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Genetic Algorithm Based Automation  
Methods for Route Optimization Problems 

G. Andal Jayalakshmi  
Intel,  

Malaysia 

1. Introduction 

Genetic Algorithms (GA) are robust search techniques that have emerged to be effective for 

a variety of search and optimization problems. The primary goal of this chapter is to explore 

various Genetic Algorithm (GA) based automation methods for solving route optimization 

problems. Three real world problems: Traveling Salesman, Mobile Robot Path-Planning and 

VLSI global routing are considered here for discussion. All the three problems are Non-

deterministic Polynomial (NP)-complete problems and require a heuristic algorithm to produce 

acceptable solutions in a reasonable time.  

The basic principles of GAs were first laid down by Holland. GAs work with a population of 
individuals each representing a solution to the problem. The individuals are assigned a 
fitness value based on the solution’s quality and the highly fit individuals are given more 
opportunities in the reproduction. The reproduction process generates the next generation 
of individuals by two distinct processes named ‘crossover’ and ‘mutation’. The new 
individuals generated by crossover share some features from their parents and resemble the 
current generation whereas the individuals generated by mutation produces new characters, 
which are different from their parents. The probability of crossover operation is usually very 
high compared to the probability of mutation operation due to the nature of their 
operations. The reproduction process is carried out until the population is converged which 
usually takes hundreds of iterations for complex real world problems. The time taken for 
convergence is dependent on the problem and it is the progression towards increasing 
uniformity among the individuals of a population.   

A standard GA described by Goldberg uses binary encoding for representing the individuals, 
one-point crossover for reproduction which exchanges two consecutive sets of genes and 
random mutation which randomly alters the selected gene. The probability for applying 
crossover typically ranges from 0.6 to 1.0 and the probability for mutation operation is 
typically 0.001. Generally crossover enables the rapid exploration of the search space and 
mutation provides a small amount of random search to ensure that no point in the search 
space is given zero probability of being examined.   

Traditional GAs are generally not the successful optimization algorithms for a particular 
domain as they blindly try to optimize without applying the domain knowledge. L.Davis 
states in the “Handbook of Genetic Algorithms”, that the “Traditional genetic algorithms 
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although robust are generally not the most successful optimization algorithms on any 
particular domain”. Davis argues that the hybridization will result in superior methods. 
Hybridizing the genetic algorithm with the optimization method for a particular problem 
will result in a method which is better than the traditional GA and the particular 
optimization method. In fact this will produce a more superior method than any of the 
individual methods. The standard GA can be improved by introducing variations at every 
level of the GA component including the encoding techniques, the reproduction 
mechanisms, population initialization techniques, adaptation of genetic parameters and the 
evolution of the individuals. These thoughts have resulted in a class of genetic algorithms 
named ‘Hybrid Genetic Algorithms’ (HGA). These are the customized genetic algorithms to fit 
the traditional or simple GA to the problem rather than to fit the problem to the 
requirements of a genetic algorithm. The HGAs use real valued encodings as opposed to 
binary encodings and employs recombination operators that may be domain specific.  

We will explore further on the use of HGA by discussing a solution to the Traveling Sales 
Person (TSP) problem. The TSP problem has been a typical target for many approaches to 
combinatorial optimization, including classical local optimization techniques as well as 
many of the more recent variants on local optimization, such as Simulated Annealing, Tabu 
Search, Neural Networks, and Genetic Algorithms. This problem is a classic example of Non 
deterministic Polynomial hard problem and is therefore impossible to search for an optimal 
solution for realistic sizes of N. The HGA that is described here is as proposed by Jayalakshmi 
et. al. which combines a variant of an already existing crossover operator with a set of new 
heuristics. One of the heuristics is for generating the initial population and the other two are 
applied to the offspring either obtained by crossover or by shuffling. The heuristics applied 
to the offspring are greedy in nature and hence the method includes proper amount of 
randomness to prevent getting stuck up at local optimum. 

While the hybrid GAs exploit the domain knowledge, in many realistic situations, a priori 
knowledge of the problem may not be available. In such cases, it is fortunately possible to 
dynamically adapt aspects of the genetic algorithm’s processing to anticipate the 
environment and improve the solution quality. These are the ‘Adaptive GAs’ which are 
distinguished by their dynamic manipulation of selected parameters or operators during the 
course of evolving a problem solution. In this chapter we will see an adaptive GA solution 
to the mobile robot path planning problem which generates collision free paths for mobile 
robots.  The problem of generating collision-free paths has attracted considerable interest 
during the past years. Recently a great deal of research has been done in the area of motion 
planning for mobile robots as discussed by Choset et al. Traditional planners often assume that 
the environment is perfectly known and search for the optimal path. On the other hand on-line 
planners are often purely reactive and do not try to optimize a path. There are also approaches 
combining offline planers with incremental map building to deal with a partially known 
environment such that global planning is repeated whenever a new object is sensed and added 
to the map. The developments in the field of Evolutionary Computation (EC) have inspired the 
emergence of EC-based path planners. However traditional EC-based planners have not 
incorporated the domain knowledge and were not adaptive and reactive to the changing 
environments. Recent research has offered EC-based planners for dynamic environments.  

