
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



2 

Online Adaptive Learning Solution of  
Multi-Agent Differential Graphical Games 

Kyriakos G. Vamvoudakis1 and Frank L. Lewis2 
1Center for Control, Dynamical-Systems,  

and Computation (CCDC), 
 University of California, Santa Barbara, 

 2Automation and Robotics Research Institute,  
The University of Texas at Arlington,  

USA 

1. Introduction 

Distributed networks have received much attention in the last year because of their 
flexibility and computational performance. The ability to coordinate agents is important in 
many real-world tasks where it is necessary for agents to exchange information with each 
other. Synchronization behavior among agents is found in flocking of birds, schooling of 
fish, and other natural systems. Work has been done to develop cooperative control 
methods for consensus and synchronization (Fax and Murray, 2004; Jadbabaie, Lin and 
Morse, 2003; Olfati-Saber, and Murray, 2004; Qu, 2009; Ren, Beard, and Atkins, 2005; Ren, 
and beard, 2005; Ren, and Beard, 2008; Tsitsiklis, 1984). See (Olfati-Saber, Fax, and Murray, 
2007; Ren, Beard, and Atkins, 2005) for surveys. Leaderless consensus results in all nodes 
converging to common value that cannot generally be controlled. We call this the 
cooperative regulator problem. On the other hand the problem of cooperative tracking 
requires that all nodes synchronize to a leader or control node (Hong, Hu, and Gao, 2006; Li, 
Wang, and Chen, 2004; Ren, Moore, and Chen, 2007; Wang, and Chen, 2002). This has been 
called pinning control or control with a virtual leader. Consensus has been studied for 
systems on communication graphs with fixed or varying topologies and communication 
delays.  

Game theory provides an ideal environment in which to study multi-player decision and 

control problems, and offers a wide range of challenging and engaging problems. Game 

theory (Tijs, 2003) has been successful in modeling strategic behavior, where the outcome 

for each player depends on the actions of himself and all the other players. Every player 

chooses a control to minimize independently from the others his own performance 

objective. Multi player cooperative games rely on solving coupled Hamilton-Jacobi (HJ) 

equations, which in the linear quadratic case reduce to the coupled algebraic Riccati 

equations (Basar, and Olsder, 1999; Freiling, Jank, and Abou-Kandil, 2002; Gajic, and Li, 

1988). Solution methods are generally offline and generate fixed control policies that are 

then implemented in online controllers in real time. These coupled equations are difficult to 

solve. 
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Reinforcement learning (RL) is a sub-area of machine learning concerned with how to 

methodically modify the actions of an agent (player) based on observed responses from its 

environment (Sutton, and Barto, 1998). RL methods have allowed control systems 

researchers to develop algorithms to learn online in real time the solutions to optimal 

control problems for dynamic systems that are described by difference or ordinary 

differential equations. These involve a computational intelligence technique known as 

Policy Iteration (PI) (Bertsekas, and Tsitsiklis, 1996), which refers to a class of algorithms 

with two steps, policy evaluation and policy improvement. PI has primarily been developed for 

discrete-time systems, and online implementation for control systems has been developed 

through approximation of the value function (Bertsekas, and Tsitsiklis, 1996; Werbos, 1974; 

Werbos, 1992). PI provides effective means of learning solutions to HJ equations online. In 

control theoretic terms, the PI algorithm amounts to learning the solution to a nonlinear 

Lyapunov equation, and then updating the policy through minimizing a Hamiltonian 

function. Policy Iteration techniques have been developed for continuous-time systems in 

(Vrabie, Pastravanu, Lewis, and Abu-Khalaf, 2009). 

RL methods have been used to solve multiplayer games for finite-state systems in (Busoniu, 

Babuska, and De Schutter, 2008; Littman, 2001). RL methods have been applied to learn 

online in real-time the solutions for optimal control problems for dynamic systems and 

differential games in (Dierks, and Jagannathan, 2010; Johnson, Hiramatsu, Fitz-Coy, and 

Dixon, 2010; Vamvoudakis 2010; Vamvoudakis 2011). 

This book chapter brings together cooperative control, reinforcement learning, and game 

theory to solve multi-player differential games on communication graph topologies. There 

are four main contributions in this chapter. The first involves the formulation of a graphical 

game for dynamical systems networked by a communication graph. The dynamics and value 

function of each node depend only on the actions of that node and its neighbors. This 

graphical game allows for synchronization as well as Nash equilibrium solutions among 

neighbors. It is shown that standard definitions for Nash equilibrium are not sufficient for 

graphical games and a new definition of “Interactive Nash Equilibrium” is given. The 

second contribution is the derivation of coupled Riccati equations for solution of graphical 

games. The third contribution is a Policy Iteration algorithm for solution of graphical games 

that relies only on local information from neighbor nodes. It is shown that this algorithm 

converges to the best response policy of a node if its neighbors have fixed policies, and to 

the Nash solution if all nodes update their policies. The last contribution is the development 

of an online adaptive learning algorithm for computing the Nash equilibrium solutions of 

graphical games.  

The book chapter is organized as follows. Section 2 reviews synchronization in graphs and 

derives an error dynamics for each node that is influenced by its own actions and those of its 

neighbors. Section 3 introduces differential graphical games cooperative Nash equilibrium. 

