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1. Introduction

Model predictive control (MPC) is a multivariable feedback control technique used in a wide
range of practical settings, such as industrial process control, stochastic control in economics,
automotive and aerospace applications. As they are able to handle hard input and output
constraints, a system can be controlled near its physical limits, which frequently results in
performance superior to linear controllers (Maciejowski, 2002), specially for multivariable
systems. At each sampling instant, predictive controllers solve an optimization problem to
compute the control action over a finite time horizon. Then, the first of the control actions from
that horizon is applied to the system. In the next sample time, this policy is repeated, with
the time horizon shifted one sample forward. The optimization problem takes into account
estimates of the system output, which are computed with the input-output data up to that
instant, through a mathematical model. Hence, in MPC applications, a suitable model to
generate accurate output predictions in a specific horizon is crucial, so that high performance
closed-loop control is achieved. Actually, model development is considered to be, by far, the
most expensive and time-consuming task in implementing a model predictive controller (Zhu
& Butoyi, 2002).

This chapter aims at discussing parameter estimation techniques to generate suitable models
for predictive controllers. Such a discussion is based on the most noticeable approaches
in MPC relevant identification literature. The first contribution to be emphasized is that
these methods are described in a multivariable context. Furthermore, the comparisons
performed between the presented techniques are pointed as another main contribution, since
they provide insights into numerical issues and the exactness of each parameter estimation
approach for predictive control.

2. System identification for model predictive control

The dominating approach of the system identification techniques is based on the classical
prediction error method (PEM) (Ljung, 1999), which is based on one-step ahead predictors.
Predictive control applications demand models that generate reliable predictions over an
entire prediction horizon. Therefore, parameters estimated from objective functions based
on multi-step ahead predictors, generally result in better models for MPC applications (see
Shook et al. (1991) and Gopaluni et al. (2004) for rigorous arguments). Since the last decade,
an intense research has been done in order to develop system identification methods focused
on providing appropriate models for model predictive control. Such methods are denoted
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as model relevant identification (MRI) in the literature. Strictly speaking, MRI algorithms
deal with the problem of estimating model parameters by minimizing multi-step objective
functions.

Theoretically, if the model structure exactly matches the structure of the actual system, then
the model estimated from a one-step ahead predictor is equivalent to the maximum likelihood
estimate, which also provides optimal multi-step ahead predictions. However, in practice,
even around an operating point, it is not possible to propose a linear model structure that
exactly matches the system to be identified. Consequently, any estimated model has modeling
errors associated with the identification algorithm. In these circumstances, models tuned for
multi-step ahead predictions are more adequate for high closed-loop performance when using
predictive controllers (Huang & Wang, 1999). In other words, when there is a certain amount
of bias due to under-modeling (which is the more typical case), the MRI may be considered a
way of distributing this bias in a frequency range that is less important for control purposes
(Gopaluni et al., 2003).

Before formulating the parameter estimation problem in the MRI context, the discrete-time
linear model structures to be used are specified.

2.1 Model parameterization

Consider a linear discrete-time system S with m inputs and p outputs

y(t) = G0(q)u(t) + H0(q)e(t) , (1)

where y(t) is the p-dimensional output column vector at sampling instant t, u(t) is the
m-dimensional input column vector and e(t) is a p-dimensional zero-mean white noise
column vector with a p × p diagonal covariance matrix R. The system S is characterized
by the filter matrices G0(q) and H0(q). The process1 and the noise models of S are denoted by
G(q, θ) and H(q, θ), respectively. In this work, the system model is represented using matrix
fraction descriptions (MFD) of the form

G(q, θ) = F−1(q)B(q) (2)

H(q, θ) = D−1(q)C(q) . (3)

where B(q), C(q), D(q) and F(q) are matrices of polynomials in the shift operator q with
dimensions p × m, p × p, p × p and p × p, respectively. The parameter vector θ is composed
of the coefficients of the polynomials in such matrices. Thus, in order to determine θ, one
needs to further specify the polynomial matrices in (2) and (3). The matrix B(q) takes the form

B(q) =

⎡

⎢

⎣

B11(q) · · · B1m(q)
...

. . .
...

Bp1(q) · · · Bpm(q)

⎤

⎥

⎦
, (4)

whose entries are µij − 1 degree polynomials

Bij(q) = b
(1)
ij q−1 + . . . + b

(µij)
ij q−µij ,

1 Sometimes (Ljung, 1999; Zhu, 2001, e.g.), the process model is referred to as transfer function.
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for i ∈ {1, . . . , p} and j ∈ {1, . . . , m}. One of the simplest choice to parameterize the other
matrices is through the diagonal form MFD, in which C(q), D(q) and F(q) are diagonal
polynomial matrices and their nonzero polynomials are all monic, e.g.,

F(q) =

⎡

⎢

⎢

⎢

⎢

⎣

F11(q) 0 · · · 0

0 F22(q)
...

...
. . . 0

0 · · · 0 Fpp(q)

⎤

⎥

⎥

⎥

⎥

⎦

, (5)

where the entries of F(q) are νi degree polynomials of the form

Fii(q) = 1 + f
(1)
ii q−1 + . . . + f

(νi)
ii q−νi ,

for each i ∈ {1, 2, . . . , p}. The diagonal matrices C(q) and D(q), as well as their respective
entries, are defined analogously.

When the diagonal form is adopted, it is possible to decouple the multi-input multi-output
model into a set of p multi-input single-output (MISO) models in the form

y1(t) = F−1
11 (q)

m

∑
j=1

B1j(q)uj(t) +
C11(q)

D11(q)
e1(t)

... =
... (6)

yp(t) = F−1
pp (q)

m

∑
j=1

Bpj(q)uj(t) +
Cpp(q)

Dpp(q)
ep(t) ,

in which yi and uj denote the ith output and the jth input, respectively.