The solution to the mobile robot path planning problem discussed here is as proposed by 
Jayalakshmi et. al, which incorporates domain knowledge through domain specific operators 
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and uses an initialization heuristics to convert infeasible paths into feasible ones. The fitness 
of the solution is measured based on the number of fragments, acute edges and the angle 
between the turns in the path. The algorithm plans the path for the current environment and 
the robot travels in that direction. If an obstacle is found in its path, the robot senses the 
presence of the obstacle before the critical time to avoid collision and calls the path planner 
algorithm again to find the new path from that point onwards. 

The CHC genetic algorithm proposed by Eshelman has emerged as an alternative to resolve the 

perennial problem with simple GAs which is the premature convergence. The simple GA 

allows a sub-optimal individual to take over a population resulting in every individual being 

extremely alike and thus causing premature convergence. The consequence of premature 

convergence is a population which does not contain sufficient genetic diversity to evolve 

further. The CHC genetic algorithm uses crossover using generational elitist selection, 

heterogeneous recombination by incest prevention and cataclysmic mutation to restart the 

search when the population starts to converge. The CHC GA has a very aggressive search by 

using monotonic search through survival of the best and offset the aggressiveness of the search 

by using highly disruptive operators such as uniform crossover.  

In this chapter we will also explore a solution to the VLSI global routing problem using CHC 
GA. One of the most important VLSI Design Approaches is the Macro Cell design. Macro 
cells are large, irregularly sized parameterized circuit modules that are generated by a 
silicon compiler as per a designer’s selected parameters. Usually the physical design process 
for macro cells is divided into Floor Planning/Placement, Global Routing and Detailed 
Routing. Floor Planning/Placement constructs a layout indicating the position of the macro 
cells. The placement is then followed by routing, which is the process of determining the 
connection pattern for each net to minimize the overall routing area. Before the global 
routing process begins, a routing graph is extracted from the given placement and routing is 
done based on this graph. Computing a global route for a net corresponds to finding a 
corresponding path in the routing graph. Each edge represents a routing channel and the 
vertex is the intersection of the two channels. First the vertices that represent the terminal of 
the net are added to the routing graph and then the shortest route for the net is found. Both 
the placement and routing problems are known to be NP-complete. Thus it is impossible to 
find optimal solutions in practice and various heuristics are used to obtain a near optimal 
solution. There has been a lot of work on optimization for routing, including Simulated 
Annealing algorithms and Genetic Algorithms.   

The details of the genetic algorithm solutions to each of these problems are described in the 

following sections. 

2. Design of a hybrid GA for TSP 

A heuristic approach employs some domain knowledge in providing a solution to the 
problem.  A good heuristics can be devised provided one has the knowledge of the problem 
being solved. In cases, where there is no knowledge of the problem, it is best to use a more 
general heuristic, often called a meta-heuristic.  Meta-heuristics are sometimes also called 
black-box optimization algorithms or simply, general-purpose optimization algorithms. 
Coding complex data structures by simple lists of bits or real values leads to the problem 
that has no one-to-one correspondence between these lists and the problem instances. Hence 
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problem knowledge is necessary either to repair operators to deal with invalid solutions or 
to design special operators tailored to the problem. 

Of the present evolutionary algorithms, hybrid genetic algorithms have received increasing 
attention and investigation in recent years. This is because of the reason that the hybrid GAs 
combine the global explorative power of conventional GAs with the local exploitation 
behaviours of deterministic optimization methods. The hybrid GAs usually outperform the 
conventional GAs or deterministic methods in practice. To hybridize the genetic algorithm 
technique and the current algorithm, the following three principles are suggested by Davis: 

 Use the current algorithm’s encoding technique in the hybrid algorithm. This 
guarantees that the domain expertise embodied in the encoding used by the current 
algorithm will be preserved.  

 Hybridize where possible by incorporating the positive features of the current method 
in the hybrid algorithm. 

 Adapt the genetic operators by creating new crossover and mutation operators for the 
new type of encoding by analogy with bit string crossover and mutation operators. 
Incorporate domain based heuristics on operators as well. 