Coupled Riccati equations are developed and stability and solution for Nash equilibrium are 

proven. Section 4 proposes a policy iteration algorithm for the solution of graphical games 

and gives proofs of convergence. Section 5 presents an online adaptive learning solution 

based on the structure of the policy iteration algorithm of Section 4. Finally Section 6 

presents a simulation example that shows the effectiveness of the proposed algorithms in 

learning in real-time the solutions of graphical games. 
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2. Synchronization and node error dynamics 

2.1 Graphs 

Consider a graph ( , )G V   with a nonempty finite set of N nodes 1{ , , }NV v v   and a set 

of edges or arcs V V   . We assume the graph is simple, e.g. no repeated edges and 

( , ) ,i iv v E i   no self loops. Denote the connectivity matrix as [ ]ijE e  with 

0 ( , )ij j ie if v v   and 0ije  otherwise. Note 0iie  . The set of neighbors of a node iv  is 

{ : ( , ) }i j j iN v v v  , i.e. the set of nodes with arcs incoming to iv . Define the in-degree 

matrix as a diagonal matrix ( )iD diag d  with 
i

i ij
j N

d e


   the weighted in-degree of node i  

(i.e. i -th row sum of E). Define the graph Laplacian matrix as L D E  , which has all row 

sums equal to zero. 

A directed path is a sequence of nodes 0 1, , , rv v v  such that 1( , ) , {0,1, , 1}i iv v E i r    . 

A directed graph is strongly connected if there is a directed path from iv  to jv  for all 

distinct nodes ,i jv v V . A (directed) tree is a connected digraph where every node except 

one, called the root, has in-degree equal to one. A graph is said to have a spanning tree if a 

subset of the edges forms a directed tree. A strongly connected digraph contains a spanning 

tree. 

General directed graphs with fixed topology are considered in this chapter. 

2.2 Synchronization and node error dynamics 

Consider the N systems or agents distributed on communication graph G with node 

dynamics 

 i i i ix Ax B u      (1) 

where ( ) n
ix t   is the state of node i, ( ) im

iu t   its control input. Cooperative team 

objectives may be prescribed in terms of the local neighborhood tracking error n
i   (Khoo, 

Xie, and Man, 2009) as 

 0( ) ( )
i

i ij i j i i
j N

e x x g x x


      (2) 

The pinning gain 0ig   is nonzero for a small number of nodes i that are coupled directly to 

the leader or control node 0x , and 0ig   for at least one i  (Li, Wang, and Chen, 2004). We 

refer to the nodes i for which 0ig   as the pinned or controlled nodes. Note that i  

represents the information available to node i for state feedback purposes as dictated by the 

graph structure. 

The state of the control or target node is 0( ) nx t   which satisfies the dynamics  
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 0 0x Ax  (3) 

Note that this is in fact a command generator (Lewis, 1992) and we seek to design a 
cooperative control command generator tracker. Note that the trajectory generator A may 
not be stable. 

The Synchronization control design problem is to design local control protocols for all the 

nodes in G to synchronize to the state of the control node, i.e. one requires 0( ) ( ),ix t x t i  .  

From (2), the overall error vector for network Gr  is given by 

  
      0n nL G I x x L G I       

 
(4) 

where the global vectors are 

 1 2

TT T T nN
Nx x x x      1 2

TT T T nN
N         and 0 0

nNx Ix  , with 

1 nN n
nI I R     and 1  the N-vector of ones. The Kronecker product is   (Brewer, 1978). 

N NG R   is a diagonal matrix with diagonal entries equal to the pinning gains ig . The 

(global) consensus or synchronization error (e.g. the disagreement vector in (Olfati-Saber, 
and Murray, 2004)) is 

  0
nNx x      (5) 

The communication digraph is assumed to be strongly connected. Then, if 0ig   for at least 

one i ,  L G  is nonsingular with all eigenvalues having positive real parts (Khoo, Xie, and 

Man, 2009). The next result therefore follows from (4) and the Cauchy Schwartz inequality 
and the properties of the Kronecker product (Brewer, 1978).  

Lemma 1. Let the graph be strongly connected and 0G  .  Then the synchronization error is 

bounded by 

 / ( )L G     (6) 

with ( )L G   the minimum singular value of  L G , and ( ) 0t   if and only if the nodes 

synchronize, that is 

 0( ) ( )x t Ix t  (7) 

■ 

Our objective now shall be to make small the local neighborhood tracking errors ( )i t , which 

in view of Lemma 1 will guarantee synchronization.  

To find the dynamics of the local neighborhood tracking error, write  

 

( )
i

i i i i i i ij j j
j N

A d g B u e B u 


    

 

(8)
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with , ,imn
i iu i     . 

This is a dynamical system with multiple control inputs, from node i and all of its neighbors. 

3. Cooperative multi-player games on graphs 

We wish to achieve synchronization while simultaneously optimizing some performance 
specifications on the agents. To capture this, we intend to use the machinery of multi-player 

games (Basar, Olsder, 1999). Define { : , }G i ju u j N j i     as the set of policies of all other 

nodes in the graph other than node i. Define ( )iu t  as the vector of the control inputs 

{ : }j iu j N  of the neighbors of node i. 

3.1 Cooperative performance index 

Define the local performance indices  

 1
2

0

( (0), , ) ( )
i

T T T
i i i i i ii i i ii i j ij j

j N

J u u Q u R u u R u dt  





    1
2

0

( ( ), ( ), ( ))i i i iL t u t u t dt


   (9) 

where all weighting matrices are constant and symmetric with 0, 0, 0ii ii ijQ R R   . Note 

that the i-th performance index includes only information about the inputs of node i and its 
neighbors.  