Unless otherwise stated, it is assumed that all the nonzero polynomials of the matrices have
the same degree n, that is to say µij = νi = n, for i ∈ {1, . . . , p} and j ∈ {1, . . . , m}. Although
this degree is in general not the same as the McMillan degree, this choice considerably
simplifies the order selection problem and, consequently, makes the model structure more
suitable for applications in large scale processes.

Besides being simple to understand, the diagonal form has some relevant properties for
applications in system identification (Zhu, 2001). The main of them is that algorithms
developed for the SISO (single-input single-output) processes can be directly generalized
for the multivariable case. Nevertheless, if there are dynamic iterations between different
outputs, the estimated model based on the diagonal form can present a larger bias error (Laurí
et al., 2010). Alternatively, one can add elements outside the diagonal of F(q) , not necessarily
monic polynomials, with the purpose of incorporating the dynamic iteration between the
process outputs. This approach gives rise to another MFD named "full polynomial form"
(Ljung, 1999), in which any F(q) entry may be nonzero. This parameterization is also
employed in one of the identification methods described in Section 3.

Next, the multi-step objective function used as the basis for the development of the MRI
algorithms is presented.
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2.2 The model relevant identification cost function

Firstly, let us define the p × p filter matrix

Wk(q, θ) �

(

k−1

∑
l=0

h(l)q−l

)

H−1(q, θ) , (7)

where h(l) is the lth impulse response coefficient of H(q, θ).

Thus, the k-step ahead predictor of the output vector (i.e., the output prediction equation at
t + k with data available up to instant t) may be expressed as (Ljung, 1999)

ŷ(t + k|t, θ) = Wk(q, θ)G(q, θ)u(t + k) + (I − Wk(q, θ)) y(t + k) . (8)

According to (8), the k-step ahead prediction error is

ε(t + k|t, θ) = y(t + k)− ŷ(t + k|t, θ)

= Wk(q, θ) (y(t + k)− G(q, θ)u(t + k)) . (9)

From (7)-(9), note that the k-step prediction error is related to the one-step through the filter
matrix

Lk(q, θ) �
k−1

∑
i=0

h(i)q−i , (10)

such that
ε(t + k|t) = Lk(q, θ)ε(t + k|t + k − 1) . (11)

As argued previously, the main objective of the MRI methods is to provide models that are
optimized for the generation of predictions over an entire prediction horizon. So, a natural
choice for the criterion of the parameter estimation problem is the cost function

Jmulti(P, θ) =
P

∑
k=1

N−k

∑
t=0

‖ε(t + k|t, θ)‖2
2 , (12)

where ‖ · ‖2 denotes the ℓ2 norm. Hence, Jmulti(P, θ) quantifies the mean-square error, based
on predictions ranging from 1 to P steps ahead in a dataset of length N.

The challenge in estimating the model parameters by minimizing (12) is that such a criterion
is highly nonlinear in the model parameters. Therefore, suitable optimization algorithms are
necessary, so that local minima or convergence problems are avoided. Strictly speaking, the
identification methods to be presented aims at estimating the model parameters based on
Jmulti.

3. Model parameter estimation methods

In recent years, distinct MRI techniques were proposed based on different principles. One of
them, conceived by Rossiter & Kouvaritakis (2001), differs from the others since it proposes
the use of multiple models to generate the predictions. Thus, an optimized model is estimated
for each k-step ahead prediction. In spite of providing "optimal" predictions for the entire
horizon, the number of parameters involved can be quite large, specially for multi-input
and multi-output processes. It is known that the variance of the parameter estimates is
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proportional to the ratio between the number of parameters and the dataset length (Ljung,
1999). Hence, the main drawback of the multi-model approach is the amount of data required
to estimate a reasonable model set. Such amount of data may be prohibitive in practical
situations (Gopaluni et al., 2003). Moreover, most of the MPC algorithms are based on a single
model. For these reasons, the multi-model method is not considered in further analysis.

In the pioneering work by Shook et al. (1991), the MRI is performed in the context of data
prefiltering using SISO ARX (Auto Regressive with eXternal input) type models. Huang
& Wang (1999) extended the previous method, so that a general model structure (e.g.,
Box-Jenkins) could be employed. Some authors, such as (Gopaluni et al., 2003; Laurí et al.,
2010), deal with the parameter estimation problem directly minimizing the MRI cost function,
using nonlinear optimization techniques. In another approach, proposed by Gopaluni et al.
(2004), the focus is given to the noise model parameter estimation. In this approach, a
non-parsimonious process model is estimated, in order to eliminate bias errors (which are
caused by under-modeling). Then, with a fixed process model, the parameters of the noise
model are obtained by minimizing the cost function (12).

In the following subsections, the main MRI techniques are described in more details.

3.1 The prefiltering approach

3.1.1 The basic idea

For the sake of simplicity, the basic idea behind the prefiltering approach is shown using the
SISO case (m = p = 1). Nevertheless, its worth mentioning that the conclusions directly apply
to MIMO models represented in the diagonal form MFD.