Theoretical work as well as practical experience demonstrates the importance to progress 
from fixed, rigid schemes of genetic algorithms towards a problem specific processing of 
optimization problems.  

This section explores how a HGA is used to solve the TSP problem. The TSP is probably the 
most studied optimization problems of all times.  In the Travelling Sales Person problem, 
given a set {c1 , c2 , . . . , cn} of cities,   the goal is to find an ordering  of the cities that 
minimizes the quantity 

 d(c(i),c(i+1))+d(c(n),c(1))  1 i n-1 

Where d (ci,cj) is the distance associated with each pair of distinct cities <ci,cj>. This quantity 
is referred to as the tour_length, since it is the length of the tour a salesman would make 
when visiting the cities in the order specified by the permutation, returning at the end, to 
the initial city. The Euclidean Travelling Sales Person problem involves finding the shortest 
Hamiltonian Path or Cycle in a graph of N cities. The distance between the two cities is just 
the Euclidean distance between them.  

In a symmetric TSP, the distances satisfy d(ci,cj) = d(cj,ci) for 1i, jN. The symmetric traveling 
salesman problem has many applications, including VLSI chip fabrication X-ray 
crystallography and many other. It is NP-hard and so any algorithm for finding optimal 
tours must have a worst-case running time that grows faster than any polynomial. This 
leaves researchers with two alternatives: either look for heuristics that merely find near-
optimal tours, but do so quickly, or attempt to develop optimization algorithms that work 
well on ‘real-world’ rather than worst-case instances. Because of its simplicity and 
applicability the TSP has for decades served as an initial proving ground for new ideas 
related to both these alternatives. 

2.1 The hybrid GA solution 

The HGA proposed by Jayalakshmi et al. to solve the TSP problem use heuristics for 
initialization of population and improvement of offspring produced by crossover. The 
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Initialization Heuristics algorithm is used to initialize a part of the population and the 
remaining part of the population is initialized randomly. The offspring is obtained by 
crossover between two parents selected randomly. The tour improvement heuristics: 
RemoveSharp and LocalOpt are used to bring the offspring to a local minimum. If cost of the 
tour of the offspring thus obtained is less than the cost of the tour of any one of the parents 
then the parent with higher cost is removed from the population and the offspring is added 
to the population. If the cost of the tour of the offspring is greater than that of both of its 
parents then it is discarded. For shuffling, a random number is generated within one and if 
it is less than the specified probability of the shuffling operator, a tour is randomly selected 
and is removed from the population. Its sequence is randomized and then added to the 
population.  

2.1.1 The crossover operator 

The initial city is chosen from one of the two parent tours. This is the current city and all the 
occurrences of this city are removed from the edge map. If the current city has entries in its 
edgelist then the city with the shortest edge is included in the tour, and this becomes the 
current city. Any ties are broken randomly. This is repeated until there are no remaining   
cities. An example is given below: 

Let the distance matrix be 

 

0 10 4 15 5 20 

10 0 5 25 5 10 

4 5 0 13 6 2 

15 25 13 0 6 10 

5 5 6 6 0 20 

20 10 2 10 20 0 

Let the genotype p1 be equal to (2,3,4,5,0,1) which encodes the TSP tour (2,3,4,5,0,1,2)  and p2 
be equal to (2,3,1,4,0,5) which encodes the TSP tour(2,3,1,4,0,5,2).  The combined edge map 
M12 contains the combined edge relationships from both the parents. The first gene value in 
p1 i.e. 2 is added to the child c1. Then the gene value 2 is removed from the edge map. The 
combined edge map before and after are given below: 

 

Gene   
value 

Edge 
map 
(p1) 

Edge 
map 
(p2) 

Combined 
Edge map 
M12 (before) 

Combined 
Edge map 
M12 (after) 

0 5,1 4,5 1,4,5 1,4,5 

1 0,2 3,4 0,2,3,4 0,3,4 

2 3,1 3,5 1,3,5 1,3,5 

3 2,4 2,1 1,2,4 1,4 

4 3,5 1,0 0,1,3,5 0,1,3,5 

5 4,0 0,2 0,2,4 0,4 

Table 1. Combined edge map 
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Now |E(2)| = 3 therefore an edge j is chosen such that j   E(2) and |<2,j,>| is minimum and 
is added to the child c1. In this example  j is 5. Now j is removed from the edge map, and the 
same procedure is followed until the child c1 is filled with all the genes. For the example the 
child c1 will become (2,5,0,4,1,3). 

