHDL;

057:

�������	
���
�������

Fig. 5. (a) Automatically generated VHDL (List-1)

The VHDL description has an if-statement inside of a process statement and the description
has two nesting levels. The hierarchy of the list structure is deep compared to the substitution
statement. When the gene of such a multilist structure is prepared, it is possible to represent
various VHDL expressions.

2.5 Variable length chromosome and genetic operations

The structure of a chromosome changes with the control design specification. The number
of internal signals is set arbitrarily and different descriptions in VHDL are expressed with
different locus lengths. The length of a chromosome is determined by the VHDL line count.
The length determines the number of internal signals enumerated on the sensitivity list or

361VHDL Design Automation Using Evolutionary Computation

6 Will-be-set-by-IN-TECH

058: architecture RTL of GA_VHDL is

059:

060: signal S000 : std_logic;

061: signal S001 : std_logic;

062:

063: begin

064:

065:

066: process(DI013) begin

067: S000 <= not DI013;

068: end process;

069:

070:

071: process(DI002, DI009) begin

072: S001 <= DI009;

073: end process;

074:

075: DO000 <= (((DI002 or not DI011) nor DI002) nand DI003);

076: DO001 <= (((((((((((((((((((((((((((((DI028 nor not DI011) or DI001) or

077: DI008) nor DI017) and not DI008) nor DI016) or not DI030) or DI025) or not

078: DI015) or not DI010) and DI010) nand not DI028) nand not DI010) and not DI012)

079: and DI008) nand DI002) or not DI009) nor not DI031) nor DI007) nor not DI009)

080: nand DI023) or DI014) nor DI019) and not DI025) nand DI024) nand not DI010) or

081: not DI031) nor not DI019) nand DI000);

082:

083: process(DI006, DI029, DI014) begin

084: DO002 <= ((not DI014 or DI029) or DI006);

085: end process;

086:

087:

088: process(DI029) begin

089: DO003 <= DI029;

090: end process;

091:

092:

093: process(DI009, DI014) begin

094: if(DI009'event and DI009='0')then

095: DO004<=DI009 nand not DI007;

096: end if;

097: end process;

098:

099: DO005 <= ((((((((((((((((((((((((((((DI014 and DI016) nand not DI007) and

100: not DI022) nor not DI005) nand DI018) nor DI021) and not DI000) nand not DI013) or

101: not DI022) or DI030) or not DI027) and DI031) and DI020) or DI023) nor not DI025)

102: or not DI000) nor DI002) nand DI002) and not DI027) nand not DI017) nand not

103: DI025) nand not DI007) nor DI031) and DI012) nand not DI012) or not DI030) nand

104: not DI026) and not DI011);

105: DO006 <= ((((((((((((((((((((((((DI010 and not DI028) nand DI009) nor DI011) nand

106: not DI016) or DI029) nand not DI001) and DI011) or DI017) or DI011) nand not

107: DI030) nor DI022) or not DI005) or DI001) and DI019) nor DI027) nand DI010) or not

108: DI025) or not DI023) and DI019) or not DI019) and DI023) nor not DI008) or not

109: DI005) nand not DI021);

110: DO007 <= DI009;

111:

112: process(DI025, DI013, DI023) begin

113: DO008 <= not DI023;

114: end process;

115:

116:

117: process(DI014, DI024) begin

118: DO009 <= DI014;

119: end process;

120:

121:

122: end RTL;

�������������	��
����

�	���
	
���	��
������

���������������

�������������������������

�����
�	�������������

Fig. 5. (b) Automatically generated VHDL (List-2)

the length of the right-hand side of an assignment statement. When dealing with such a
variable length chromosome, the problem is that genetic operations will generate conflict on
a chromosome. To avoid this problem, we prepared the following restrictions:

1. With a top layer, the length of a chromosome is equal to the number that added one to the
summary of the number of internal signals and the number of output signals.

2. All signals are encoded on a chromosome using a reference number.

362 Automation

VHDL Design Automation Using Evolutionary Computation 7

Number of inputs

Number of outputs

Number of signals

Chromosome

1st locus 32

10

2

Fig. 6. Signal definition on the first locus

Chromosome

n th locus

Architecture body

Reference No.

