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1. Introduction 

Models are extensively used in the design and implementation of advanced process control 
systems. In model predictive control (MPC), model of the plant is used to predict the future 
output of the plant using the current and future optimal inputs and past outputs. Therefore, 
the design of MPC, essentially, includes the development of an effective plant model that can 
be used for predicting the future output of the plant with good accuracy (Camacho &  Bordon, 
2004; Rawlings, 2000). Models can be developed either from purely theoretical analysis 
(conservation principles, thermodynamics, etc.) or from experimental data or somewhere in 
between. The process of model development from experimental data is known as system 
identification. The identification test can be conducted either in open-loop (open-loop 
identification) or while the plant is under feedback control (closed-loop identification).  

The theory of linear system identification is well developed and there are already numerous 

literatures. The pioneering work in system identification was done by Ljung (1999) and his 

book provides detailed theoretical foundation for system identification. The book by Nelles 

(2001) is also a very practical book and highly recommended for practitioners both on linear 

and non-liear system identification. Heuberger, et al., (2005) authored a very comprehensive 

book on modeling and identification using rational orthonormal basis functions, though 

current developments in application of OBF for MPC, closed-loop identification, etc., were 

not included.  

There are several linear dynamic model structures that are commonly used in control 

relevant problems. They have two general forms, i.e., the state space and input-output 

forms. In this chapter, we deal with the latter form also called transfer function. The most 

common linear input-output model structures can be derived from one general structure (1). 

The general linear structure consists of a deterministic component, i.e., the plant input , u(k), 

filtered by a linear filter and a noise component, i.e., a white noise, e(k), filtered by a 

corresponding linear filter. 

 
( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

B q C q
y k u k e k

F q A q D q A q
   (1) 
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The q in (1) is the forward shift operator defined as q u(t) = u(t + 1) and q−1 is the delay 
(backward shift) operator, q−1u(t) = u(t − 1).   

The various commonly used structures can be easily derived from the general model 

structure by making some assumptions. The ARX model can be derived from (1) by 

assuming F(q) = D(q) = C(q)= 1. Therefore, the ARX model structure has the form 

 
( ) 1

( ) ( ) ( )
( ) ( )

B q
y k u k e k

A q A q
   (2) 

The Auto Regressive Moving Average with Exogenous Input (ARMAX) can be derived from 
(1) by assuming F(q) = D(q) = 1. 

 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y k u k e k

A q A q
   (3) 

Other linear model structures are listed below: 

Box Jenkins (BJ): 

 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y k u k e k

F q D q
   (4) 

Output Error (OE):  

 
( )

( ) ( ) ( )
( )

B q
y k u k e k

F q
   (5) 

Finite Impulse Response (FIR): 

 ( ) ( ) ( ) ( )y k B q u k e k   (6) 

It should be noted that in FIR model structures the filters are simple delays. Equation (6) can 
be expanded into 

 1 2
1 2( ) ( ... ) ( ) ( )m

my k b q b q b q u k e k        (7) 

The selection of the appropriate model structure for a specific purpose, among other factors, 
depends on the consistency of the model parameters, the number of parameters required to 
describe a system with acceptable degree of  accuracy and the computational load in 
estimating the model parameters. The optimality of model parameters is generally related to 
the bias and consistency of the model. Bias is the systematic deviation of the model 
parameters from their optimal value and inconsistency refers to the fact that the bias does 
not approach zero as the number of data points approach infinity (Nelles, 2001). The most 
widely used linear models are Step Response, ARX and FIR models (Ljung, 1999; Nelles, 
2001). Their popularity is due to the simplicity in estimating the model parameters using 
the popular linear least square method. However, it is known that all of these three model 
structures have serious drawbacks in application. The ARX model structure leads to 
inconsistent parameters for most open-loop identification problems and the FIR and step 
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response model need very large number of parameters to capture the dynamics of a 
system with acceptable accuracy. The inconsistency in the ARX and also in ARMAX 
model parameters is caused by the assumption of common denominator dynamics for 
both the input and noise transfer functions given by 1/A(q), which implies that the plant 
model and the noise model are correlated. In reality, this is rarely the case for open loop 
identification problems. The output error (OE) and the Box Jenkins (BJ) model structures 
assume independent transfer function and noise models, and hence they allow consistent 
parameter estimation. However, determination of the model parameters in both cases 
involves nonlinear optimization. In addition, in case of BJ, because of the large number of 
parameters involved in the equation, it is rarely used in practice, especially, in MIMO 
systems.  

Orthonormal Basis Filter (OBF) models have several advantages over the conventional 

linear models. They are consistent in parameters for most practical open-loop systems and 

the recently developed ARX-OBF and OBF-ARMAX structures lead to consistent parameters 

for closed loop identification also. They require relatively a fewer numbers of parameters to 

capture the dynamics of linear systems (parsimonious in parameters) and the model 

parameters can be easily estimated using linear least square method (Heuberger, et al., 2005; 

Heuberger, et al., 1995; Ninness & Gustafsson, 1997; Van den Hof, et al., 1995). MIMO 

systems can be easily handled using OBF and OBF based structures. In addition, recent 

works by Lemma and Ramasamy (Lemma & Ramasamy, 2011) prove that OBF based 

structures show superior performance for multi-step ahead prediction of systems with 

uncertain time delays compared to most conventional model structures.  