For dynamics (8) with performance objectives (9), introduce the associated Hamiltonians 

   

1 1 1
2 2 2

( , , , ) ( ) 0
i i

T T T T
i i i i i i i i i i i ij j j i ii i i ii i j ij j

j N j N

H p u u p A d g B u e B u Q u R u u R u   
 

 
        
 
 

 
 

(10)

 

where ip is the costate variable. Necessary conditions (Lewis, and Syrmos, 1995) for a 

minimum of (9) are (1) and  

 Ti
i i ii i

i

H
p A p Q 




   


  (11) 

 10 ( ) Ti
i i i ii i i

i

H
u d g R B p

u


    


 (12) 

3.2 Graphical games 

Interpreting the control inputs ,i ju u  as state dependent policies or strategies, the value 

function for node i corresponding to those policies is 

1
2

( ( )) ( )
i

T T T
i i i ii i i ii i j ij j

j Nt

V t Q u R u u R u dt  



    (13) 
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Definition 1. Control policies ,iu i  are defined as admissible if iu  are continuous, 

(0) 0iu  , iu  stabilize systems (8) locally, and values (13) are finite. 

When iV  is finite, using Leibniz’ formula, a differential equivalent to (13) is given in terms 

of the Hamiltonian function by the Bellman equation 

   1 1 1
2 2 2

( , , , ) ( ) 0
i i

T
T T Ti i

i i i i i i i i i ij j j i ii i i ii i j ij j
i i j N j N

V V
H u u A d g B u e B u Q u R u u R u   

 
 

           
    

    (14) 

with boundary condition (0) 0iV  . (The gradient is disabused here as a column vector.)  

That is, solution of equation (14) serves as an alternative to evaluating the infinite integral 

(13) for finding the value associated to the current feedback policies. It is shown in the Proof 

of Theorem 2 that (14) is a Lyapunov equation. According to (13) and (10) one equates 

/i i ip V    . 

The local dynamics (8) and performance indices (9) only depend for each node i on its own 

control actions and those of its neighbors. We call this a graphical game. It depends on the 

topology of the communication graph ( , )G V  . We assume throughout the chapter that 

the game is well-formed in the following sense. 

Definition 2. The graphical game with local dynamics (8) and performance indices (9) is 

well-formed if 0j ijB e E  , 0ij ijR e E  .  

The control objective of agent i in the graphical game is to determine 

 * 1
2

( ( )) min ( )
i

i

T T T
i i i ii i i ii i j ij j

u
j Nt

V t Q u R u u R u dt  



     (15) 

Employing the stationarity condition (12) (Lewis, and Syrmos, 1995) one obtains the control 

policies  

 
1( ) ( ) ( )T i

i i i i i ii i i i
i

V
u u V d g R B h p


 

     


  (16) 

The game defined in (15) corresponds to Nash equilibrium.  

Definition 3. (Basar, and Olsder, 1999) (Global Nash equilibrium) An N-tuple of policies 

 * * *
1 2, ,...,u u u  is said to constitute a global Nash equilibrium solution for an N player game 

if for all i N  

 
* * * *( , ) ( , )i i i G i i i G iJ J u u J u u   (17) 

The N-tuple of game values  * * *
1 2, ,...,J J J is known as a Nash equilibrium outcome of the N-

player game. 
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The distributed multiplayer graphical game with local dynamics (8) and local performance 

indices (9) should be contrasted with standard multiplayer games (Abou-Kandil, Freiling, 

Ionescu, and Jank, 2003; Basar, and Olsder 1999) which have centralized dynamics 

 
1

N

i i
i

z Az B u


   (18) 

where nz  is the state, ( ) im
iu t   is the control input for every player, and where the 

performance index of each player depends on the control inputs of all other players. In the 

graphical games, by contrast, each node’s dynamics and performance index only depends 

on its own state, its control, and the controls of its immediate neighbors. 

It is desired to study the distributed game on a graph defined by (15) with distributed 

dynamics (8). It is not clear in this scenario how global Nash equilibrium is to be achieved. 

Graphical games have been studied in the computational intelligence community (Kakade, 
Kearns, Langford, and Ortitz, 2003; Kearns, Littman, and Singh, 2001; Shoham, and Leyton-

Brown, 2009). A (nondynamic) graphical game has been defined there as a tuple ( , , )G U v  

with ( , )G V E  a graph with N nodes, action set 1 NU U U    with iU  the set of actions 

available to node i, and  1
T

Nv v v  a payoff vector, with ( ,{ : })i i j iv U U j N R  the 

payoff function of node i. It is important to note that the payoff of node i only depends on its own 
action and those of its immediate neighbors. The work on graphical games has focused on 
developing algorithms to find standard Nash equilibria for payoffs generally given in terms 
of matrices. Such algorithms are simplified in that they only have complexity on the order of 
the maximum node degree in the graph, not on the order of the number of players N. 
Undirected graphs are studied, and it is assumed that the graph is connected. 

The intention in this chapter is to provide online real-time adaptive methods for solving 

differential graphical games that are distributed in nature. That is, the control protocols and 

adaptive algorithms of each node are allowed to depend only information about itself and 

its neighbors. Moreover, as the game solution is being learned, all node dynamics are 

required to be stable, until finally all the nodes synchronize to the state of the control node. 

These online methods are discussed in Section V. 

The following notions are needed in the study of differential graphical games.  

Definition 4. (Shoham, and Leyton-Brown, 2009) Agent i’s best response to fixed policies iu  

of his neighbors is the policy *
iu  such that 

 
*( , ) ( , )i i i i i iJ u u J u u   (19) 

for all policies iu  of agent i. 