2.1.2 The Initialization Heuristics 

The Initialization Heuristics (IH) initializes the population based on a greedy algorithm which 
arranges the cities depending on their x and y coordinates. The tours are represented in linked-
lists. First an initial list is obtained in the input order which is the Input List. The linked-list 
that is obtained after applying the Initialization Heuristics is the “Output List”. During the 
process of applying the Initialization Heuristics all the cities in the “Input List” will be moved 
one by one to the “Output List”. Four cities are selected, first one with largest x-coordinate 
value, second one with least x-coordinate value, third one with largest y-coordinate and fourth 
one with least y-coordinate value. These are moved from the “Input List” to the “Output List”. 
The sequence of the four cities in the Output List is changed based on minimum cost. The 
elements in the Input List are randomized and the head element is inserted into the Output 
List at a position where the increase in the cost of the tour is minimal. This process is repeated 
until all the elements in the Input List are moved to the Output List.  

Figure 1(a) shows a 8-city problem. Figure 1(b) shows the Boundary Tour formed from four 
extreme cities. Figure 2 (a), (b), (c) & (d) shows the four possible tours that can be formed 
when city 'E' is moved to the “Output List”. It is obvious from the figures that the Tour in 
Figure 2(a) will result in minimum increase in the cost of the tour in the “Output List”. 
Similarly other cities will be moved one by one to the “Output List”.    

 

Fig. 1. (a) Input cities and (b) boundary tour formed by four extreme cities 

 
(a) (b) (c) (d) 

Fig. 2. Various possible tours, which can be formed by moving city ‘E’ to the output list 
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2.1.3 The Removesharp heuristics 

The RemoveSharp algorithm removes sharp increase in the tour cost due to a city, which is 
badly positioned. It rearranges the sequence of a tour by considering the nearest cities of a 
badly positioned city such that the tour_cost is reduced. A list containing the nearest m cities 
to a selected city is created. The selected city from the tour is removed and a tour with N-1 
cities is formed. Now the selected city is reinserted in the tour either before or after any one 
of the cities in the list previously constructed with m nearest cities and the cost of the new 
tour length is calculated for each case. The sequence, which produces the least cost, is 
selected. This is repeated for each city in the tour. 

An example is given below: 

 
(a)    (b) 

Fig. 3. (a) A tour with a badly positioned city and (b) The tour after RemoveSharp is applied 

In Figure 3(a) the city E is in between the cities A and D, while it is obvious that the nearest 
cities to it are city C and B. RemoveSharp will move city E between the cities C and D, 
resulting in a decrease in the tour cost as shown in Figure 3(b). 

2.1.4 The local heuristics 

The heuristics finds a locally optimal tour for a set of cities, by rearranging them in all 
possible orders. The LocalOpt algorithm will select q consecutive cities (Sp+0 , Sp+1 , . . . . . , Sp+q-

1) from the tour and it arranges cities Sp+1 , Sp+2  , . . . . , Sp+q-2 in such a way that the distance is 
minimum between the cities Sp+0 and Sp+q-1 by searching all possible arrangements. The 
value of p varies from 0 to n-q, where n is the number of cities. In Figure 4(a) it is quite clear 
that the distance between the cities A and G can be reduced if some rearrangements are 
made in the sequence of the cities between them. LocalOpt will make all possible 
rearrangements and replace them to the sequence as shown in Figure 4(b). 

 
(a)   (b) 

Fig. 4. (a) A bad tour and (b) The tour after LocalOpt is applied 
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2.2 Results 

The results for the HGA solution for 3 standard TSP problems are compared with the results 
for GA and SA solutions. The best integer tour_length and the best real tour_length (in 
parenthesis) are tabulated below in Table 2. NA represents "Not Available".  

The heuristics with which Hybrid GA is compared here are GA and SA as reported by 
Whitley. D et al. and TSPLIB. The difference between integer and real tour length is that in 
the first case distances are measured by integer numbers, while in the second case by 
floating point approximations of real numbers.  In TSPLIB website only Eil51 and Eil76 are 
available which have an additional city to Eil50 and Eil75 respectively.   

 

Problem name HGA GA SA 
Eil50 
50-city problem 

426 
(428.871) 
{for Eil51} 

428 
(NA) 
 

443 
(NA) 
 

Eil75 
75-city problem 

538 
(544.36) 
{for Eil76} 

545 
(NA) 
 

580 
(NA) 
 

KroA100 
100-city problem 

21282 
(21285.44) 

21761 
(NA) 

NA 
(NA) 

Table 2. Comparison of HGA with other heuristics on geometric instances of the symmetric 
TSP.  