In this case, based on predictor (9), the MRI cost function (12) can be rewritten as

Jmulti(P, θ) =
P

∑
k=1

N−k

∑
t=0

(

Lk(q, θ)

H(q, θ)
(y(t + k)− G(q, θ)u(t + k))

)2

. (13)

If we introduce an auxiliary variable G̃(q, θ) that takes into account the deterministic model
mismatch, that is

G̃(q, θ) � G0(q)− G(q, θ) ,

then, substituting (1) into (13) gives

Jmulti(P, θ) =
P

∑
k=1

N−k

∑
t=0

(

Lk(q, θ)

H(q, θ)

(

G̃(q, θ)u(t + k) + H0(q)e(t + k)
)

)2

=
P

∑
k=1

N−k

∑
t=0

(

Lk(q, θ)

H(q, θ)

(

[

G̃(q, θ) H0(q)
]

[

u(t + k)
e(t + k)

]))2

. (14)

Supposing N → ∞ and applying Parseval’s relationship to (14) yields

Jmulti(P, θ) =
P

∑
k=1

1

2π

∫ π

−π

∣

∣

∣

∣

∣

Lk(e
jω , θ)

H(ejω , θ)

∣

∣

∣

∣

∣

2
[

G̃(ejω , θ) H0(e
jω)

]

×

[

Φu(ω) Φeu(ω)
Φue(ω) R

] [

G̃(e−jω , θ)
H0(e

−jω)

]

dω ,
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where Φu(ω) is the power spectrum of u(t) and Φeu(ω) is the cross-spectrum between e(t)
and u(t). Now, moving the summation to the inside of the integral, it follows that

Jmulti(P, θ) =
1

2π

∫ π

−π

∑
P
k=1

∣

∣

∣
Lk(e

jω , θ)
∣

∣

∣

2

∣

∣H(ejω , θ)
∣

∣

2

[

G̃(ejω , θ) H0(e
jω)

]

×

[

Φu(ω) Φeu(ω)
Φue(ω) R

] [

G̃(e−jω , θ)
H0(e

−jω)

]

dω . (15)

From (15) one can see that the deterministic model mismatch is weighted by the input
spectrum, while the filter

Wmulti(e
jω , θ) =

P

∑
k=1

∣

∣

∣
Wk(e

jω , θ)
∣

∣

∣

2
=

∑
P
k=1

∣

∣

∣
Lk(e

jω , θ)
∣

∣

∣

2

∣

∣H(ejω , θ)
∣

∣

2
(16)

weights the whole expression. But, if P is limited to 1, which implies considering only one-step
ahead predictions, we obtain

Jmulti(P, θ)
∣

∣

∣

P=1
=

1

2π

∫ π

−π

1
∣

∣H(ejω , θ)
∣

∣

2

[

G̃(ejω , θ) H0(e
jω)

]

×

[

Φu(ω) Φeu(ω)
Φue(ω) R

] [

G̃(e−jω , θ)
H0(e

−jω)

]

dω . (17)

Comparing (17) with (15), it is observed that the latter is identical to the first weighted by the
frequency function

Lmulti(e
jω , θ) =

P

∑
k=1

∣

∣

∣
Lk(e

jω , θ)
∣

∣

∣

2
. (18)

Hence, the estimation of the model parameters by minimizing the MRI cost function (15) is
equivalent to using standard one-step ahead prediction error estimation algorithms (available
in software packages, such as Ljung (2007)) after prefiltering the data with (18). As the
prefiltering affects the model bias distribution and may also remove disturbances of frequency
ranges that one does not want to include in the modeling, the role of the prefilter may be
interpreted as a frequency weighting optimized for providing models suitable for multi-step
ahead predictions.

3.1.2 Algorithms and implementation issues

Although the prefiltering artifice is an alternative to solve the problem of parameter estimation
in the context of MRI, there is a point to be emphasized: the prefilter Lmulti(q, θ) in (18)
depends on the noise model H(q, θ), which is obviously unknown.

An iterative procedure called LRPI (Long Range Predictive Identification) to deal with the
unknown noise model was proposed by (Shook et al., 1991). As mentioned previously, in the
original formulation only the SISO case based on the ARX structure was concerned. Next, the
LRPI algorithm is extended to the multivariable case. To this end, the following is adopted

G(q, θ) = A−1(q)B(q) (19)

H(q, θ) = A−1(q) , (20)

236 Frontiers in Advanced Control Systems
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where the polynomial matrix A(q), as well as its entries, are defined analogously to (5).
According to (19)-(20), the ith output equation may be expressed by

Aii(q)yi(t) =
m

∑
j=1

B1j(q)uj(t) + ei(t) . (21)

Consider the regression ϕi(t) ∈ R
n(m+1) and the parameter θi ∈ R

n(m+1), relative to the ith

system output

ϕi(t) = [−yi(t − 1), · · · ,−yi(t − n), u1(t − 1), · · · , um(t − 1),

· · · , u1(t − n), · · · , um(t − n)]T (22)

θi =
[

a
(1)
ii , · · · , a

(n)
ii , b

(1)
i1 , · · · , b

(1)
im , · · · , b

(n)
i1 , · · · , b

(n)
im

]T
. (23)

From (22) and (23), the one-step ahead prediction of yi(t) may be expressed as

ŷi(t + 1|t, θi) = ϕT
i (t)θi . (24)

Algorithm 1: Extension of the LRPI algorithm to the multivariable case

Step 1. Set i = 1 (that is, only the first output is considered).

Step 2. Initialize Lmulti,i(q) to 1.

Step 3. Filter yi(t) and each input uj(t) for j ∈ {1, . . . , m} with Lmulti,i(q), i.e.

y
f
i (t) � Lmulti,i(q)yi(t) (25)

u f (t) �

⎡

⎢

⎢

⎢

⎢

⎣

Lmulti,i(q) 0 · · · 0

0 Lmulti,i(q)
...

...
. . . 0

0 · · · 0 Lmulti,i(q)

⎤

⎥

⎥

⎥

⎥

⎦

u(t) . (26)

Step 4. Based on (25)-(26), construct the regression vector analogously to (22), so that

ϕ
f
i (t) =

[

−y
f
i (t − 1), · · · ,−y

f
i (t − n), u f T

(t − 1), · · · , u f T
(t − 1)

]T
. (27)

Step 5. Estimate the parameter vector θi by solving the linear least-squares problem

θ̂i = arg min
θi

∑
t

(

yi(t)− ϕ
f T

i (t)θi

)2
. (28)

Step 6. Update Lmulti,i(q) through (10) and (18), based on the noise model A−1
ii (q) estimated

in the previous step.