For centralized multi-agent games, where the dynamics is given by (18) and the 

performance of each agent depends on the actions of all other agents, an equivalent 

definition of Nash equilibrium is that each agent is in best response to all other agents. In 
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graphical games, if all agents are in best response to their neighbors, then all agents are in 

Nash equilibrium, as seen in the proof of Theorem 1. 

However, a counterexample shows the problems with the definition of Nash equilibrium 

in graphical games. Consider the completely disconnected graph with empty edge set 

where each node has no neighbors. Then Definition 4 holds if each agent simply chooses 

his single-player optimal control solution 
* *( )i i iJ J u , since, for the disconnected graph 

case one has 

 ( ) ( , ) ( , ' ),i i i i G i i i G iJ u J u u J u u i     (20) 

for any choices of the two sets , 'G i G iu u   of the policies of all the other nodes. That is, the 

value function of each node does not depend on the policies of any other nodes. 

Note, however, that Definition 3 also holds, that is, the nodes are in a global Nash 

equilibrium. Pathological cases such as this counterexample cannot occur in the standard 

games with centralized dynamics (18), particularly because stabilizability conditions are 

usually assumed. 

3.3 Interactive Nash equilibrium 

The counterexample in the previous section shows that in pathological cases when the 

graph is disconnected, agents can be in Nash equilibrium, yet have no influence on each 

others’ games. In such situations, the definition of coalition-proof Nash equilibrium 

(Shinohara, 2010) may also hold, that is, no set of agents has an incentive to break away 

from the Nash equilibrium and seek a new Nash solution among themselves.  

To rule out such undesirable situations and guarantee that all agents in a graph are involved 

in the same game, we make the following stronger definition of global Nash equilibrium. 

Definition 5. (Interactive Global Nash equilibrium) An N-tuple of policies  * * *
1 2, ,...,u u u  is 

said to constitute an interactive global Nash equilibrium solution for an N player game if, 

for all i N , the Nash condition (17) holds and in addition there exists a policy 'ku  such 

that  

 
* * *( , ) ( ' , )i k G k i k G kJ u u J u u   (21) 

for all ,i k N . That is, at equilibrium there exists a policy of every player k that influences 

the performance of all other players i. 

If the systems are in Interactive Nash equilibrium, the graphical game is well-defined in the 

sense that all players are in a single Nash equilibrium with each player affecting the 

decisions of all other players. Condition (21) means that the reaction curve (Basar, and 

Olsder, 1999) of any player i is not constant with respect to all variations in the policy of any 

other player k.  
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The next results give conditions under which the local best responses in Definition 4 imply 
the interactive global Nash of Definition 5.  

Consider the systems (8) in closed-loop with admissible feedbacks (12), (16) denoted by 

k k k ku K p v   for a single node k and ,j j ju K p j k   . Then 

 ( ) ,
i

i i i i i i i ij j j j ik k k
j N

A d g B K p e B K p e B v k i 


       (22) 

The global closed-loop dynamics are 

 
( ) (( ) ) ( ) (( ) )

0( ) ( )

N n i i n k
k kT

ii N

I A L G I diag B K L G I B
v A Bv

p pp diag Q I A

              
                       



  (23) 

with ( )k iB diag B and 0 0
TT

k kv v      has all block entries zero with kv  in block 

k. Consider node i and let 0M   be the first integer such that [( ) ] 0M
ikL G  , where [.]ik  

denotes the element (i,k) of a matrix. That is, M is the length of the shortest directed path 

from k to i. Denote the nodes along this path by 0 1 1, , , ,M Mk k k k k i  . Denote element 

(i,k) of L G  by ik . Then the n m  block element in block row i and block column k of 

matrix 2( 1)MA B  is equal to 

   
1 1 1 1 1 2 1 1 1 1 1

1 1 1

2( 1)
, , ,

, ,
M M M M M M M

M M

ikM
i k k k k k k k k k k k k k k

k k k

A B B K Q B B K Q B B B
      

 

      


    (24) 

where 
1

1 ,
k kM

M

m m
k kB R 



  and  ik denotes the position of the block element in the block 

matrix. 

Assumption 1. 

a. 1

1 ,
k kM

M

m m
k kB R 



  has rank 1Mkm  . 

All shortest paths to node i from node k pass through a single neighbor 1Mk   of i. 

An example case where Assumption 1a holds is when there is a single shortest path from k 

to i, ,im m i  , ( ) ,irank B m i  . 

Lemma 2. Let ( , )jA B  be reachable for all j N  and let Assumption 1 hold. Then the i-th 

closed-loop system (22) is reachable from input kv  if and only if there exists a directed path 

from node k to node i. 

Proof:  

Sufficiency. If k i  the result is obvious. Otherwise, the reachability matrix from node k to 

node i has the n m  block element in block row i and block column k given as 
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1 1 1

1 1 1

1

1

1

2( 1) 2( 1) 1 2( 1) 2 2

,

,

,

* *

0 *

0

0 0

M M M

M M M

M

M

M

ikM M M
k k k

k k k

k k

k k

k k

A B A B A B B AB A B

B

B

B

  

  







    
 

        
 
 
  
 
 
 

   


 

 

where * denotes nonzero entries. Under the assumptions, the matrix on the right has full 

row rank and the matrix on the left is written as 
1 1 1

2

M M Mk k kB AB A B
  

 
  . 

However, 
1

( , )
MkA B


 is reachable. 

Necessity. If there is no path from node k to node i, then the control input of node k cannot 
influence the state or value of node i.  

■ 

Theorem 1. Let ( , )iA B  be reachable for all i N . Let every node i be in best response to all 

his neighbors ij N . Let Assumption 1 hold. Then all nodes in the graph are in interactive 

global Nash equilibrium if and only if the graph is strongly connected. 