Among the earliest works on rational orthonormal bases was contributed by Takenaka 

(1925) in the 1920’s in relation to approximation via interpolation, with the subsequent 

implications for generalized quadrature formula. In subsequent works, in the 1960s, Walsh  

(1975) contributed extensively in the applications of orthonormal bases for approximation, 

both in discrete time and continuous time analysis. In similar periods, Wiener (Wiener, 

1949) examined applications of continuous time Laguerre networks for the purpose of 

building optimal predictor. Van den Hof, et al., (1995) introduced the generalized 

orthonormal basis filters. They showed that pulse, Laguerre and Kautz filters can be 

generated from inner functions and their minimal balanced realizations. Ninness and 

Gustafsson (1997) unified the construction of orthonormal basis filters. Lemma, et al., (2011) 

proposed an improved method for development of OBF models where the poles and time 

delays of the system can be estimated and used to develop a parsimonious OBF model. On 

another work (Lemma, et al., 2010) it was shown that BJ type OBF models can be easily 

developed by combing structures with AR and ARMA noise model. Some works on closed-

loop identification using OBF based structures have also been presented (Badwe, et al., 2011; 

Gáspár, et al., 1999; Lemma, et al., 2009; Lemma & Ramasamy, 2011). 

2. Development of conventional OBF models  

Consider a discrete time linear system   

 ( ) ( ) ( )y k G q u k  (8) 



 
Frontiers in Advanced Control Systems 256 

where G(q) = transfer function of the system. A stable system, G(q), can be approximately 

represented by a finite–length generalized Fourier series expansion as:  

 
1

( ) ( )
n

i i
i

G q l f q


  (9) 

where {li}, i =1, 2, …, n are the model parameters, n is the number of parameters, and   fi(q) 

are the orthonormal basis filters for the system G(q). Orthonormal basis functions can be 

considered a generalization of the finite length fourier series expansion. Two filters f1 and f2 

are said to be orthonormal if they satisfy the properties: 

 1 2( ), ( ) 0f q f q   (10) 

 1 2( ) ( ) 1f q f q   (11) 

2.1 Common orthonormal basis filters  

There are several orthonormal basis filters that can be used for development of linear OBF 

models. The selection of the appropriate type of filter depends on the dynamic behaviour of 

the system to be modelled. 

Laguerre filter 

The Laguerre filters are first-order lag filters with one real pole. They are, therefore, more 
appropriate for well damped processes. The Laguerre filters are given by 

 
-

-
1

2 (1 )
(1 )

( )

i

i i

pq
f p

q p





,   1p   (12) 

where p is the estimated pole which is related to the time constant, , and the sampling 
interval Ts  of the system by  

 ( / )sTp e   (13) 

Kautz filter 

Kautz filters allow the incorporation of a pair of conjugate complex poles. They are, 
therefore, effective for modeling weakly damped processes. The Kautz filters are defined by 

 
2 2

2 1 2

(1 )(1 )
( , , , )

( 1)
i

a b
f g a b q i

q a b q b


 


  
 (14) 

 
2

2 2

(1 )( )
( , , , )

( 1)
i

b q a
f g a b q i

q a b q b

 


  
 (15) 

where 
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12

2

( 1) 1
( , , , )

( 1)

i
bq a b q

g a b q i
q a b b


    

      
 (16) 

             -1 < a < 1 and -1 < b < 1    n = 1, 2, … 

Generalized orthonormal basis filter  

Van den Hof,  et al., (1995) introduced the generalized orthonormal basis filters and showed 

the existence of orthogonal functions that, in a natural way, are generated by stable linear 

dynamic systems and that form an orthonormal basis for the linear signal space n
2l . Ninness 

& Gustafsson (1997) unified the construction of orthonormal basis filters. The GOBF filters 

are formulated as   

 

2 *1

1

(1 )1
( , )

( ) ( )

i
ji

i
i jj

p qp
f q p

q p q p








    (17) 

where p  {pj : j = 1, 2, 3, …} is an arbitrary sequence of poles inside the unit circle appearing 

in complex conjugate pairs. 

Markov-OBF  

When a system involves a time delay and an estimate of the time delay is available, Markov-

OBF can be used. The time delay in Markov-OBF is included by placing some of the poles at 

the origin (Heuberger, et al., 1995). For a SISO system with time delay equal to d samples, 

the basis function can be selected as:   

 
-i

if z  for i  =1, 2, …, d (18) 

 
d

j j

j

i

i

di z
pq

qp

pq

p
pqf -

1-i

1

*2

∏
)(

)1(

)(

1
),(


 






  for i = 1, 2, …, N (19) 

Patwardhan and Shah (2005) presented a two-step method for estimating time delays from 

step response of GOBF models. In the first step, the time delays in all input-output channels 

are assumed zero and the model is identified with GOBF. In GOBF models, the time delay is 

approximated by a non-minimum phase zero and the corresponding step response is an 

inverse response. The time delay is then estimated from a tangent drawn at the point of 

inflection. 