Step 7. Continue if convergence of θi occurs, otherwise go back to Step 3.

237Model Predictive Control Relevant Identification
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Step 8. If i �= p, go back to Step 2, with i = i+ 1. Otherwise, concatenate the estimated models
into a MIMO representation.

Remarks:

• For the multi-output case, there are p different filters Lmulti(q), each one associated with
the ith output and denoted by Lmulti,i(q).

• With respect to Step 6, as Lmulti(q) is a spectral factor of Lmulti(e
jω), spectral factorization

routines, such as the one proposed in Ježek & Kučera (1985), can be used for solving (18).

• A natural choice to determine the convergence of the algorithm is to check if the ℓ2 norm
of the difference between the parameter estimates in two consecutive iterations is less than
δ. Experience has shown that a reasonable value for δ is 10−5.

Alternatively, instead of using an iterative procedure as previously, in the method proposed
by Huang & Wang (1999) named MPEM (Multi-step Prediction Error Method), a fixed noise
model estimate is employed in order to get Lmulti(q). In what follows, the multi-step
prediction error algorithm is described, based on the MFD parameterized by (2)-(5).

Algorithm 2: MPEM algorithm based on the diagonal form matrix fraction description

Step 1. Set i = 1.

Step 2. Get initial estimates of Cii(q), Dii(q), Fii(q) and, for j ∈ {1, . . . , m}, Bij(q), using
standard prediction error methods, namely, based on a one-step ahead cost function
(17).

Step 3. Use a spectral factorization routine to solve (18), in which the filters defined in (10) are

calculated through the impulse response of the estimated noise model D̂−1
ii (q)Ĉii(q).

Step 4. Filter yi(t) and each input uj(t), j ∈ {1, . . . , m}, with Ĉ−1
ii (q)D̂ii(q)Lmulti,i(q).

Step 5. With the fixed noise model D̂−1
ii (q)Ĉii(q), calculated in Step 2, estimate Bi1(q),. . .,

Bim(q), Fii(q) by minimizing the output-error cost function

Voe,i (Bi1(q), . . . , Bim(q), Fii(q)) = ∑
t

⎛

⎝y
f
i (t)− F−1

pp (q)
m

∑
j=1

B1j(q)u
f
j (t)

⎞

⎠

2

. (29)

Step 6. If i �= p, go back to Step 2, with i = i+ 1. Otherwise, concatenate the estimated models
into a multi-output representation.

Remarks:

• Once more the diagonal form MFD property, which allows the independent treatment
of each model output, is applied to extend the parameter estimation algorithm to the
multivariable framework.

• The prefilters of Step 2 differ from the ones used in the LRPI algorithm by the additional

terms Ĉ−1
ii (q)D̂ii(q), each one for i ∈ {1, . . . , p}, which represents the inverse of the ith

output noise model. Hence, while the filters Lmulti,i(q) aim at providing optimal weighting
for multi-step predictions, the additional terms intend to remove the noise influence for
models represented as (6).
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• The minimization of (12) is replaced by two nonlinear optimization problems in the MPEM
algorithm. At first, it might seem that there is no relevant advantage in such an approach.
Nevertheless, it is important to say that the MISO Box-Jenkins identification from Step 2,
as well as the minimization of the output-error cost function in (29), can be performed
using available software packages (Ljung, 2007, e.g.). Moreover, for models parameterized
as (2)-(5), the numerical complexity of these problems are considered to be lower than the
one of minimizing Jmulti directly.

The LRPI algorithm involves only linear least-squares problems, which have many
advantages. The most important one being that (28) can be solved efficiently and
unambiguously (Ljung, 1999). The price paid for a simple parameter estimation algorithm
is the adoption of a limited noise model structure. Consequently, the estimate of the H(q, θ)
entries may be inaccurate, which affects the calculation of each filter Lmulti,i(q). In turn, MPEM
considers a more flexible noise model structure. However, local minima or convergence issues
due to nonlinear optimization methods in Steps 2 and 5 may degrade the quality of the
estimates. Therefore, the MPEM should outperform the LRPI algorithm, provided that the
global minimum is achieved in the estimation steps. Anyway, it is suggested that models are
estimated using more than one method and select the one which yields the best multi-step
ahead predictions.

3.2 Direct optimization of the cost function

In the prefilter approach described previously, the filters Lmulti,i(q) are calculated using
any spectral factorization routine. Hence, as these filters are approximations of (18), the
identified model ability to generate multi-step ahead predictions depends on the degree of
the approximation and on the accuracy of the disturbance model estimate. But there is no
need to worry about these aspects if the MRI cost function (12) is minimized directly. On the
other hand, the model parameterization should be chosen carefully, to minimize numerical
problems in the nonlinear optimization algorithm. In Laurí et al. (2010) a "full-polynomial2

form" ARX model
A(q)y(t) = B(q)u(t) + e(t) , (30)

with

A(q) =

⎡

⎢

⎢

⎣

A11(q) · · · A1p(q)

...
. . .

...

Ap1(q) · · · App(q)

⎤

⎥

⎥

⎦

= I + A(1)q−1 + . . . + A(n)q−n , (31)

whose entries are

Aij(q) =

⎧

⎨

⎩

1 + a
(1)
ij q−1 + . . . + a

(n)
ij q−n , for i = j

a
(1)
ij q−1 + . . . + a

(n)
ij q−n , otherwise

and the polynomial matrix B(q) is defined as in (4).