Proof: 

Let every node i be in best response to all his neighbors ij N . Then 

*( , ) ( , ),i i i i i iJ u u J u u i   . Hence * ,j j j iu u u u    and * * *( , ) ( , ),i i i i i iJ u u J u u i   . However, 

according to (9) * * * *( , , ) ( , , ), { }i i i k i i i k iJ u u u J u u u k i N      so that * * *( , ) ( , ),i i G i i i G iJ u u J u u i    

and the nodes are in Nash equilibrium.  

Necessity. If the graph is not strongly connected, then there exist nodes k and i such that 
there is no path from node k to node i. Then, the control input of node k cannot influence the 
state or the value of node i. Therefore, the Nash equilibrium is not interactive. 

Sufficiency. Let ( , )iA B  be reachable for all i N . Then if there is a path from node k to node 

i, the state i  is reachable from ku , and from (9) input ku  can change the value iJ . Strong 

connectivity means there is a path from every node k to every node i and condition (21) 
holds for all  ,i k N .  

■ 

The reachability condition is sufficient but not necessary for Interactive Nash equilibrium. 

According to the results just established, the following assumptions are made. 

Assumptions 2.  

a. ( , )iA B  is reachable for all i N .  

b. The graph is strongly connected and at least one pinning gain ig  is nonzero. Then 

 L G  is nonsingular. 
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3.4 Stability and solution of graphical games 

Substituting control policies (16) into (14) yields the coupled cooperative game Hamilton-

Jacobi (HJ) equations 

 2 1 2 1 11 1 1
2 2 2

( ) ( ) 0,
i

TT T
j jc T T Ti i i

i i ii i i i i ii i j j j jj ij jj j
i i i j jj N

V VV V V
A Q d g B R B d g B R R R B i N 

    
  



   
      

      (25) 

where the closed-loop matrix is 

 2 1( )c T i
i i i i i ii i

i

V
A A d g B R B


 

  


1( ) ,
i

jT
ij j j j jj j

jj N

V
e d g B R B i N







  

  (26) 

For a given iV , define * ( )i i iu u V  as (16) given in terms of  iV . Then HJ equations (25) can 

be written as 

 
* *( , , , ) 0i

i i i i
i

V
H u u

 





 (27) 

There is one coupled HJ equation corresponding to each node, so solution of this N-player 

game problem is blocked by requiring a solution to N coupled partial differential equations. 

In the next sections we show how to solve this N-player cooperative game online in a 

distributed fashion at each node, requiring only measurements from neighbor nodes, by 

using techniques from reinforcement learning.  

It is now shown that the coupled HJ equations (25) can be written as coupled Riccati 

equations. For the global state   given in (4) we can write the dynamics as 

  ( ) ( ) ( )N n iI A L G I diag B u       (28) 

where u is the control given by 

  1( ) ( )T
ii i nu diag R B D G I p     (29) 

where (.)diag  denotes diagonal matrix of appropriate dimensions. Furthermore the global 

costate dynamics are 

 ( ) ( )T
N ii

H
p I A p diag Q 




    


  (30)  

This is a set of coupled dynamic equations reminiscent of standard multi-player games 

(Basar, and Olsder, 1999) or single agent optimal control (Lewis, and Syrmos, 1995). 

Therefore the solution can be written without any loss of generality as  

 p P  (31) 
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for some matrix 0P  nNxnN . 

Lemma 3. HJ equations (25) are equivalent to the coupled Riccati equations 

 1 1
2 2

0T T T T T T T
i i i iP A P B P Q P R P            (32) 

or equivalently, in closed-loop form, 

 ( ) 0T T T
ic ic i iP A A P Q P R P     (33) 

where P is defined by (31), and 

 

0

0

0

i iiA
A

 
 
   
 
  

,
 

1

0

(( ) )

0

T
ii iji i i i ii i

i i n ij n

B diag d g B R B
d g I a I



 
 
 

          
 
 

ic i iA A B P   

 

1

1 1

0

0
, (( ) ) (( ) )

0

i

ij T
i i i i i ii i i ii iii

ii

ii

iN

R

R
Q R diag d g B R diag d g R B

Q

R

R

 

 
                      
  




 

Proof: 

Take (14) and write it with respect to the global state and costate as 

 

1

1
0

0

0

T

i ii

N

N

V

H
A

V







 
      
       
   
     
  




 

 
 

1

1 11
0 0 0

0

0 0 0

T

ii ij

i ii i n ij n

N N N

N

V

B u

B ud g I a I

V B u





 
                                                    
  


    

  



 (34) 
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 

11 1

1 1
2 2

0

0
0

0

T
i

ijT
ii

i iiiii

N NiN

Ru u

R

u uRQ

u uR

 

      
      
              
      
        

 
 

By definition of the costate one has 

 1

1

... ...

T

N

N

VV
p P

 
 

    
 (35) 

■ 

From the control policies (16), (34) becomes (32). 

It is now shown that if solutions can be found for the coupled design equations (25), they 

provide the solution to the graphical game problem. 

Theorem 2. Stability and Solution for Cooperative Nash Equilibrium.  

Let Assumptions 1 and 2a hold. Let 10 ,iV C i N   be smooth solutions to HJ equations 

(25) and control policies *
iu , i N  be given by (16) in terms of these solutions iV . Then 

a. Systems (8) are asymptotically stable so all agents synchronize. 