Command ID

ID

ID_CMD_SUBSTITUTION

Left term

35

1st Right term

Reference No. not

Right terms

Reference No. not Operator

3 0

112 ID_OP_OR

Fig. 7. Gene structure for assignment statement

3. The signal with a large reference number is described by only the signal whose reference
number is smaller than the signal.

4. The top layer of a chromosome describes the entity declaration using all internal signals
and output signals in order with a low reference number. Each signal can be used only
once.

5. Crossover operates on the top layer of a chromosome.

These restrictions avoid the conflict caused by genetic operations.

Figure 9 shows an example of crossover operation. The back of the 6th gene is chosen in this
example. Chromosome (A) and chromosome (B) cross and change to chromosome (A’) and
chromosome (B’). Only the gene before and behind the crossover point of each chromosome

363VHDL Design Automation Using Evolutionary Computation

8 Will-be-set-by-IN-TECH

Chromosome

n th locus

Architecture body

Command ID

ID

ID_CMD_PROCESS_SENSITIVITY

Sensitivity list

10

Process body

ID_CMD_PS_IFTHENELSE

[0] [1]

15

ID

Command ID

Reference No.

Event

Edge

Substitution

Reference No.

Left term

38

1st Right term

Reference No. not

Right terms

Reference No. not Operator

10 0

18 ID_OP_NAND

10

1

0

Fig. 8. Gene structure for if-then-else statement in process body

show the gene of a lower layer. In the figure, chromosome (A) has two sensitivity lists and
chromosome (B) has two assignment statements. The structure of a chromosome changes by
replacing the gene from the back of a top gene to before a crossover point. Both chromosome
(A’) and chromosome (B) came to have an assignment statement and a sensitivity list.

3. Application to HDL-based controller of inverted pendulum

In this section an application to an HDL-based controller for the inverted pendulum is
described (Kojima, 2011).

364 Automation

VHDL Design Automation Using Evolutionary Computation 9

Chromosome (A)

Crossover point

Crossover point

Crossover point

Chromosome (B)

Chromosome (A’)

Chromosome (B’)
Crossover point

ID

5 16

IDID

5 16

2 162 16

5 165 16

2 162 16

Chromosome (A)

Crossover point

Crossover point

Crossover point

Chromosome (B)

Chromosome (A’)

Chromosome (B’)
Crossover point

ID

5 16

IDID

5 16

2 162 16

5 165 16

2 162 16

Fig. 9. Crossover operation

θ

l
z

c1θ̇

c2ż

f

d

m,J

M

Fig. 10. Inverted pendulum

3.1 Equations of motion

Figure 10 shows the model of the inverted pendulum. The equations of motion are given by

(ml2 + J)θ̈ = mgl sin θ − mlz̈ cos θ − c1 θ̇ + d (2)

(M + m)z̈ = f − c2 ż (3)

365VHDL Design Automation Using Evolutionary Computation

10 Will-be-set-by-IN-TECH

CPLD

A/D

A/D

Motor Driver
Inverted

Pendulum

10

Duty

PWM

16

16

Position

Angle θ

z

Fig. 11. Control system block diagram

I/
O

 B
lo

c
k
s

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

Angle (16 bit input)

Duty (10 bit output)

Position (16 bit input)

Fig. 12. CPLD pin assignment

f = Kv (4)

where θ [rad] is the angle of the pendulum, m [kg] is the mass of the pendulum, M [kg] is the
mass of the cart, J [kgm2] is the inertia of the rod, l [m] is the length between the gravity point
and fulcrum, z [m] is the position of the cart, d [Nm] is the disturbance torque, c1 [Ns/rad] is
the viscous resistance of the pendulum, c2 [Ns/m] is the viscous resistance of the cart, f [N]
is the controlling force, v is the parameter for the control input and K is the gain. J̄, a and b are
defined as:

J̄ = J + ml2 (5)

a =
c2

M + m
(6)

b =
K

M + m
(7)

366 Automation

VHDL Design Automation Using Evolutionary Computation 11

then, equations (2) and (3) become:

θ̈ =
mgl

J̄
sin θ − mlz̈

J̄
cos θ − c1

J̄
θ̇ +

d

J̄
(8)

z̈ = −aż + bv. (9)

Each parameter can be determined by measurement and experiment as l = 0.15, m = 46.53 ×
10−3, J̄ = 1.58× 10−3, c1 = 2.05× 10−2, a = 4.44 and b = 2.46× 10−1. Using these parameters,
evolutionary simulations are conducted.