3. Design of an adaptive GA for mobile robots 

Adaptive Genetic algorithms dynamically manipulate selected parameters or operators 
during the course of evolving a problem solution. Adaptive GAs are advantageous over 
SGAs in that they are more reactive to unanticipated characteristics of the problem and can 
dynamically acquire information about the problem characteristics and exploit them. As 
described by Davis, adaptive GAs can be categorized based on the level at which the 
adaptive parameters operate. Population-level techniques dynamically adjust parameters that 
are global to the entire population. Individual-level adaptive methods modify a particular 
individual within the population depending on how it is affected by the mutation operators. 
Component-level adaptive GAs dynamically alter the individual components depending on 
how each individual will be manipulated independently from each other.  The operator 
probabilities play a major role in determining the solution quality and the convergence rate. 
Since the range of potential applications of genetic algorithms is infinite, it is difficult to 
measure the goodness of the parameter values. This suggested the idea of adapting the 
operator probabilities during the evolution of the GA.  

The path planner proposed by Jayalakshmi et al. incorporates domain knowledge in the 
algorithm through domain specific operators. An initialization heuristics is used to convert 
infeasible paths into feasible ones. The fitness is measured based on the number of 
fragments, acute edges and the angle between the turns in the path. The algorithm plans the 
path for the current environment and the robot travels in that direction. If an obstacle is 
found in its path, the robot senses the presence of the obstacle before the critical time to 
avoid collision and calls the path planner algorithm again to find the new path from that 
point onwards. The following sections describe the solution. 
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3.1 The adaptive GA solution 

The path planner algorithm design has four major phases. The first phase is the design of 
the Initialization Heuristics (IH), which includes the Backtrack and Change_Y operators. The 
algorithm initializes the population randomly and then repairs the population by applying 
these two operators. This leaves the initial population free of any infeasible solutions and 
reduces the search region considerably. The heuristics is discussed in detail in a later 
section.  

The second phase is the design of domain specific genetic operators End_New, Mid_New, 
Shake and Adjacent to change the characteristics of the path. The operators tune the path 
generated by removing the sharp edges, inserting adjacent segments in the path and 
introducing new vertices. The operators are discussed in detail in section 3.1.4.   

The third phase is the design of the objective function which is designed to include the 
smoothness factors of the path in calculating the fitness value. This ensures that the path is 
not only optimal in length but also smooth without any sharp turns. The objective function 
is discussed in detail in section 3.1.5.  The fourth phase of the algorithm is the design of the 
adaptive rules to evolve the operator probabilities. The operator probabilities are adapted 
based on the smoothness factors. The adaptive rules are discussed in section 3.1.6. The 
binary tournament selection scheme is used to select a parent chromosome and the 
reproduction is carried out by refining the paths in the previous generation using the 
domain specific genetic operators described in section 3.1.4. The complete algorithm is given 
below: 

Adaptive_Path_Planner() 

Begin 

 Initialize the population using the heuristics 

 Calculate the objective function and evaluate the population 

 While not convergence do  

 Begin 

  Repeat  

   Select the parent using binary tournament selection 

   Apply the domain specific genetic operators with the optimal  

   probability and produce offspring 

   Replace the parent with the offspring 

  Until the next generation is filled 

  Evaluate the population based on the objective function 

  Tune the operator probability 

 End  

End 
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3.1.1 The chromosome structure 

A chromosome in a population represents a feasible/infeasible path for the robot to reach 

the goal location. It consists of the starting point followed by the intersection points of the 

line segments of the path, and finally the goal position or the ending point. A path can have 

a varied number of intermediate nodes. And hence the length of the chromosomes will be a 

variable. An initial population of chromosomes is randomly generated such that it has a 

random number of intermediate edges with random coordinates. A sample path and its 

representation are given below: 

 

Fig. 5. Example path and its equivalent chromosome 

3.1.2 The selection scheme 

The binary tournament selection scheme is used to select a parent chromosome. In binary 
tournament selection, pairs of individuals are picked at random from the population; 
whichever has the higher fitness is copied into a mating pool. This is repeated until the 
mating pool is full. In this, the better individual wins the tournament with probability p, 
where 0.5 < p < 1. By adjusting tournament size or win probability, the selection pressure 
can be made arbitrarily large or small. 

3.1.3 The initialization heuristics 

Each chromosome shall represent a feasible or an infeasible path. A random initialization 

generally leads to a large number of infeasible paths and hence a heuristics is used to 

convert infeasible paths to feasible ones. The heuristics involve two operators: Change_Y and 

Backtrack. The Change_y operator is used to change the value of Y coordinate of the vertex 

which when included leads to an infeasible path.  This makes the robot go up a step to take 

a different path so that the collision with the obstacle is avoided. The Backtrack operator is 

used to take a different path when the path already taken by the robot leads to an obstacle. It 

allows the robot to go back by two steps in the original path and take up a new path.  It is 

designed to go back two steps because when the robot realizes an obstacle, it will be very 

nearer to the obstacle and going back one step may not lead to a feasible path. 