2 Note that, in order to consider output interaction, the polynomial matrix A(q) is not restricted to being
diagonal, as in the LRPI algorithm.
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For this model structure, let us introduce the parameter matrix

Θ =

⎡

⎢

⎢

⎢

⎣

a
(1)
11 , · · · , a

(1)
1p , · · · , a

(n)
11 , · · · , a

(n)
1p , b

(1)
11 , · · · , b

(1)
1m , · · · , b

(n)
11 , · · · , b

(n)
1m

...

a
(1)
p1 , · · · , a

(1)
pp , · · · , a

(n)
p1 , · · · , a

(n)
pp , b

(1)
p1 , · · · , b

(1)
pm, · · · , b

(n)
p1 , · · · , b

(n)
pm

⎤

⎥

⎥

⎥

⎦

T

∈ R
n(m+p)×p

(32)
and a particular regression vector denoted by ϕ̌(t + k|t, Θ) ∈ R

n(m+p), which is composed of
inputs up to instant t + k, output data up to t and output estimates from t + 1 to t + k − 1, for
instance

ϕ̌(t + 2|t, Θ) =
[

−ŷT(t + 1|t, Θ),−yT(t), · · · ,−yT(t − n + 2), uT(t + 1), · · · , uT(t − n + 2)
]T

and for an arbitrary k

ϕ̌(t + k|t, Θ) =
[

−y̌T(t + k − 1|t), · · · ,−y̌T(t + k − n|t), uT(t + k − 1), · · · , uT(t + k − n)
]T

,

(33)

where

y̌T(s|t) �

{

ŷ(s|t, Θ) , for s > t
y(s) , otherwise.

From (32) and (33), the k-step ahead prediction of y(t) is given by

ŷ(t + k|t, Θ) = ΘT ϕ̌(t + k|t, Θ) . (34)

Although the predictor ŷ(t + k|t, Θ) is nonlinear in the parameters, it is important to notice
that it can be calculated recursively, from ŷ(t + 1|t) for k ∈ {2, . . . , P} using (34). This is the
main reason why the ARX structure was adopted. For another thing, if a more flexible model
structure is adopted, the k-step ahead predictor equation would be much more complex.

Thus, based on the MRI cost function (12), the parameter estimation can be stated as a
nonlinear least-squares problem

Θ̂ = arg min
Θ

P

∑
k=1

N−k

∑
t=0

‖y(t)− ΘT ϕ̌(t + k|t, Θ)‖2
2 , (35)

which must be solved numerically. The Levenberg-Marquart algorithm is used in Laurí et al.
(2010) in order to minimize (35).

3.3 Optimization of the noise model

In Gopaluni et al. (2004) it is shown that, in the absence of a noise model, there is no significant
difference between MRI and one-step ahead prediction error methods. On the other hand,
when the signal to noise ratio is small, the one-step ahead predictors yield worse results
for P-step ahead predictions than MRI methods. Thus, in these circumstances, a suitable
disturbance model is crucial to generate accurate multi-step ahead predictions.

Any identified model has bias and variance errors associated with the identification algorithm.
While the former is typically associated to model mismatch (such a mismatch can be either in
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the process model or in the noise model) and the second is due to the effect of unmeasured
disturbances. If that there is no significant cross-correlation between the noise and system
input (in open-loop, e.g.), the bias errors in the process model may be eliminated by using
high order FIR (Finite Impulse Response) models (Zhu, 2001). Under that assumption, the
modeling errors are restricted to the noise model.

With this in mind, in Gopaluni et al. (2004) the authors propose a two-step MRI algorithm in
which the process is represented by a FIR structure, with sufficiently high order so that bias
errors due to the process model can be disregarded. Then, the noise model parameters are
estimated using a multi-step cost function.

Consider the multivariable FIR model

GFIR(q, θ) = B(q) (36)

where the polynomial matrix B(q) is defined as in (4). The noise model H(q, η) is
parameterized using diagonal MFD. These choices are equivalent to (6) with F(q) = I. As
the estimation of G(q) and H(q) are performed separately, in this subsection, the parameter
vector is split into two parts, such that the noise model parameter vector is explicitly referred
to as η. So, the ith output noise model structure is

Hii(q, ηi) �
Cii(q)

Dii(q)
=

1 + c
(1)
ii q−1 + . . . + c

(αi)
ii q−αi

1 + d
(1)
ii q−1 + . . . + d

(βi)
ii q−βi

. (37)

Let us introduce the residual of the process model relative to the ith output

υi(t) � yi(t)−
m

∑
j=1

Bij(q)uj(t) . (38)

Then, based on (7)-(9), the k-step ahead prediction error of the ith output3 can be written as

εi(t + k|t, θ) = yi(t + k)− ŷi(t + k|t, θ)

=

(

k−1

∑
l=0

hi(l)q
−l

)

Dii(q)

Cii(q)
υi(t) . (39)

As Cii(q) and Dii(q) are monic polynomials, the impulse response leading coefficient hi(0) is
always 1. With this, expanding (39) yields

εi(t + k|t, θ) = υi(t + k) + hi(1)υi(t + k − 1) + . . . + hi(k − 1)υi(t + 1)

−c
(1)
ii εi(t + k − 1|t, θ)− . . . − c

(αi)
ii εi(t + k − αi|t, θ)

+d
(1)
ii Lk,i(q)υi(t + k − 1) + . . . + d

(βi)
ii Lk,i(q)υi(t + k − βi) . (40)

3 Part of the notation introduced in Section 2.2 is particularized here to the single-output context. For

instance, hi(l) and Lk,i(q) are the equivalent to the ones defined in (10), but related to the ith output.
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For a compact notation, we define

ηk,i �
[

hi(1), . . . , hi(k − 1), 1, c
(1)
ii , . . . , c

(αi)
ii , d

(1)
ii , . . . , d

(βi)
ii

]T
(41)

ϕk,i(t, ηk,i) �
[

− υi(t + k − 1), . . . ,−υi(t + 1), yi(t + k)− υi(t + k), εi(t + k − 1|t, θ),

. . . , εi(t + k − αi|t, θ),−ξi(t + k − 1), · · · ,−ξi(t + k − βi)
]T

(42)

where
ξi(t + k) � Fk,i(q)υi(t + k) .