3.2 Control system and CPLD pin assignment

Figure 11 shows the control system block diagram. The CPLD is used as the controller of the
inverted pendulum. The position of the cart and the angle of the pendulum are converted
16 bit digital signals respectively and input to the 32 CPLD pins. The control logic in the
CPLD, which is formed using the framework previously mentioned, determines the 10 bit
control signal driving the motor of the inverted pendulum. Figure 12 shows the CPLD pin
assignment for this application. In this case, 32 bit parallel inputs and 10 bit parallel outputs
are adopted. Instead of using them, we can use serial I/Os connected with A/D converters
and D/A converters. In this case, serial to parallel logics should be formed in the CPLD and
even though serial inputs are used, automatically generated VHDL can be used as a VHDL
component.

3.3 Fitness

The fitness value is calculated as a penalty to the differences in the rod angle and the cart
position.

fitness = − 1

π

∫ 30

0
|θ|dt −

∫ 30

0
|z|dt (10)

Disturbances are given as a random torque during the control simulation. When calculating
fitness value, disturbance torque is always initialized. Therefore, all individuals are given
different disturbance at each evaluation. This kind of disturbance makes the controller robust
to various disturbances.

3.4 Simulation

Simulations are conducted under two conditions – (1) θ0 = 1◦, z0 = 0, (2) θ0 = 180◦, z0 =
0. Population size is 50, mutation rate is 0.5, crossover rate is 1.0, tournament strategy,
tournament size is 10 and the elite strategy is adopted.

Figures 13 and 14 show the simulation results. Figure 13 shows the result of condition (1),
Figure 14 shows the result of condition (2). (a) the result at 0 generation and (b) the result
at 1000 generation are represented respectively. The angle of the rod, the position of the
cart, disturbance and the control signal are shown at each generation. At zero generation,
in both conditions (1) and (2), the obtained controller cannot control the inverted pendulum
adequately. The rod moves in a vibrating manner at around 180◦. At 1000 generation,
the controller controls the inverted pendulum successfully in both conditions. Further, in
condition (2), swing up motion can be observed (Fig.14(b)). The control signal at 1000
generation has more various patterns than the signal at 0 generation.

367VHDL Design Automation Using Evolutionary Computation

12 Will-be-set-by-IN-TECH

(a) 0th generation

(b) 1000th generation

Fig. 13. Simulation results (θ0 = 1◦, z0 = 0)

368 Automation

VHDL Design Automation Using Evolutionary Computation 13

(a) 0th generation

(b) 1000th generation

Fig. 14. Simulation results (θ0 = 180◦, z0 = 0)

369VHDL Design Automation Using Evolutionary Computation

14 Will-be-set-by-IN-TECH

4. Application to an air-conditioning controller

Next, the framework is applied to an air-conditioning controller. Simulation model, task
definition and fitness function are described in this section. Simulation results will be shown
at the end of the section (Kojima et al., 2007; Kojima, 2009).

4.1 Simulation model

In the targeted air-conditioning system(Fig. 15), the outside air imported is cooled or warmed
and sent to the console to adjust temperature. Air entering from the inlet (a) is cooled by the
refrigerator (c). Part of the cooled air is warmed with a heater (e), then mixed with cool air to
adjust the temperature. The angle of the mixture door (d) controls the mixing ratio of warm
and cold air. Mixed air is sent to console (f), changing the indoor temperature. The system
controller controls blower motor rotation and the angle of the air mixture door.

Outdoor

(b) Blower (d) Air mixture door

(e) Heater

(f) Console

(c) Refrigerator

5 80

Full cool 0%

Full hot 100%

Air temperature 30

Humidity 50%

500 m3/h max.