 * * *
1 2, ,...,u u u  are in global Nash equilibrium and the corresponding game values are 

 *( (0)) ,i i iJ V i N    (36) 

Proof: 

If 0iV   satisfies (25) then it also satisfies (14). Take the time derivative to obtain  

 1
2

( )
i i

T T
T T Ti i

i i i i i i i ij j j i ii i i ii i j ij j
i i j N j N

V V
V A d g B u e B u Q u R u u R u   

   

    
           
        

    (37) 

which is negative definite since 0iiQ  . Therefore iV  is a Lyapunov function for i  and 

systems (8) are asymptotically stable. 

According to part a, ( ) 0i t   for the selected control policies. For any smooth functions 

( ),i iV i N  , such that (0) 0iV  , setting ( ( )) 0i iV     one can write (9) as  

1
2

0

0

( (0), , ) ( ) ( (0))

( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j i i

j N

T

i
i i i i i ij j j

j Ni

J u u Q u R u u R u dt V

V
A d g B u e B u dt

   













   


   






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Now let iV  satisfy (25) and * *,i iu u  be the optimal controls given by (16). By completing the 

squares one has 

* * * *1 1
2 2

0

* * *

( (0), , ) ( (0)) ( ( ) ( ) ( ) ( )

( ) ( ))

i

i i

T T
i i i i i i j j ij j j i i ii i i

j N

T
Ti

ij j j j j ij j j
i j N j N

J u u V u u R u u u u R u u

V
e B u u u R u u dt

 








 

      


   




 
 

At the equilibrium point *
i iu u and *

j ju u so  

* * *( (0), , ) ( (0))i i i i i iJ u u V    

Define 

* * *1
2

0

( , ) ( (0)) ( ) ( )T
i i i i i i i ii i iJ u u V u u R u u dt



      

and * ( (0))i i iJ V  . Then clearly *
iJ and *( , )i i iJ u u satisfy (19). Since this is true for all i, Nash 

condition (17) is satisfied.   

■ 

The next result shows when the systems are in Interactive Nash equilibrium. This means 
that the graphical game is well defined in the sense that all players are in a single Nash 
equilibrium with each player affecting the decisions of all other players. 

Corollary 1. Let the hypotheses of Theorem 2 hold. Let Assumptions 1 and 2 hold so that the 

graph is strongly connected. Then  * * *
1 2, ,...,u u u  are in interactive Nash equilibrium and all 

agents synchronize. 

Proof:  

From Theorems 1 and 2.  

■ 

3.5 Global and local performance objectives: Cooperation and competition 

The overall objective of all the nodes is to ensure synchronization of all the states ( )ix t  to 

0( )x t . The multi player game formulation allows for considerable freedom of each agent 

while achieving this objective. Each agent has a performance objective that can embody 
team objectives as well as individual node objectives.  

The performance objective of each node can be written as 

1 1 ( )
i i

i i

conflict
i j i j team iN N

j N j N

J J J J J J
 

       
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where teamJ  is the overall (‘center of gravity’) performance objective of the networked team 

and conflict
iJ  is the conflict of interest or competitive objective. teamJ  measures how much the 

players are vested in common goals, and conflict
iJ  expresses to what extent their objectives 

differ. The objective functions can be chosen by the individual players, or they may be 
assigned to yield some desired team behavior.  

4. Policy iteration algorithms for cooperative multi-player games 

Reinforcement learning (RL) techniques have been used to solve the single-player optimal 

control problem online using adaptive learning techniques to determine the optimal value 

function. Especially effective are the approximate dynamic programming (ADP) methods 

(Werbos, 1974; Werbos, 1992). RL techniques have also been applied for multiplayer games 

with centralized dynamics (18). See for example (Busoniu, Babuska, and De Schutter, 2008; 

Vrancx, Verbeeck, and Nowe, 2008). Most applications of RL for solving optimal control 

problems or games online have been to finite-state systems or discrete-time dynamical 

systems. In this section is given a policy iteration algorithm for solving continuous-time 

differential games on graphs. The structure of this algorithm is used in the next section to 

provide online adaptive solutions for graphical games. 

4.1 Best response 

Theorem 2 and Corollary 1 reveal that, under assumptions 1 and 2, the systems are in 

interactive Nash equilibrium if, for all i N  node i selects his best response policy to his 

neighbors policies and the graph is strongly connected. Define the best response HJ 

equation as the Bellman equation (14) with control *
i iu u  given by (16) and arbitrary 

policies { : }i j iu u j N    

 
* 2 11 1 1

2 2 2
0 ( , , , ) ( )

i

T T
c T T Ti i i i

i i i i i i ii i i i i ii i j ij j
i i i i j N

V V V V
H u u A Q d g B R B u R u  

   





   
     

       (38) 

where the closed-loop matrix is 

 2 1( )c T i
i i i i i ii i

i

V
A A d g B R B


 

  


i

ij j j
j N

e B u


  (39) 

Theorem 3. Solution for Best Response Policy  

Given fixed neighbor policies { : }i j iu u j N   , assume there is an admissible policy iu . Let 

10iV C  be a smooth solution to the best response HJ equation (38) and let control policy 

*
iu  be given by (16) in terms of this solution iV . Then 

a. Systems (8) are asymptotically stable so that all agents synchronize. 

b. *
iu  is the best response to the fixed policies iu  of its neighbors. 
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Proof: 

a. 0iV   satisfies (38). Proof follows Theorem 2, part a.  

b. According to part a, ( ) 0i t   for the selected control policies. For any smooth functions 

( ),i iV i N  , such that (0) 0iV  , setting ( ( )) 0i iV     one can write (9) as  

1
2

0

0

( (0), , ) ( ) ( (0))

( ( ) )

i

i

T T T
i i i i i ii i i ii i j ij j i i

j N

T

i
i i i i i ij j j

j Ni

J u u Q u R u u R u dt V

V
A d g B u e B u dt

   













   


   






 

Now let iV  satisfy (38), *
iu  be the optimal controls given by (16), and iu  be arbitrary 

policies. By completing the squares one has 

* *1
2

0

( (0), , ) ( (0)) ( ) ( )T
i i i i i i i i ii i iJ u u V u u R u u dt 



      

The agents are in best response to fixed policies iu when *
i iu u  so  

*( (0), , ) ( (0))i i i i i iJ u u V    

Then clearly ( (0), , )i i i iJ u u  and *( (0), , )i i i iJ u u  satisfy (19). 