Then, we can rewrite (39) as

εi(t + k|t) = yi(t + k|t)− ϕT
k,i(t, ηk,i)ηk,i . (43)

In light of the aforementioned paragraphs, the MRI algorithm that optimizes the noise model
is summarized as follows.

Algorithm 3: MRI with optimized noise model

Step 1. Set i = 1.

Step 2. Fix an a priori noise model to the ith output, for instance

Cii(q)

Dii(q)
= 1

and estimate a multi-input single-output high order FIR model using standard PEM.

Step 3. With the estimate ĜFIR(q), from the previous step, solve the optimization problem

η̂P,i = arg min
ηP,i

N−P

∑
t=1

P

∑
k=1

(

yi(t + k|t)− ϕT
k,i(t, ηk,i)ηk,i

)2
(44)

subject to
hi(l) = h̆i(l)(ηi) , for any l = {1, 2, . . . , P − 1} (45)

where h̆i(l)(ηi) indicates the lth impulse response coefficient of (37), which is obtained
by polynomial long division of Cii(q) by Dii(q).

Step 4. If i �= p, go back to Step 2, with i = i + 1. Otherwise concatenate the estimated models
into a single MIMO representation.

Remarks:

• Besides providing unbiased estimates under open-loop conditions, FIR models are suitable
in this case because the parameters of GFIR can be efficiently estimated using linear
least-squares.

• A numerical optimization method is required to solve the parameter estimation problem.
Nevertheless, the Levenberg-Marquart algorithm mentioned in the previous subsection
can not deal with constraints. One of the nonlinear optimization algorithm possibilities
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is the Sequential Quadratic Programming (SQP), which can handle nonlinear constraints
such as (45). In Gopaluni et al. (2004) it is shown that if a noise model of the form

Hii(q, ηi) =
1 + c

(1)
ii q−1 + . . . + c

(αi)
ii q−αi

1 − q−1

is adopted, then the constraint (45) may be expressed through a linear in the parameters
equation. In this case, (44) can be solved using the standard Quadratic Programming (QP)
method.

4. Simulations

The main features of the aforementioned MRI techniques are analyzed using two simulated
examples. At first, a SISO process is considered in order to illustrate the influence
of the prediction horizon length P in the modeling errors presented by the identified
models. Moreover, the performance of each technique is evaluated based on datasets with
distinct signal-to-noise ratios (SNR). After that, the closed-loop performance provided by the
estimated models is assessed. To this end, the Quadratic Dynamic Matrix Controller (QDMC)
(Camacho & Bordons, 2004) and a multivariable distillation column benchmark (Cott, 1995a;b)
are employed.

4.1 SISO process example

Consider the third-order overdamped system proposed in Clarke et al. (1987)

G0(q) =
0.00768q−1 + 0.02123q−2 + 0.00357q−3

1 − 1.9031q−1 + 1.1514q−2 − 0.2158q−3
, (46)

with a random-walk disturbance, that is

H0(q) =
1

1 − q−1
. (47)

The process is excited in open-loop by a Pseudo Random Binary Sequence (PRBS) switching
between [−0.1, 0.1] with a clock period of 5 times the sampling interval. The noise variance is
adjusted such that the signal-to-noise ratio (SNR) is 3 (in variance). A record of 1200 samples
is collected, which is shown in Fig. 1. The dataset is split into two halves: the first is used for
estimation and the second one for validation purposes.

The following reduced-complexity model structure is assumed4

G(q, θ) =
b1q−1 + b2q−2

1 + a1q−1
(48)

H(q, θ) =
1 + c

(1)
11 q−1

1 + d
(1)
11 q−1

. (49)

4 Except for the noise model optimization method (Subsection 3.3), in which d
(1)
11 is fixed to −1, so that

parameter estimation can be handled using standard quadratic programming.
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Fig. 1. The dataset from the third-order process (46)-(47).

Before analyzing the capacity of the estimated models to generate accurate multi-step ahead
predictions, it is worth noting the influence of the prediction horizon length. The magnitudes
of Lmulti(e

jω), for P = {1, 2, 5, 10, 15}, are shown in Fig. 2. As can be seen, Lmulti(q) is
a low-pass filter, whose cut-off frequency decreases as P increases. Such behavior occurs
whenever the disturbance spectrum is concentrated on low frequencies (Gopaluni et al., 2003).
Hence, according to (15), the higher the prediction horizon length, the narrower the error
weighting.

As a consequence, an increase in P leads to lower modeling errors in low frequencies, but the
frequency response of the estimated models are away from the actual one at high frequencies.
This behavior is depicted in Fig. 3, which presents the absolute value of the difference between
the actual and the estimated (from models obtained using the MPEM algorithm) frequency
responses. One can also notice that the effect of increasing P is more prominent in the range
[1, 5] than between [5, 15]. Furthermore, as shown in Farina & Piroddi (2011), for sufficiently
high values of the prediction horizon length, models estimated based on multi-step prediction
errors converge to the output (simulation) error estimate.