3.1.4 The genetic operators 

The traditional genetic operators Mutation and Crossover cannot be used as such here, 

hence they are given new forms to accommodate the requirements of the problem to be 

solved. The operators are designed having in mind the nature inspired actions, a person 

shall take to avoid collisions with obstacles. The operators are described below: 
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Mid_New:  A vertex is chosen randomly and the edges connecting it to the previous and the 

next vertices are altered so that any steep increase in the path can be eliminated. The mid 

points of the edges are considered recursively until a feasible path is found. This helps to 

take up a closer but safer path around the obstacle 

End_New: A vertex is chosen randomly and is removed from the path provided the resultant 

path is feasible. This operator helps to reduce the number of fragments in a path. 

Shake: This operator chooses a vertex randomly and changes its Y coordinate by either 

adding or subtracting a constant value. This works like a mutation operator.  

Adjacent: This operator changes the original path by interchanging a segment of a path with 

a  parallel segment by either adding or subtracting a constant value with the Y coordinate of 

each vertex in that segment. 

3.1.5 The evaluation function 

The fitness of a chromosome is calculated based on the following factors: 

 Length 

 Feasibility 

 Number of acute edges 

 Number of bends 

 Number of fragments 

Two objective functions are designed; one based on length and the other on smoothness. 

The objective function Simple_Obj calculates the fitness of a path on the basis of the length of 

the path and its feasibility. The objective function Smooth_Obj calculates the fitness based on 

the smoothness of the path. The objective functions are described in the following sections. 

3.1.5.1 The objective function based on length and feasibility  

The fitness is calculated based on the length and feasibility. The feasibility is measured by 

checking whether the next node on the path generated so far leads to a collision with any of 

the obstacles. The length_constant is a large integer value which when divides the path 

length will give high fitness value for the path with minimal length. 

ሻ݄ݐܽ݌ሺܨ	ݏݏ݁݊ݐ݅ܨ ൌ ሺ ሻ݄ݐܽ݌ሺ	݄ݐ݈݃݊݁	݈ܽݐ݋ݐ݈ܭ ሻ ൅ ݂ܭ ∗  ሻ݄ݐܽ݌ሺݕݐ݈ܾ݅݅݅ݏܽ݁ܨ
Where K l    is the  length_constant  (a large integer value) and Kf  is the feasibility_constant  
(an  integer value). total_lengthሺpathሻ 	ൌ 		lengthሺ	i	, i ൅ 1ሻ	, 1	i		n, n	 ൌ 	No. of	nodes ݂݁ܽݕݐ݈ܾ݅݅݅ݏሺ݄ݐܽ݌ሻ ൌ ൜ 1, ,	െ1				݄ݐܽ݌	݈ܾ݁݅ݏ݂ܽ݁	ܽ	ݎ݋݂  ݄ݐܽ݌	݈ܾ݁݅ݏ݂ܽ݁݊݅	݊ܽ	ݎ݋݂

3.1.5.2 The objective function based on smoothness  

The objective function Simple_Obj discussed above takes into account only the path length 
and the feasibility factor whereas the Smooth_Obj takes into account the other factors such as 
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the number of acute increases/decreases, turns with angle 90 and the number of fragments 
in the path. The new objective function Smooth_Obj is given below: 

ሻ݄ݐܽ݌ሺܨ	ݏݏ݁݊ݐ݅ܨ ൌ ൬ ሻ൰݄ݐܽ݌ሺ݄ݐ݈݃݊݁_݈ܽݐ݋ݐ݈ܭ ൅ ݏܭ	 ∗  ሻ݄ݐܽ݌ሺݏݏ݄݁݊ݐ݋݋݉ݏ
ሻ݄ݐܽ݌ሺݏݏ݄݁݊ݐ݋݋݉ܵ ൌ ൬50 ∗ 100ܣܵ ൰ ൅ ൬40 ∗ 100ܤܵ ൰ ൅ ൬10 ∗ 100ܨܵ ൰ 

where  

ܣܵ ൌ 1 െ ݐ݊ݑ݋ܥ_݁ݐݑܿܣ ∗ ܨ100ܰ  

ܤܵ ൌ 1 െ ݐ݊ݑ݋ܥ_݀݊݁ܤ ∗ ܨ100ܰ  

ܨܵ ൌ 	ݏݐ݊݁݉݁݃ܽݎܨ	݈ܽ݁݀ܫ ∗ ܨ100ܰ  

And   NF  is the number of Fragments 

The Acute_Count is the number of sharp increases / decreases in the path, the Bend_Count is 

the number of rectangular turns and the Ideal_Fragments is the minimum number of 

fragments of all the paths that occur in a generation. Since the number of acute edges affects 

the smoothness of the path largely, its contribution is 50% in the calculation of the fitness 

value. The number of bends is given 40% share and the fragments 10% share in the 

calculation of the fitness value. 