■ 

4.2 Policy iteration solution for graphical games 

The following algorithm for the N-player distributed games is motivated by the structure of 
policy iteration algorithms in reinforcement learning (Bertsekas, and Tsitsiklis, 1996; Sutton, 
and Barto, 1998) which rely on repeated policy evaluation (e.g. solution of (14)) and policy 
improvement (solution of (16)). These two steps are repeated until the policy improvement 

step no longer changes the present policy. If the algorithm converges for every i , then it 

converges to the solution to HJ equations (25), and hence provides the distributed Nash 
equilibrium. One must note that the costs can be evaluated only in the case of admissible 
control policies, admissibility being a condition for the control policy which initializes the 
algorithm. 

Algorithm 1. Policy Iteration (PI) Solution for N-player distributed games. 

Step 0: Start with admissible initial policies 0 ,iu i .  

Step 1: (Policy Evaluation) Solve for k
iV  using (14) 

 ( , , , ) 0
k

k ki
i i i i

i

V
H u u

 





, 1, ,i N    (40) 



 
Online Adaptive Learning Solution of Multi-Agent Differential Graphical Games 

 

45 

Step 2: (Policy Improvement) Update the N-tuple of control policies using 

1 arg min ( , , , ), 1, ,
i

k
k ki
i i i i i

u i

V
u H u u i N







  


  

which explicitly is  

 

1 1( )
k

k T i
i i i ii i

i

V
u d g R B


  
  


, 1, ,i N   . (41) 

Go to step 1. 

On convergence- End 

■ 

The following two theorems prove convergence of the policy iteration algorithm for 

distributed games for two different cases. The two cases considered are the following, i) only 

agent i updates its policy and ii) all the agents update their policies. 

Theorem 4. Convergence of Policy Iteration algorithm when only ith agent updates its policy 

and all players iu in its neighborhood do not change. Given fixed neighbors policies iu , 

assume there exists an admissible policy iu . Assume that agent i performs Algorithm 1 and 

the its neighbors do not update their control policies. Then the algorithm converges to the 

best response iu  to policies iu  of the neighbors and to the solution iV  to the best response 

HJ equation (38). 

Proof: 

It is clear that  

 
1( , , ) min ( , , , ) ( , , , )

i

k k k
o k k k k ki i i
i i i i i i i i i i i

u
i i i

V V V
H u H u u H u u  

  


  
  

 
  

 (42) 

Let ( , , , ) 0
k

k ki
i i i i

i

V
H u u

 





from (40) then according to (42) it is clear that  

  ( , , ) 0
k

o ki
i i i

i

V
H u

 





 (43) 

Using the next control policy 1k
iu   and the current policies k

iu  one has the orbital 

derivative (Leake, Wen Liu, 1967) 

 1 1( , , , ) ( , , )
k

k k k k ki
i i i i i i i i i

i

V
V H u u L u u 


 

 


 



 

From (42) and (43)  one has 
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 0 1 1( , , ) ( , , ) ( , , )
k

k k k k k ki
i i i i i i i i i i i i

i

V
V H u L u u L u u  


 

  


   


  (44) 

Because only agent i update its control it is true that 1k k
i iu u

   and 
1

1( , , , ) 0
k

k ki
i i i i

i

V
H u u












.  

But since 1 1 1( , , )k k k
i i i i iV L u u  

  , from (44) one has  

 0 1 1 1( , , ) ( , , ) ( , , )
k

k k k k k k ki
i i i i i i i i i i i i i

i

V
V H u L u u L u u V  


  

  


    


   (45) 

So that 1k k
i iV V   and by integration it follows that 

 1k k
i iV V   (46) 

Since * k
i iV V , the algorithm converges, to *

iV , to the best response HJ equation (38).   

■ 

The next result concerns the case where all nodes update their policies at each step of the 

algorithm. Define the relative control weighting as 1( )ij jj ijR R   , where 1( )jj ijR R  is the 

maximum singular value of 1
jj ijR R . 

Theorem 5. Convergence of Policy Iteration algorithm when all agents update their 
policies. Assume all nodes i update their policies at each iteration of PI. Then for small 

enough edge weights ije  and ij , iu  converges to the global Nash equilibrium and for all 

i , and the values converge to the optimal game values *k
i iV V . 