(0) (2)
(1)

(3)

(4)

(5)
(6)

(8)(7)

(a) Inlet

Outdoor

(b) Blower (d) Air mixture door

(e) Heater

(f) Console

(c) Refrigerator

5 80

Full cool 0%

Full hot 100%

Air temperature 30

Humidity 50%

500 m3/h max.

(0) (2)
(1)

(3)

(4)

(5)
(6)

(8)(7)

(a) Inlet

Fig. 15. Air-conditioning system

Fig. 16. Control volumes

To evaluate the controller performance, an air-conditioning simulation model is required in
evolutionary computation. We consider an air-conditioning model combining the console and
duct using nine control volumes (Fig. 16). Temperature and humidity, but not compressibility,
are considered in this model. To calculate the predicted mean vote (PMV), which indicates
thermal comfort, we require globe temperature, metabolization, flow rate, insulation of
clothes and external work.

Figure 16 shows three control volumes in this system. We assume that air flows toward
the control volume indexed with (i + 1) from the control volume indexed with (i). Air
temperature Ti+1[K] and relative humidity φi+1 vary with temperature Ti[K], relative

370 Automation

VHDL Design Automation Using Evolutionary Computation 15

humidity φi, mass flow Gi[kg/s] and heat transfer Q[kJ/s]. In air-conditioning simulation,
mass flow is proportional to the opening of blower motor α.

G0 = Gi = αGmax (0 ≤ α ≤ 1) (11)

where Gmax is maximum flow at full blower opening. Flow rate G0 is the sum of air flow Ga0

and steam flow Gw0.
G0 = Ga0 + Gw0 (12)

Water vapour pressure Pw0 is as follows:

Pw0 = φ0 · Ps0 (13)

where Ps0 saturation water vapour pressure from Tetens’ formula (Tetens, 1930):

Ps0 = 610.78 × e
17.2694(T0−273.15)

(T0−273.15)+238.3 (14)

Specific humidity x0 is given by water vapour pressure Pw0.

x0 = 0.622
Pw0

P0 − Pw0
(15)

Air mass flow Ga0 is calculated from the following gas equation:

Ga0 = Pa0 ·
V

RaT0
(16)

where Ra is a gas constant. Water vapour mass flow Gw0 is given by:

Gw0 = x0 · Ga0 (17)

Air flow rate Ga is constant. Steam flow Gw is constant except during dehumidification.
Considering the air flow into control volume (i) from control volume (i − 1) in unit time
dt[s], temperature T′

i , humidity x′i and mass of control volume M′
i after dt is given as follows:

T′
i =

Gi−1Ci−1Ti−1dt + (Mi − Gidt)CiTi

Gi−1Ci−1dt + (Mi − Gidt)Ci
+

Qidt

MiCi
(18)

x′i =
Mixi + (1 + xi)(Gwi−1 − Gwi)dt

Mi + (1 + xi)(Gai−1 − Gai)dt
(19)

M′
i = Mi + (Gi−1 − Gi)dt (20)

where specific heat Ci[kJ/kg · K] is given by

Ci =
1.005 + xi{(2501.6/Ti) + 1.859}

1 + xi
(21)

At the mixture door, air is divided into two flows. The ratio of the mass of divided air depends
on the mixture door angle. Here G1 is the mass flow at location (1) in Fig. 15, G2 that at location
(2) and G3 that at location (3),

G2 = βG1 (22)

371VHDL Design Automation Using Evolutionary Computation

16 Will-be-set-by-IN-TECH

G3 = (1 − β)G1 (23)

where β (0 ≤ β ≤ 1) is the opening ratio of the mixture door. Adding two mass flow rates
enables us to calculate the downstream mass at a juncture. Here G4 is the mass flow at location
(4) in Fig.15, G5 that at location (5) and G6 that at location (6),

G6 = G4 + G5 (24)

Temperature and humidity at a juncture are given in the same way as for when three control
volumes are considered.