3.2 The dynamic environment  

The robot travels in an environment where the obstacles may get introduced suddenly in the 

path planned by the robot for travelling. In such situations the robot has to decide at every 

step whether to take up the already planned path or a new path. The robot is assumed to 

travel at a fixed speed and has a sensor in it to detect the existence of any obstacle. When an 

obstacle is recognized by the robot it calls the dynamic path planner algorithm and plans its 

path from that position onwards. The sensor is assumed to sense the existence of any 

obstacle before the robot reaches the region and the path planner returns the path within the 

critical time. Now the new path is taken up from that position and the same procedure is 

repeated until the robot has reached the destination. 

3.3 Results  

A sample output for the adaptive GA solution is given below. The Robot is assumed to 

travel in a dynamic environment of dimension (5,5) to (400,400) with different kinds of 

obstacles placed randomly. A dynamic environment is created by adding new obstacles on 

the path planned by the robot.   

The path planning algorithms for dynamic environments are computationally intensive and 

hence will take longer time to converge for an environment with non-rectilinear obstacles. 
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Faster genetic operators and multi-threading methods might help to speed up the path 

planning process in these environments.  

     

(a)    (b) 

Fig. 6. (a) A dynamic obstacle in the planned path and (b) the final generation of paths from 
the point of intervention 

4. Design of a Hybrid CHC GA for VLSI routing 

The Minimum Rectilinear Steiner Tree (MRST) problem arises in VLSI global routing and 

wiring estimation where we seek low-cost topologies to connect the pins of signal nets. The 

Steiner tree algorithm is the essential part of a global routing algorithm. It has been an active 

field of research in the recent past. This section presents a Hybrid CHC (HCHC) genetic 

algorithm for global routing. The Minimum Rectilinear Steiner Tree problem is to construct a 

tree that connects all the n points given in the Euclidean plane. If the edges in this tree are to 

be selected from all possible edges that are from the complete graph on the points, it is the 

familiar problem of finding a spanning tree in an undirected graph. If the edges of the tree 

must be horizontal and vertical, the additional points where the edges meet are called the 

Steiner points, and the resulting tree is a Rectilinear Steiner Tree [RST]. A shortest such tree 

on a set of given points is a minimum rectilinear Steiner tree.   

4.1 Construction of Minimum Spanning Tree  

The Spanning tree algorithm presented here is based on the shortest path heuristic as 

described by Ellis Horowitz et al. A simple genetic algorithm is used for the construction of a 

Minimum Spanning Tree (MST), which is then used in the generation of the Steiner minimal 

tree. The spanning tree is generated by initializing the population with random solutions. 

The random solutions are then repaired using a repair heuristics. The offspring are 

generated by applying one point crossover and exchange mutation which exchanges edges 

in an individual. The exchange of edges may lead to a totally different tree, thus justifying 

the purpose of mutation. The new population is evolved and the same procedure is repeated 

until convergence.  

The algorithm for the construction of the minimum spanning tree is given below. 
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Minimal_Spanning_Tree() 

Begin 

Initialize parameters:  generation count, crossover and mutation probabilities 

 Initialize parent population randomly 

 Apply repair heuristics to the parent population  

 While termination condition not reached 

 Begin 

  Select parents based on the total length of the Spanning tree 

  Apply crossover and mutation       

  Evolve new population 

  Replace previous population by new population 

 End 

End 

The repair heuristics removes cycles and repeated edges from the population and makes it a 
set of feasible solutions. The vertices of the graph are stored in separate sets, so that it can be 
later combined whenever an edge is included in the final spanning tree. The union algorithm 
unions two sets containing Vi and Vj respectively when an edge E <Vi, Vj> is added to the 
final spanning tree. The find algorithm verifies whether a particular vertex belongs to a set. 
The union algorithm combines all vertices that are connected, in to a single set. When a 
particular edge is selected for addition into a partially constructed spanning tree, it is 
checked whether the vertices of that edge are already present in the same set using the find 
algorithm. If they are in the same set, then the inclusion of this edge will lead to a cycle. The 
repeated edges can be checked easily with the adjacency matrix. 