2.2 Estimation of GOBF poles 

Finding an appropriate estimate of the poles for the filters is an important step in estimating 
the parameters of the OBF models. Arbitrary choice of poles may lead to a non-
parsimonious model. Van den Hof, et al., (2000) showed that for a SISO system with poles  
{aj : | aj | < 1 for j =1, 2 , …, n}, the rate of convergence of the model parameters is 
determined by the magnitude of the slowest Eigen value. 
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1

max
1

n
j k

j k jk

a p

p a







  (20) 

where pk = arbitrary poles. 

Therefore, a good approximation by a small number of parameters can be obtained by 

choosing a basis for which  is small. It is shown that the poles determined by Van den Hof et 
al. method closely match the dominant poles of the system (Heuberger, et al., 2005; Wahlberg, 
1991). Lemma, et al., (2011) proposed a systematic way to estimate the dominant poles and 
time delays of a system from the input-output identification test data. An OBF model is first 
developed with randomly chosen real poles and generalized orthonormal basis filters with 10-
12 terms. The model is simulated to get a noise free step response of the system. One or two 
poles of the system are estimated from the resulting noise free step response of the OBF model 
and it is also observed whether the system is weakly damped or not. This process can be 
repeated until some convergence criterion is fulfilled. The procedure normally converges after 
two or three iterations. The procedure is iiterations and is illustrated in Example 1. 

2.3 Model parameter estimation 

In OBF models, the output can be expressed as a linear combination of the input sequence 
filtered by the respective filters. For a finite number of parameters, from (9) we get 

 1 1 2 2ˆ( ) ( ) ( ) ( ) ( ) ... ( ) ( )n ny k l f q u k l f q u k l f q u k     (21) 

Equation (21) is not linear in its parameters and therefore estimation of parameters using 
linear least square method is impossible. However, it can be modified such that it is linear in 
parameters, as 

 1 1 2 2ˆ( ) ( ) ( ) ... ( )f f n fny k l u k l u k l u k     (22) 

where ( )fiu k  is the filtered input given by 

 ( ) ( ) ( )fi iu k f q u k  (23) 

Once the dominant poles of the system and the types of filters are chosen, the filters  
f1, f2, …, fn  are fixed. The filtered inputs, ufi, are determined by filtering the input sequence with 
the corresponding filter. For an OBF model with n parameters, the prediction can be started 
from the nth instant in time. Equation (22) can be expanded and written in matrix form as 

  

1 21 1

1 22 2

1 2

( ) ( 1) . . . (1)ˆ

ˆ ( 1) ( ) . . . (2)

. .. . .

. ..

. .. . .

ˆ ( 1) ( 2) . . . ( )

f f fnn

f f fnn

N nf f fn

u n u n uy l

u n u n uy l

y lu N u N u N n





    
        
    
    
     
    
    
          

 (24) 
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where N is the future time instant.  

Equation (24) in vector-matrix notation is given by 

 ŷ X  (25) 

where =  1 2, ,...,
T

nl l l is the parameter vector, ŷ  is the output vector ŷ =[yn+1, yn+2,…, yN] 

and X is the regressor matrix given by 

 

1 2

1 2

1 2

( ) ( 1) . . . (1)

( 1) ( ) . . . (2)

. . .

.

. . .

( 1) ( 2) . . . ( )

f f fm

f f fm

f f fm

u n u n u

u n u n u

X

u N u N u N n

 
 

 
 
 
  
 
 
    

 (26) 

Since (25) is linear in parameters, the model parameters can be estimated using linear least 
square formula (27).  

 1ˆ ( )T TX X X y    (27) 

Algorithm 1 

 Use GOBF structure and two randomly selected stable poles and develop (6 to 12) 
sequence of GOBF filters   

 Develop the regressor matrix (26) using the filters developed at step (1) and the input 
sequence u(k)  

 Use the linear least square formula (27) to estimate the model parameters 

 Make a better estimate of the poles of the system from the step response of the GOBF 
model 

 Repeat steps 1 to 4 with the new pole until a convergence criterion is satisfied 

The Percentage Prediction Error (PPE) can be a good convergence criterion. 

Example 1 

An open loop identification test for SISO system is carried out and the input-output data 
shown in Figure 1 is obtained. A total of 4000 data points are collected at one minute 
sampling interval with the intention of using 3000 of them for modelling and 1000 for 
validation. Develop a parsimonious OBF model using the data. No information is available 
about the pole of the system. 

Since there is no information about the poles of the system, two poles: 0.3679 and 0.9672 are 
arbitrarily chosen for the first iteration of the model. A GOBF model with six terms (you can 
choose other numbers and compare the accuracy if you need) is first developed with these 
two poles alternating. Note that, once the poles, type of filter, i.e., GOBF and the number of 
terms is fixed the filters are fixed and the only remaining value to determine the model is 
the model parameters. 



 
Frontiers in Advanced Control Systems 260 

 

Fig. 1. Input-output data used for identification 

To estimate the model parameters the regressor matrix is developed and used together with 
the plant measured output y(k) in the least square formula (27) to find the model 
parameters: 

[-0.2327    0.8733   -0.2521    0.8854   -0.8767   -0.2357] 

The percentage prediction error (PPE) is found to be 9.7357. For the second iteration, the 
poles of the system are estimated from the noise free step-response of the GOBF model 
shown in Figure 2. 