4.2 Predicted mean vote (PMV)

PMV is the predicted mean vote of a large population of people exposed to a certain
environment. PMV represents the thermal comfort condition on a scale from -3 to 3, derived
from the physics of heat transfer combined with an empirical fit to sensation. Thermal
sensation is matched as follows: "+3" is "hot." "+2" is "warm." "+1" is slightly warm." "0" is
"neutral." "-1" is slightly cool." "-2" is "cool." "-3" is "cold." Fanger derived his comfort equation
from an extensive survey of the literature on experiments on thermal comfort (Fanger,
1970). This equation contains terms that relate to clothing insulation Icl[clo], metabolic
heat production M[W/m2], external work W[W/m2], air temperature Ta[◦C], mean radiant
temperature Tr[◦C], relative air speed v[m/s] and vapour pressure of water vapour P[hPa].

PMV = {0.33 exp(−0.036M) + 0.028}
[

(M − W)

−3.05{5.73 − 0.007(M − W)− P}

−0.42{(M − W)− 58.1}

−0.0173M(5.87 − P)

−3.96 × 10−8 fcl{(Tcl + 273.15)4

− (Tmrt + 273.15)4}

− fclhc(Tcl − Ta)
]

(25)

fcl is the ratio of clothed and nude surface areas given by:

fcl = 1.0 + 0.2Icl(Icl ≤ 0.5)
fcl = 1.05 + 0.1Icl(Icl > 0.5) (26)

where Tcl is the clothing surface temperature given by repeated calculation of:

Tcl = 35.7 − 0.028(M − W)

−0.155Icl

[

3.96 × 10−8 fcl{(Tcl + 273.15)4

−(Tmrt + 273.15)4}+ fclhc(Tcl − Ta)
]

(27)

372 Automation

VHDL Design Automation Using Evolutionary Computation 17

where hc is the heat transfer coefficient,

hc = max{2.38(Tcl − Ta)
0.25, 0.0121

√
v} (28)

and Tmrt is mean radiant temperature. PMV is detailed in (Fanger, 1970).

4.3 Task definition

The task is to adjust PMV in the console despite heat transfer from outside changes. The
air-conditioning controller controls the opening ratio of blower n and the opening ration of
mixture door m appropriately.

4.4 Control system and CPLD pin assignment

Figure 17 shows the control system block diagram. PMV is input to the CPLD as a 8 bit signal.
The control logic in the CPLD determines the 8 bit blower opening control signal and the 8 bit
mixture door control signal. Figure 18 shows the CPLD pin assignment for this application.

PMV
8

8

8

Blower opening

Mixture door opening
CPLD

Fig. 17. Control system block diagram

I/
O

 B
lo

c
k
s

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

PMV (8 bit input)

Mixture door (8 bit output)

Blower motor (8 bit output)

I/
O

 B
lo

c
k
s

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

PMV (8 bit input)

Mixture door (8 bit output)

Blower motor (8 bit output)

Fig. 18. Control system block diagram

373VHDL Design Automation Using Evolutionary Computation

18 Will-be-set-by-IN-TECH

4.5 Fitness

The fitness function is as follows:

fitness = −
∫ tend

0
|PMVctrl − PMVtarget|dt (29)

where tend is the end of simulation time. The difference between target and controlled PMV is
integrated as a penalty in the controller simulation.

4.6 Simulation results

Blower

Mix-door

(a) 0th generation

Blower

Mix-door

(b) 100th generation

Blower

Mix-door

(c) 10000th generation

Fig. 19. Simulation results

Figure 19 shows the simulation results. PMV in a console is fed back to the controller. In the
graphs, trends change every 60 seconds. Variations are based on the load effect change each
60 seconds. At zero generation (Fig. 19 (a)), temperature rises or falls with the change in heat
load. PMV also changes simultaneously. This means that simply optimizing a controller is
not enough. After 100 generations of calculation, the difference between the target and the

374 Automation

VHDL Design Automation Using Evolutionary Computation 19

estimated value decreases (Fig. 19 (b)). In the 10,000th generation (Fig. 19 (c)), tolerance
decreases further. These results show that hardware corresponding to the purpose is obtained
automatically using this framework.