4.2 Construction of minimum steiner tree  

The Steiner tree problem can be defined as the subset of minimum spanning tree problem. 
In minimum spanning tree construction, a tree is constructed with vertices V1,V2,…Vn 
connected without loops at the lowest cost. In the Steiner tree problem, extra vertices are 
added besides the existing vertices V1,V2,…Vn, to construct a lower cost tree connecting 
V1,V2,….Vn. The extra vertices are called the Steiner points. There are various heuristics 
available to construct a MRST, and most of them use MST as a starting point. The I-Steiner 
algorithm as discussed by Kahng A.B et al., constructs the MRST by evaluating all possible 
Steiner points for their impact on MST cost. The algorithm operates on a series of passes, in 
each pass the single Steiner point which provides the greatest improvement in spanning tree 
cost is selected and added to the set of demand points.  Points are added until no further 
improvement can be obtained.   

The heuristics used here for the construction of MRST is the “BOI” or “edge-removal 
technique” of Borah, Owen and Irwin. The algorithm constructs the Steiner tree through 
repeated modification of an initial spanning tree as discussed by Jayalakshmi et al. An edge 
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and a vertex pair that are close to each other in an MST are determined. For each vertex Vi, 
edge Ei pairing of the spanning tree, an optimal Steiner point is found to merge the 
endpoints of the edge Ej with vertex Vi. This will create a cycle, so the longest edge on this 
cycle is found and a decision is made about removing this edge from the cycle based on the 
cost.  Among all possible eliminations, whichever leads to the lowest cost is removed and 
the tree is modified. The edges are removed and new connections are inserted until no 
improvements can be obtained. The resulting tree is the minimum Steiner tree. The 
approach has low complexity with performance comparable to that of I-Steiner. The 
algorithm for the construction of the minimum Steiner tree is given below: 

Steiner_Tree() 

Begin 

 Build the routing graph G 

 For each net do 

 Begin  

  Initialize weights for edges 

  Find the minimum cost spanning tree T 

  For each <vertex,edge> pair of the spanning tree 

  Begin 

   Find the optimum Steiner point to connect this edge to the vertex  
  at a suitable point 

   Find the longest edge on the generated cycle 

   Compute the cost of the modified tree and store the pair in a list  
  if the cost is less than the MST 

  End 

  While the list is not empty do 

  Begin 

   Remove the pair from the list which results in lowest cost 

   Re-compute the longest edge on the cycle and the cost of the tree 

   If the edges to be replaced are in the tree and the cost is less then  
  modify the tree 

  End 

 End 

End 
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4.3 Results  

The HCHC solution for four standard test problems B1, B3 B6 and B9 from the problem sets 

of J.E.Beasley are given below in Table 3. A simple GA with one point crossover and 

exchange mutation is compared with the HCHC solution. In HCHC, Uniform crossover and 

External mutation are used for reproduction.  

 

Test 
problem 

Optimum 
Solution Error Generations 

SGA HCHC SGA HCHC SGA HCHC 

B1 82 187 95 105 13 150 200 

B3 138 145 140 7 2 150 200 

B6 122 128 125 6 3 400 250 

B9 220 241 224 21 4 150 200 

Table 3. The solutions obtained by SGA and HCHC for Beasley’s test problems B1, B3,B6 
and B9 

For HCHC algorithm the maximum error is for the test problem B1 and for the rest of the 

problems the error is less than 6. And SGA has performed very poorly for B1 and B9. For the 

other problems, SGA has performed moderately well with error less than 10.  

5. Summary  

With Genetic Algorithms emerging as strong alternative to traditional optimization 

algorithms, in a wide variety of application areas, it is important to find the factors that 

influence the efficiency of the genetic algorithms. The simple GAs are found to be ineffective 

for most of the real world problems. Hence there arises the need for the customization of the 

traditional GAs. This chapter explored the variants of the simple genetic algorithm and their 

application to solve real world problems. TSP is a problem of a specific domain and 

required hybridization for quicker convergence. In particular the local search algorithm 

chosen has a determining influence on the final performance. The heuristics used were 

simple and easy to implement when compared to other algorithms. The solution to the 

mobile robot path planning problem explored the design of different operators and showed 

that the adaptation of operators has a significant impact in improving the solution quality. A 

hybrid CHC algorithm was used to solve the VLSI global routing problem. And this 

example showed that the simple GA could only find a sub optimal solution and could not 

go beyond certain values due to the lack of techniques that avoid premature convergence. 
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