 

Fig. 2. Step response of the noise free OBF model developed in the first iteration 
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The OBF model parameters, the PPE and poles estimated at each iteration are presented in 
Table 1.  

 

Iterations PPEs Poles Model Parameters 

1 9.7357 [0.3679    0.9672] [0.2327  0.8733 -0.2521  0.8854 -0.8767 -0.2357] 
2 9.5166 [ 0.9467  0.9467] [0.7268 0.7718 0.4069 -0.5214 0.0273 0.0274] 
3 9.5149 [0.9499  0.9306] [0.4992 0.9781 0.4723 -0.3377 0.1387 -0.0305] 

Table 1. The results of the OBF iterative identification method 

Note that the parameters in the last iteration together with the OBF filters determine the 

model of the plant. The model accuracy is judged by cross validation. Figure 3 shows the 

measured output data for sampling instants 3001 to 4000  (this data is not used for 

modelling) and the result of the OBF simulation for the plant input for the instants 3001 to 

4000.  

3. BJ- Type models by combining OBF with conventional noise model 
structures 

In Example 1, we developed a GOBF model to capture the deterministic component of the 
plant. The residual of the model however was just discarded. In reality, this residual may 
contain useful information about the plant. However, as it is already noted, conventional 
OBF models do not include noise models. Patwardhan and Shah ( 2005) showed that the 
regulatory performance of MPC system improves significantly by including a noise model 
to the OBF simulation model. In their work, the residual of the OBF model is whitened with  

 

Fig. 3. Validation of the final GOBF model with 6 parameters. 

Auto Regressive (AR) noise model. The AR noise model is parameterized in terms of OBF 
parameters and a minimal order state space model was realized. In this section, an 
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3.1 Model structures 

The BJ model structure is known to be the most flexible and comprehensive structure of the 
conventional linear models(Box & Jenkins, 1970).  

 
( ) ( )

( ) ( ) ( )
( ) ( )

B q C q
y k u k e k

F q D q
   (28) 

In (28) B(q)/F(q) describes the plant model whereas C(q)/D(q) describes the noise model. 
The BJ-type model structure proposed by Lemma, et al., (2010) is obtained by replacing the 
plant model structure with OBF model structure. First, the OBF-AR structure, i.e., with 
C(q)=1 is discussed then the OBF-ARMA structure is discussed. 

The OBF-AR model structure assumes an OBF and AR structures for the plant and noise 
transfer functions, respectively.  

 
1

( ) ( ) ( ) ( )
( )

OBFy k G q u k e k
D q

   (29) 

The OBF-ARMA structure has more flexible noise model than the OBF-AR structure as 
given by (30). 

 
( )

( ) ( ) ( ) ( )
( )

OBF

C q
y k G q u k e k

D q
   (30) 

3.2 Estimation of model parameters 

The model parameters of both OBF-AR and OBF-ARMA structures are estimated based on 
the prediction error method as explained below. 

Estimation of parameters of OBF-AR model  

The prediction error e(k) is defined as 

 ˆ( ) ( ) ( | 1)e k y k y k k    (31) 

Introducing the prediction error (31) in (29) and rearranging leads to  

 
 -ˆ( | 1) ( ) ( ) ( ) 1 ( ) ( )OBFy k k D q G q u k D q y k  

 (32) 

Assuming that the noise sequence is uncorrelated to the input sequence, the parameters of 
the OBF model can be estimated separately. These parameters can then be used to calculate 
the OBF simulation model output using (32).  

 ( ) ( ) ( )obf OBFy k G q u k  (33) 

Inserting (33) in (32) 

  ˆ( | 1) ( ) ( ) 1 ( ) ( )obfy k k D q y k D q y k     (34) 
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Equation (34) is linear in parameters since yobf (k) is already known. With D(q) monic, (34) 

can be expanded and rearranged to yield  

 1 2ˆ( | 1) ( ) ( 1) ( 2) ... ( )obf ny k k y k d r k d r k d r k n          (35) 

where  

  n is the order of the polynomial D(q) 

( ) ( ) ( )obfr i y i y i     

Note that r(i) represents the residual sequence of the output sequence y(k) of the system 
from the OBF model output yobf(k). The model parameters in (35) can be calculated by the 
linear least square formula (27) with the regressor matrix given by (36).  

 

( ) ( 1) ( 2) . . . (1)

( 1) ( ) ( 1) . . . (2)

. . . .

. . . .

. . . .

( ) ( 1) ( 2) . . . ( )

obf

obf

obf

y n r n r n r

y n r n r n r

X

y N r N r N r N n

      
 

      
 
 
 
 
 
        

 (36) 

where n = nD. 

The step-by-step procedure for estimating the OBF-AR model parameters, explained above, 

is outlined in Algorithm 2. 

Algorithm 2 

1. Develop a parsimonious OBF model  

2. Determine the output sequence of the OBF model yobf (k) for the corresponding input 

sequence u(k) 

3. Determine the residuals of the OBF model r(k ) = y(k) - yobf (k) 

4. Develop the regression matrix X given by (36) 

5.  Determine the parameters of the noise model using (27) enforcing monic condition, i.e., 

d0 = 1. 