The cost function Jmulti, defined in (12), is applied to quantify the model accuracy in terms
of multi-step ahead predictions. It is emphasized that such accuracy is quantified using fresh
data, that is to say, a distinct dataset from the one used for estimation purposes. In what
follows, the performance of the MRI techniques are investigated using two sets of Monte
Carlo simulations, each one with 100 distinct white-noise realizations. In order to visualize
the SNR effect on different parameter estimation methods, in the first simulation set, the SNR
is maintained in 3 and in the other one it is increased to 10. The histograms of Jmulti for the
methods described in Section 3 are depicted in the rows of Fig. 4, for P = 8. The left and the
right columns present the results for the signal-to-noise ratios of 3 and 10, respectively. The
main Monte Carlo simulation results are summarized in Table 1, which reports the mean and
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the standard deviation of Jmulti. For comparison, the last column of Table 1 also presents the
results produced by the standard (one-step ahead) PEM, based on a Box-Jenkins structure.

The histograms in Fig. 4, as well as Table 1, show that the MPEM and the noise model
optimization algorithms presented the smallest Jmulti (that is, the most accurate multi-step
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Fig. 2. Magnitude frequency response of Lmulti(e
jω) for increasing prediction horizon length.
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Fig. 4. Histograms of Jmulti for each MRI method.

predictions) with the lowest variance, which means that these methods are less sensitive
to a particular realization. On the other hand, LRPI and direct optimization showed worse
performances because these methods are based on the ARX model structure, which is quite
different from the process (46)-(47). Another aspect that may be noticed is that, as expected,
a higher SNR leads to a smaller Jmulti mean (more accurate models are expected) and lower
deviations of the estimates.

Actually, the performances of the methods based on ARX structure may be interpreted in a
broader sense. Although in MRI the effect of bias due to model mismatch is reduced in the

SNR LRPI MPEM
Direct
optim.

Noise model
optimization

Standard PEM
(Box-Jenkins)

mean(Jmulti)
3 0.1526 0.0111 0.0786 0.0178 0.0209

10 0.1218 0.0074 0.0496 0.0056 0.0172

std(Jmulti)
3 0.0536 0.0045 0.0239 0.0163 0.0042

10 0.0668 0.0015 0.0104 0.0049 0.0014

Table 1. Mean and standard deviation of the cost function.
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parameter estimation step, the task of selecting a suitable model structure is still crucial to the
success of a system identification procedure. This statement is also supported by the fact that,
according to Table 1, considering a more favorable structure and the one-step ahead PEM
is more effective than an inadequate structure whose parameters are estimated based on a
multi-step cost function.

4.2 Multivariable system example

The Shell benchmark process is a model of a two-input two-output distillation column (Cott,
1995a;b). The inputs are overhead vapour flow and reboiler duty, denoted here as u1 and u2,
respectively. The outputs are the column pressure

∆y1(t) =
−0.6096 + 0.4022q−1

1 − 1.5298q−1 + 0.574q−2
∆u1(t) +

0.1055 − 0.0918q−1

1 − 1.5298q−1 + 0.574q−2
∆u2(t)

+
λ

1 − 1.5945q−1 + 0.5945q−2
e1(t) (50)

and the product impurity

y2(t) =0.0765
5 × 105

u2(t − 7)− 1500
+ 0.9235y2(t − 1) +

λ

1 − 1.6595q−1 + 0.6595q−2
e2(t) (51)

where ∆y1, ∆u1 and ∆u2 are deviation variables around the nominal operating point5

(specified in Table 2), that is

∆y1(t) = y1(t)− ȳ1

∆u1(t) = u1(t)− ū1

∆u2(t) = u2(t)− ū2 .

Variable Nominal setpoints Normal operation

Pressure (y1) 2800 2700 < y1 < 2900
Composition (y2) 500 250 < y2 < 1000

Overhead vapour flow (u1) 20 10 < u1 < 30
Reboiler flow (u2) 2500 2000 < u2 < 3000

Table 2. Summary of distillation column operating conditions.

The disturbances are generated using uncorrelated zero-mean white noises e1 and e2, such
that std(e1) = 1.231 and std(e2) = 0.667. The parameter λ is set to 0.2. The Shell
benchmark is widely used to evaluate multivariable system identification or model predictive
control strategies (Amjad & Al-Duwaish, 2003; Cott, 1995b; Zhu, 1998, e.g.). Besides being
multivariable, the model (50)-(51) offers additional complications: as the disturbances are
nonstationary, one of the outputs (product impurity) is slightly nonlinear and the overhead
flow (u1) does not affect the impurity level (y2).

5 For more details about the simulator operating conditions, the reader is referred to (Cott, 1995b).
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The process is excited in open-loop using two uncorrelated random binary sequences (RBS),
with u1 varying from [15, 25] and u2 from [2400, 2600]. The minimum switching time of u1

and u2 is 12 and 6, respectively. The dataset is comprised of 1600 samples, where the first half
is used for estimation (see Fig. 5) and the rest for validation.

The elements of the transfer function matrix G(q, θ) and of the noise models are first order.
Initially, the input delay matrix

nk =

[

0 0
37 7

]

(52)

was estimated applying the function delayest of the Matlab™System Identification toolbox
(Ljung, 2007). Notice that except for the entry in which there is no coupling (u1 → y2), the
values in nk coincide with the actual input delays. Thus, before proceeding to the parameter
estimation, the input sequences are shifted according to nk.
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Fig. 5. Estimation dataset from the Shell benchmark simulation.

The models estimated with P = 40 are evaluated based on the multi-step prediction errors (12)
using the validation dataset, which are presented in Table 3. The most accurate multi-step
predictions are generated by the MPEM and the 1-step ahead PEM. This is because, as in
the SISO example, the Box-Jenkins structure employed by both methods best suits the process
dynamic behavior. Another relevant point is that the noise model optimization yields unstable

Output LRPI MPEM
Direct
optim.