Figure 20 shows simulation results under other conditions. Nine graphs result for three
thermal loads. Three graphs — temperature, PMV and control — are shown for each thermal
condition. The controller used under three conditions was obtained after 10,000 generations
of calculation. Although thermal load and load change timing were random, the blower and
mix door were controlled so that PMV is set to zero.

Blower

Mix-door

Blower

Mix-door

Blower

Mix-door

Fig. 20. Simulation results

5. Conclusion

In this chapter, to automate controller design, CPLD was used for controller data-processing
and VHDL to describe the logical circuit was optimized using the genetic algorithm. Two
example cases (an inverted pendulum and an air-conditioner) were shown and we confirmed
this framework was able to be applied to both systems. Since this framework is a generalized
framework, so in these kinds of systems which process data from some sensors and drive
some actuators, this framework will work functionally.

375VHDL Design Automation Using Evolutionary Computation

20 Will-be-set-by-IN-TECH

6. References

Balderdash, G., Nolfi, S., & Parisi, D. (2003). Evolution of Collective Behavior in a Team of
Physically Linked Robots, Proceedings of the Applications of Evolutionary Computing,
EvoWorkshops 2003, pp.581-592, Tï£¡bingen, April 2009.

Barate, R. & Manzanera, A. (2008). Evolving Vision Controllers with a Two-Phase Genetic
Programming System Using Imitation, Proceedings of the 10th international conference
on Simulation of Adaptive Behavior: From Animals to Animats, pp.73-82, ISBN:
978-3-540-69133-4, Osaka, July 2008.

Fanger, P. O. (1970). Thermal Comfort, McGraw-Hill.
Goldberg, D. E. (1989). Genetic Algorithm in Search, Optimization and Machine Learning,

Addison-Wesley.
Hemmi, H., et al., (1997). AdAM: A Hardware Evolutionary System, Proc. 1997 IEEE Conf.

Evolutionary Computat.(ICEC’97), pp.193-196.
Higuchi, T. et al. (1992). Evolvable Hardware with Genetic Learning: A First Step Towards

Building a Darwin Machine, Proceedings of the 2nd International Conference on the
Simulation of Adaptive Behavior, MIT Press, pp.417-424.

Kajitani,I. & Higuchi, T. (2005). Developments of Myoelectric Controllers for Hand Prostheses,
Proceedings of the Myoelectric Controls Symposium 2005, pp.107-111, Fredericton,
August 2005.

Kojima, K. et al. (2007). Automatic Generation of VHDL for Control Logic of Air-Conditioning
Using Evolutionary Computation, Journal of Advanced Computational Intelligence and
Intelligent Informatics, Vol.11, No.7, pp.1-8.

Kojima, K. (2009). VHDL Design Automation Using Evolutionary Computation, Proceedings
of 2009 International Symposium on Industrial Electronics (IEEE ISIE 2009), pp.353-358,
Seoul, July 2009.

Kojima, K. (2011). Emergent Functions of HDL-based Controller of Inverted Pendulum in
Consideration for Disturbance, Proceedings of 2011 IEEE/SICE International Symposium
on System Integration, Kyoto, December 2011.

Koza, J. (1994). Genetic Programming, A Bradford Book, ISBN0262111705.
Sakanashi, H. et al., (2004). Evolvable Hardware for Lossless Compression of Very High

Resolution Bi-level Images, IEEE Proceedings-Computers and Digital Techniques,
Vol.151, No.4, pp.277-286, Ibaraki, August 2004.

Tetens, O. (1930). Uber einige meteorologische Begriffe, Zeitschrift fur Geophysik, Vol.6, pp.297-309.
(in German)

wyns10] Wyns, B., et al., (2010). Evolving Robust Controllers for Corridor Following
Using Genetic Programming, Proceedings of the International Conference on Agents and
Artificial Intelligence, volume 1 : artificial intelligence; pp.443-446, Valencia, January
2010.

Xilinx. (1998). DS056(v.2.0) XC95144 High Performance CPLD Product Specification, Xilinx; 2.

376 Automation

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