Estimation of parameters of OBF-ARMA model  

The OBF-ARMA structure is given by (28) 

 
( )

( ) ( ) ( ) ( )
( )

OBF

C q
y k G q u k e k

D q
   (28) 

Substituting the prediction error (31) in (28) and rearranging yields 

 ˆ( ) ( | 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )OBFC q y k k D q G q u k D q y k C q y k     (37) 
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As in the case of OBF-AR model, if the noise sequence is uncorrelated with the input 

sequence, the OBF model parameters can be calculated separately and be used to calculate 

the simulation model output yobf(k) using (33).  

Introducing (33) in (37) results in  

 ˆ( ) ( | 1) ( ) ( ) ( ) ( ) ( ) ( )obfC q y k k D q y k D q y k C q y k     (38) 

Expanding and rearranging (37) we get 

 
1 2

1 2

ˆ( | 1) ( ) ( 1) ( 2) ... ( )

( 1) ( 2) . . . ( )

obf m

n

y k k y k d r k d r k d r k m

c e k c e k c e k n

         

     
 (39) 

The parameter vector and the regressor matrix are derived from (39) and are given by (40) 

and (41) 

 1 2 1 2[ ... ... ]Tm nd d d c c c   (40) 

where    n = nC, the order of the polynomial C(q) 

m = nD, the order of the polynomial D(q) 

mx=max (m, n)+1 

   

 1

( ) ( 1) ( 2) ... ( ) ( 1) ( 2) . . . ( )

( 1) ( ) ( 1) ... ( 1) ( ) ( 1). . . ( 1)

. . . . . . .

. . . . . . .

. . . . . . .

( ) ( 1) ( 2) ... ( 1) ( 2). . . ( 1)

obf

obf

obf

X

r N n

y mx r mx r mx r mx n e mx e mx e mx m

y mx r mx r mx r mx n e mx e mx e mx m

y N r N r N e N e N e N m



  

         

          

        

 
 
 
 
 
 
 
 
 
 

 (41) 

 [ ( ) ( 1) ... ( )]Ty y mx y mx y N   (42) 

Equation (39) in the form shown above appears a linear regression. However, since the 
prediction error sequence, e(k-i), itself is a function of the model parameters, it is nonlinear 
in parameters. To emphasize the significance of these two facts such structures are 
commonly known as pseudo-linear(Ljung, 1999; Nelles, 2001). The model parameters can be 
estimated by either a nonlinear optimization method or an extended least square method 
(Nelles, 2001). The extended least square method is an iterative method where the 
prediction error sequence is estimated and updated at each iteration using the prediction 
error of OBF-ARMA model. A good initial estimate of the prediction error sequence is 
obtained from the OBF-AR model. The parameters for the noise model are estimated using 
the linear least square method with (40) and (41) as parameters vector and regressor matrix, 
respectively. From the derivation, it should be remembered that all the poles and zeros of 
the noise models should be inside the unit circle and both the numerator and denominator 
polynomials should be monic. If an OBF-AR model with a high-order noise model can be 
developed, the residuals of the OBF-AR model will generally be close to white noise. In such 
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cases, the noise model parameters of the OBF-ARMA model can be estimated using linear 
least square method in one step. The step-by-step procedure for estimating OBF-ARMA 
model parameters is outlined in Algorithm 3.  

Algorithm 3  

1. Develop a parsimonious OBF model  
2. Determine the OBF simulation model output yobf(k) for the corresponding input 

sequence u(k) 
3. Determine the residual of the simulation model r(k)= y(k)- yobf (k) 
4. Develop OBF-AR prediction model 
5. Determine the residual of the OBF-AR model, ˆ( )e k  

6. Use yobf (k), r(k) and ˆ( ) ( )e k e k to develop the regressor matrix (40) 

7. Use the linear least square formula (27) to estimate the parameters of the OBF ARMA 
model  

8. Re-estimate the prediction error ˆ( ) ( ) ( )e k y k y k  from the residual of OBF-ARMA 

model developed in step 7 
9. Repeat steps 6 to 8 until convergence is achieved 

Convergence criteria 

The percentage prediction error (PPE) can be used as convergence criteria, i.e., stop the 
iteration when the percentage prediction error improvement is small enough.  

 

2

1

2

1

ˆ( ( ) ( ))

100

( ( ) ( )

n

k
n

k

y k y k

PPE

y k y k






 






 

where y represents the mean value of measurements { ( )y k } and ˆ( )y k  predicted value of 

( )y k . 

3.3 Multi-step ahead prediction 

Multi-step ahead predictions are required in several applications such as model predictive 
control. In this section multi-step ahead prediction equation and related procedures for both 
OBF-AR and OBF-ARMA are derived. 

Multi-step ahead prediction using OBF-AR model 

Using (33) in (29) the OBF-AR equation becomes 

 
1

( ) ( ) ( )
( )

obfy k y k e k
D q

   (43) 

i-step ahead prediction is obtained by replacing k with k + i 

 
1

( ) ( ) ( )
( )

obfy k i y k i e k i
D q

      (44) 
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To calculate the i-step ahead prediction, the error term should be divided into current and 

future parts as shown in (45). 