Noise model
optimization

1-step PEM

(Box-Jenkins)

Jmulti × 104 1 0.1154 0.0328 0.1475 ∞ 0.0322
2 3.2887 2.5072 3.6831 ∞ 2.5294

Table 3. Multi-step prediction error.
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predictors (due to zeros outside the unitary circle). Consequently, the sum of the prediction
errors tends to infinity.

The standard PEM provided multi-step predictions as accurate as the MPEM, even for a
sub-parameterized model, which is the case of this example. This result suggests that the
under-modeling issue is not the most prominent for this situation. In addition, the fact that
the disturbance intensity is very high, besides being concentrated on the low frequencies
(the same frequency range that should be weighted to attain improved multi-step ahead
predictions) disfavors the MRI approach.

In order to test the robustness of the methods to input-output delay estimation errors, a new
estimation is carried out with a modified delay matrix n∗

k , in which the dead-time from u2 to
y2 is changed from 7 to 8 samples. As shown in Table 4, the MRI methods are less sensitive to
this parameter than the 1-step ahead PEM.

Output LRPI MPEM
Direct
optim.

Noise model
optimization

1-step PEM

(Box-Jenkins)

Jmulti × 104 2 3.1669 2.4854 3.8126 ∞ 3.0794

Table 4. Multi-step prediction error of the 2nd output when there is a slight mismatch in one
of the input delay matrix element.

At this point, the performance of the estimated models is investigated when they are
employed in a QDMC controller (Camacho & Bordons, 2004) with a prediction and control
horizons of 40 and 5, respectively. The output Q and the manipulated R weighting matrices
are (Amjad & Al-Duwaish, 2003)

Q =

[

1 0
0 2

]

and R =

[

2 0
0 2

]

.

The closed-loop responses using the QDMC controller when each set-point is excited with a
step of amplitude 1% of the nominal output values are presented in Fig. 6 and 7, where the
first one is related to the input delay matrix nk in (52) and the other refers to n∗

k . The results of
the closed-loop validation are also summarized in Table 5, which shows the integrated square
error (ISE) for each controlled variable: y1 and y2.

In a general way, the first output is closer to the set-point than y2. This may be explained
by the intensity of the disturbance introduced in each output, by the fact that the plant is
non-linear whereas the identified models are linear and, finally, due to the presence of a zero
in the transfer matrix which consequently affects the quality of the estimated model.

From Fig. 6, one can notice that all the controllers achieved similar responses for the
column pressure (y1). Concerning the other output (product purity), the closed-loop behavior
provided by the standard PEM and the MPEM are very close (accordingly to multi-step
prediction errors depicted in Table 3). Analogously, the LRPI method yielded a better
performance than the direct optimization. Besides, as these two methods showed a worse
multi-step prediction accuracy, it reflected in the MPC performance.

As shown in Fig. 7 and according to Table 5, the prediction capacity deterioration of the
one-step ahead PEM, due to the delay matrix modification from nk to n∗

k also leads to a
worse closed-loop response. On the other hand, the closed-loop performances provided by
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the models estimated through MRI algorithms are less sensitive to errors in the time delay
determination.
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Fig. 6. Closed-loop response based on an accurate input delay estimation.
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Fig. 7. Closed-loop response for a mismatch in one of the input-output delay matrix entry.
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Output LRPI MPEM
Direct
optim.

1-step PEM

(Box-Jenkins)

ISE ×103: nk
1 2.1921 2.0777 2.4091 2.0711

2 0.3618 0.3182 0.3747 0.3171

ISE ×103: n∗
k

1 2.1689 2.0883 2.4081 2.2016

2 0.3519 0.3119 0.3802 0.3667

Table 5. Integrated square error (ISE) of the controlled variables.

5. Conclusions

This chapter focused on parameter estimation algorithms to generate suitable models for
predictive controllers. The branch of identification known as MRI was studied and several
different ways to obtain models were presented. They must be estimated having in mind that
they must be accurate to predict multi-step ahead. Some of these techniques were published
considering just the single-input single-output case and in this work they were extended
to the multivariable framework. In order to compare the different algorithms, they were
implemented and tested, employing a SISO and a MIMO plant. In the comparisons, the
standard PEM (built to provide optimal one-step ahead predictions) was also included.

In the analysis with the SISO process, the long range prediction capacity of some of the MRI
methods (MPEM and noise model optimization) was superior to the results generated by
the standard PEM, based on a Box-Jenkins structure. In addition, the influence of the model
structure was also highlighted in a model relevant identification context, since the standard
PEM (with a Box-Jenkins) produced more accurate multi-step ahead predictions than the LRPI
and the direct optimization algorithms, which are based on a less flexible model structure.

The tests performed with the multivariable plant were more concerned about the use of the
MRI and PEM models, when applied to a predictive controller. The results obtained were
not so convincing about the advantages of using multi-step prediction based methods in the
predictive controller design, since the one-step PEM (with a Box-Jenkins model), even with
structure mismatch, provided results that were comparable to the best ones obtained with the
model relevant identification methods. However, it was also shown that when there was a
slight error in the evaluation of the time delay of one of the input-output pairs, the advantage
of the MRI approach became evident.

Although the excitation signal design and the model structure selection are beyond the scope
of this work, the examples presented the complete system identification procedure, from the
input signal generation, going through the use of different algorithms to estimate the model
parameters up to the validation of the models through the verification of their prediction
capacity. Besides, the obtained models were applied to a predictive controller to evaluate
their performance in controlling a multivariable process.

The system identification for MPC is a subject prone to further research. The effect of
multi-step prediction error methods on the closed-loop performance needs to be further
investigated. Another important theme to be studied is in which situations the use of MRI
methods for developing models for predictive controllers is in fact advantageous as compared
to classical prediction error methods.
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