 
( )

( ) ( ) ( ) ( ) ( )
( )

i
obf i

F q
y k i y k i e k E q e k i

D q
        (45) 

The last term in (45) contains only the future error sequence which is not known. However, 

since e(k) is assumed to be a white noise with mean zero, (45) can be simplified to  

 
( )

ˆ( | ) ( ) ( )
( )

i
obf

F q
y k i k y k i e k

D q
      (46) 

Fi and Ei are determined by solving the Diophantine equation (47) which is obtained by 

comparing  (44) and (45)  

 
( )1

( )
( ) ( )

i
i

i

q F q
E q

D q D q



    (47) 

Equation (46) could be taken as the final form of the i-step ahead prediction equation. 

However, in application, since e(k) is not measured the equation cannot be directly used. 

The next steps are added to solve this problem. 

Rearranging (43) to get 

 
1

( ) ( ) ( )
( )

obfe k y k y k
D q

   (48) 

Using (48) in (46) to eliminate e(k) 

 ˆ( | ) ( ) ( )( ( ) ( ))obf i obfy k i k y k i F q y k y k      (49) 

Rearranging (49) 

 ˆ( | ) ( )(1 ( ) ) ( ) ( )i
obf i iy k i k y k i F q q F q y k      (50) 

Rearranging the Diophantine equation (47) 

  1 ( ) ( ) ( )i
i iq F q D q E q   (51) 

Using (51) in (50)  

 ˆ( | ) ( ) ( ) ( ) ( ) ( )i obf iy k i k E q D q y k i F q y k     (52) 

Equation (52) is the usable form of the multi-step ahead prediction equation for the OBF-AR 

model. Given an OBF-AR model, the solution of the Diophantine equation to get Ei and Fi 

and the prediction equation (52) forms the procedure for i-step ahead prediction of the OBF-

AR model. 
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Multi-step ahead prediction using OBF-ARMA model 

Using (33) in (30) the OBF-ARMA equation becomes 

 
( )

( ) ( ) ( )
( )

obf

C q
y k y k e k

D q
    (53) 

i-step ahead prediction is obtained by replacing k with k + i 

 
( )

( ) ( ) ( )
( )

obf

C q
y k i y k i e k i

D q
      (54) 

To calculate the i-step ahead prediction, the error term should be divided into current and 
future parts. 

 ( )
( ) ( ) ( ) ( ) ( )

( )
i

obf i

F q
y k i y k i e k E q e k i

D q
        (55) 

Since e(k) is assumed to be a white noise with mean zero, the mean of Ei(q) e(k+i) is equal to 
zero, and therefore (55) can be simplified to  

 
( )

ˆ( | ) ( ) ( )
( )

i
obf

F q
y k i k y k i e k

D q
     (56) 

Fi and Ei are determined by solving the Diophantine equation (57) which is obtained by 
comparing  (54) and (56)  

 ( ) ( )
( )

( ) ( )

i
i

i

C q q F q
E q

D q D q



   (57) 

Rearranging (57) 

  1 1
( ) ( ) ( )

( ) ( )
obfe k y k y k

D q C q
   (58) 

Using (58) in (56) to eliminate e(k) 

  ( )
ˆ( | ) ( ) ( ) ( )

( )
i

obf obf

F q
y k i k y k i y k y k

C q
      (59) 

Rearranging (59) 

 
( ) ( )

ˆ( | ) ( ) 1 ( )
( ) ( )

i
i i

obf

F q q F q
y k i k y k i y k

C q C q

 
      

 
 (60) 

Rearranging the Diophantine equation (60) 

 ( ) ( ) ( )
1

( ) ( )

i
i iq F q D q E q

C q C q

 
   

 
 (61) 
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Using (61) in (60) results in the final usable form of the i-step ahead prediction for OBF-
ARMA model.  

 ( ) ( ) ( )
ˆ( | ) ( ) ( )

( ) ( )
i i

obf

E q D q F q
y k i k y k i y k

C q C q
     (62) 

Since yobf (k+i) is the output sequence of the simulation OBF model, if the OBF model 
parameters are determined its value depends only on the input sequence u(k+i). Therefore, 
the i-step ahead prediction according to (62) depends on the input sequence up to instant k+i 
and the output sequence up to instant k.  

Multiple-Input Multiple-Output (MIMO) systems 

The procedures for estimating the model parameters and i-step ahead prediction can be 
easily extended to MIMO systems by using multiple-MISO models. First, a MISO OBF 
model is developed for each output using the input sequences and the corresponding 
orthonormal basis filters. Then, AR model is developed using yobf(k) and the residual of the 
OBF simulation model. The OBF-ARMA model is developed in a similar manner, with an 
OBF model relating each output with all the relevant inputs and one ARMA noise model for 
each output using Algorithm (Lemma, et al., 2010).  

Example 2 

In this simulation case study, OBF-AR and OBF-ARMA models are developed for a well 
damped system that has a Box-Jenkins structure. They are developed with various orders 
and compared within themselves and with each other. The system is represented by (63). 
Note that both the numerator and denominator polynomials of the noise model are monic 
and their roots are located inside the unit circle.  

 
1 2 1

6
1 2 3 1 2

1 1.3 0.42 1 0.6
( ) ( ) ( )

1 2.55 2.165 0.612 1 1.15 0.58

q q q
y k q u k e k

q q q q q

  


    
  

 
    

  (63) 

An identification test is simulated on the system using MATLAB and  the input–output 
sequences shown in Figure 4 is obtained.       

 

Fig. 4. Input-output data sequence generated by simulation of (63)  
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The mean and standard deviations of the white noise, e(k), added to the system are  0.0123 
and 0.4971, respectively, and the signal to noise ratio (SNR) is 6.6323 . The input signal is a 
pseudo random binary signal (PRBS) of 4000 data points generated using the ‘idinput’ 
function in MATLAB with band [0  0.03] and levels [-0.1 0.1]. Three thousand of the data 
points are used for model development and the remaining 1000 for validation. The 
corresponding output sequence of the system is generated using SIMULINK with a 
sampling interval of 1 time unit. 

OBF-AR model  

First a GOBF model with 6 parameters and poles 0.9114 and 0.8465 is developed and the 
model parameters are estimated to be [3.7273 5.6910 1.0981 -0.9955 0.3692 -0.2252] using 
Algorithm 1. The AR noise model developed with seven parameters is given by:  

 
- - - - - - -- - 0.3154 -1 2 3 4 5 6 7

1 1

( ) 1 1.7646 1.6685 - 1.0119 0.5880 0.1435 0.0356D q q q q q q q q


  
 (64) 

The spectrum of the noise model of the system compared to the spectrum of the model for 3, 
5 and 7 parameters is shown in Figure 5. The percentage predication errors of the spectrums 
of the three noise models compared to spectrum of the noise model in the system is given in 
Table 2.  

nD PPE 

3 
5 
7 

54.3378 
1.5137 
0.9104 

Table 2. PPE of the three AR noise models of system   

 

Fig. 5. Spectrums of the AR noise models for nD = 2, 5 and 7 compared to the noise transfer 
function of system  
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It is obvious from both Figure 4 and Table 2 that the noise model with nD = 7 is the closest to 

the noise transfer function of the system. Therefore, this noise model together with the 

GOBF model described earlier form the OBF-AR model that represent the system.  

4. Closed loop identification using OBF-ARX and OBF-ARMAX structures 

When a system identification test is carried out in open loop, in general, the input  

sequence is not correlated to the noise sequence and OBF model identification is  

carried out in a straight forward manner. However, when the system identification test is 

carried out in closed loop the input sequence is correlated to the noise sequence and 

conventional OBF model development procedures fail to provide consistent model 

parameters.  

The motivation for the structures proposed in this section is the problem of closed-loop 

identification of open-loop unstable processes. Closed-loop identification of open-loop 

unstable processes requires that any unstable poles of the plant model should be shared by 

the noise model H(q) otherwise the predictor will not be stable. It is indicated by both Ljung 

(1999) and Nelles (2001) that if this requirement is satisfied closed-loop identification of 

open-loop unstable processes can be handled without problem. In this section, two different 

linear structures that satisfy these requirements and which are based on OBF structure are 

proposed. While the proposed models are, specially, effective for developing prediction 

model for open-loop unstable process that are stabilized by feedback controller, they can be 

used for open-loop stable process also. These two linear model structures are OBF-ARX and 

OBF- ARMAX structures. 

4.1 Closed–loop identification using OBF-ARX model 

Consider an OBF model with ARX structure given by (65) 

 
( ) 1

( ) ( ) ( )
( ) ( )

OBFG q
y k u k e k

A q A q
   (65) 

Rearranging (65)  

 ˆ( | 1) ( ) (1 ( )) ( )OBFy k k G q A q y k     (66) 

With A(q) monic (66) can be expanded to  

 1 2ˆ( | 1) ( ) ( 1) ( 2) ( )OBF my k k G q a y k a y k a y k m         (67) 

Note that, (67) can be further expanded to  

 
1 1 2 2

1 2

ˆ( | 1) ( ) ( ) ... ( )

( 1) ( 2) ... ( )

f f m fm

n

y k k l u k l u k l u k

a y k a y k a y k n

     

     
 (68) 

Therefore, the regressor matrix for the OBF-ARX structure is given by 
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1 2

1 2

( ) ( 1)... ( ) ( 1) ( 2)... ( )

. . . . . .

. . . . . .

. . . . . .

( ) ( 1)... ( ) ( 1) ( 2)... ( )

f f fm

f f fm

u mx u mx u mx m y mx y nx y mx n

X

u N u N u N m y N y N y N n

        
 
 
 
 
 
         

 (69) 

where m = order of the OBF model 

           n = order of A(q) 
        mx = max (n, m) + 1  
         ufi = input u filtered by the corresponding OBF filter fi  

The parameters are estimated using (69) in the least square equation (27). Note that in using 

(27) the size of y must be from mx to N. 

4.2 Multi-step ahead prediction using OBF-ARX model 

Consider the OBF-ARX model  

 
( ) 1

( ) ( )
( ) ( )

obfy k
y k e k

A q A q
    (70) 

i-step ahead prediction is obtained by replacing k with k + i 

 
( ) 1

( ) ( )
( ) ( )

obfy k i
y k i e k i

A q A q


     (71) 

To calculate the i-step ahead prediction, the noise term can be divided into current and 
future parts.  

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

obf i
i

y k i F q
y k i e k E q e k i

A q A q


       (72) 

Since e(k) is assumed to be a white noise with mean zero, the mean of Ei(q) e(k+i) is equal to 

zero (72) can be simplified to   

 
( ) ( )

ˆ( | ) ( )
( ) ( )

obf i
y k i F q

y k i k e k
A q A q


    (73) 

On the other hand rearranging (71) 

 
( ) ( )

( ) ( ) ( )
( ) ( )

i
obf i

i

y k i q F q
y k i e k i E q

A q A q

  
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 
 (74) 

Comparing (70) and (73), Fi and Ei can be calculated by solving the Diophantine equation.  
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( )1

( )
( ) ( )

i
i

i

q F q
E q

A q A q



   (75) 

Rearranging (70) 

 
( )1

( ) ( )
( ) ( )

obfy k
e k y k

A q A q
   (76) 

Using (76) in (73) to eliminate e(k) 

( ) ( )
ˆ( | ) ( ) ( )

( ) ( )

obf obf
i

y k i y k
y k i k F q y k

A q A q

  
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( )1

( ) ( ) ( )
( ) ( )

i
i

obf i

q F q
y k i F q y k

A q A q

 
     

 
 (77) 

Rearranging the Diophantine equation (76) 

 
( )1

( )
( ) ( )

i
i

i

q F q
E q

A q A q



   (78) 

Finally using (78) in (77), the usable form of the i-step ahead prediction formula, (79), is 
obtained. 

 ˆ( | ) ( ) ( ) ( ) ( )i obf iy k i k E q y k i F q y k     (79) 

Note that in (79), there is no any denominator polynomial and hence no unstable pole. 

Therefore, the predictor is stable regardless of the presence of unstable poles in the OBF-

ARX model. It should also be noted that, since yobf (k+i) is the output sequence of the 

simulation OBF model, once the OBF model parameters are determined its value  

depends only on the input sequence u(k+i). Therefore, the i-step ahead prediction according 

to (79) depends on the input sequence up to instant k+i and the output sequence up to 

instant k.  

4.3 Closed–loop identification using OBF-ARMAX model 

Consider the OBF model with ARMAX structure 

 
( ) ( )

( ) ( ) ( )
( ) ( )

OBFG q C q
y k u k e k

A q A q
   (80) 

Rearranging (80) 

 ˆ( | 1) ( ) (1 ( )) ( ) ( ( ) 1) ( )OBFy k k G q A q y k C q e k       (81) 

With A(q) and C(q) monic, expanding (74) 
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     

 (82) 

From (83) the regressor matrix is formulated for orders m, n, p  

1 2

1 2

( ) ( 1)... ( ) ( 1) ( 2)... ( )

. . . . . .

. . . . . .

. . . . . .

( ) ( 1)... ( ) ( 1) ( 2)... ( )

f f fm

f f fm

u mx u mx u mx m y mx y nx y mx n

X

u N u N u N m y N y N y N n

       





        

 

 

( 1) ( 2)... ( )

. . .

. . .

. . .

( 1) ( 2)... ( )

e mx e mx e mx p

e N e N e N p

      





      

 (83) 

where m = order of the OBF model 

                       n = order of the A(q) 

                       p = order of C(q) 

                     mx = max ( n, m, p) + 1  

                       ufi= input u filtered by the corresponding OBF filter fi  

                     e(i) = the prediction error 

To develop an OBF-ARMAX model, first an OBF-ARX model with high A(q) order is 
developed. The prediction error is estimated from this OBF-ARX model and used to form 
the regressor matrix (83). The parameters of the OBF-ARMAX model are, then, estimated 
using (83) in (27). The prediction error, and consequently the OBF-ARMAX parameters can 
be improved by estimating the parameters of the OBF-ARMAX model iteratively. 

Multi-step ahead prediction using OBF-ARMAX model 

A similar analysis to the OBF-ARX case leads to a multi-step ahead prediction relation given 
by 

 
( ) ( )

ˆ( | ) ( ) ( )
( ) ( )

i i
obf

E q F q
y k i k y k i y k

C q C q
     (84) 

where Fi and Ei are calculated by solving the Diophantine equation  
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C q q F q
E q

A q A q



   (85) 



 
Frontiers in Advanced Control Systems 274 

When OBF-ARMAX model is used for modeling open-loop unstable processes that are 
stabilized by a feedback controller, the common denominator A(q) that contains the unstable 
pole does not appear in the predictor equation, (84). Therefore, the predictor is stable 
regardless of the presence of unstable poles in the OBF-ARMAX model, as long as the noise 
model is invertible. Invertiblity is required because C(q) appears in the denominator. It 
should also be noted that, since yobf (k+i) is the output sequence of the OBF simulation 
model, once the OBF model parameters are determined its value depends only on the input 
sequence u(k+i). Therefore, the i-step ahead prediction according to (84) depends on the 
input sequence up to instant k+i and the output sequence only up to instant k.  

5. Conclusion 

OBF models have several characteristics that make them very promising for control relevant 
system identification compared to most classical linear models. They are parsimonious 
compared to most conventional linear structures. Their parameters can be easily calculated 
using linear least square method. They are consistent in their parameters for most practical 
open-loop identification problems. They can be used both for open-loop and closed-loop 
identifications. They are effective for modeling system with uncertain time delays. While the 
theory of linear OBF models seems getting matured, the current research direction is in OBF 
based non-linear system identification and their application in predictive control scenario. 
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