Proof: 

It is clear that 

1 1
1 1 0 1 11

2

1
1 1

( , , , ) ( , , ) ( ) ( )

( ) ( )

i

i i

k k
k k k k k T k ki i

i i i i i i i j j ij j j
i i j N

k T
kT k k k ki

j ij j j ij j j j
ij N j N

V V
H u u H u u u R u u

V
u R u u e B u u

 
 



 
   

 



 

 

 
   

 


   





 
 

and so 

1 1 1 1 1 11
2

1
1 1

( , , ) ( , , ) ( ) ( )

( ) ( )

i

i i

k k k k k k k T k k
i i i i i i i i i j j ij j j

j N

k T
k k kT k ki

ij j j j j ij j j
i j N j N

V L u u L u u u u R u u

V
e B u u u R u u

 



     
 




 

 

      


   




 


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Therefore, 

1 1 11
2

1
1 1

( ) ( )

( ) ( )

i

i i

k k k k T k k
i i j j ij j j

j N

k T
k k kT k ki

ij j j j j ij j j
i j N j N

V V u u R u u

V
e B u u u R u u



  




 

 

   


   




 

 

 

A sufficient condition for 1k k
i iV V    is  

1 1 11
2

( ) ( )( ) 0T k T k T
j ij j ij i j j j j j j jj ij ju R u e p B u d g p B R R u           

1 11
2

( ) ( )k k
ij j ij i j j j ij j jR u e p B d g p B        where 1( )k k

j j ju u u   , ip the costate 

and ( )ijR is the minimum singular value of ijR . 

This holds if 0, 0ij ije   . By continuity, it holds for small values of ,ij ije  . 

■ 

This proof indicates that for the PI algorithm to converge, the neighbors’ controls should not 
unduly influence the i-th node dynamics (8), and the j-th node should weight its own 

control ju  in its performance index jJ  relatively more than node i weights ju  in iJ . These 

requirements are consistent with selecting the weighting matrices to obtain proper 
performance in the simulation examples. An alternative condition for convergence in 

Theorem 5 is that the norm jB  should be small. This is similar to the case of weakly 

coupled dynamics in multi-player games in (Basar, and Olsder, 1999). 

5. Online solution of multi-agent cooperative games using neural networks 

In this section an online algorithm for solving cooperative Hamilton-Jacobi equations (25) 
based on (Vamvoudakis, Lewis 2011) is presented. This algorithm uses the structure in the 
PI Algorithm 1 to develop an actor/critic adaptive control architecture for approximate 
online solution of (25). Approximate solutions of (40), (41) are obtained using value function 
approximation (VFA). The algorithm uses two approximator structures at each node, which 
are taken here as neural networks (NN) (Abu-Khalaf, and Lewis, 2005; Bertsekas, and 
Tsitsiklis, 1996; Vamvoudakis, Lewis 2010; Werbos, 1974; Werbos, 1992). One critic NN is 
used at each node for value function approximation, and one actor NN at each node to 
approximate the control policy (41). The critic NN seeks to solve Bellman equation (40). We 
give tuning laws for the actor NN and the critic NN such that equations (40) and (41) are 
solved simultaneously online for each node. Then, the solutions to the coupled HJ equations 
(25) are determined. Though these coupled HJ equations are difficult to solve, and may not 
even have analytic solutions, we show how to tune the NN so that the approximate 
solutions are learned online. The next assumption is made. 

Assumption 2. For each admissible control policy the nonlinear Bellman equations (14), (40) 

have smooth solutions 0iV  . 
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In fact, only local smooth solutions are needed. To solve the Bellman equations (40), 
approximation is required of both the value functions iV  and their gradients /i iV   . This 

requires approximation in Sobolev space (Abu-Khalaf, and Lewis, 2005).  

5.1 Critic neural network 

According to the Weierstrass higher-order approximation Theorem (Abou-Khalaf, and 
Lewis, 2005) there are NN weights iW  such that the smooth value functions iV are 

approximated using a critic NN as  

 ( ) ( )T
i i i i i iV W z     (47) 

where ( )iz t  is an information vector constructed at node i using locally available 

measurements, e.g. ( ), { ( ) : }i j it t j N   . Vectors ( ) h
i iz   are the critic NN activation 

function vectors, with h the number of neurons in the critic NN hidden layer. According to 
the Weierstrass Theorem, the NN approximation error i  converges to zero uniformly as 

h  . Assuming current weight estimates ˆ
iW , the outputs of the critic NN are given by 

 ˆˆ T
i i iV W   (48) 

Then, the Bellman equation (40) can be approximated at each step k as  

 ˆ ˆ( , , , ) ( ( ) )
i

i i

T T T T i
i i i i i i ii i i ii i j ij j i i i i i i ij j j H

j N j Ni

H W u u Q u R u u R u W A d g Bu e B u e
   


 


       


   (49) 

It is desired to select ˆ
iW  to minimize the square residual error 

 1
1 2 i i

T
H HE e e  (50) 

Then ˆ
i iW W  which solves (49) in a least-squares sense and 

iHe  becomes small. Theorem 

6 gives a tuning law for the critic weights that achieves this. 

5.2 Action neural network and online learning 

Define the control policy in the form of an action neural network which computes the 
control input (41) in the structured form 

 11
2

ˆˆ ˆ ( )
T

T i
i i N i i ii i i N

i

u u d g R B W




 


   


 (51) 

where ˆ
i NW   denotes the current estimated values of the ideal actor NN weights iW . The 

notation ˆ
i Nu   is used to keep indices straight in the proof. Define the critic and actor NN 

estimation errors as ˆ
i i iW W W  and ˆ

i N i i NW W W   . 

The next results show how to tune the critic NN and actor NN in real time at each node so 
that equations (40) and (41) are simultaneously solved, while closed-loop system stability is 
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also guaranteed. Simultaneous solution of (40) and (41) guarantees that the coupled HJ 
equations (25) are solved for each node i. System (8) is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set nS   so that for all (0)i S   there exists a 

bound B and a time ( , (0))iT B   such that ( )i t B   for all 0 .t t T   

Select the tuning law for the ith critic NN as 

 

1 1
2 4

2 11
4

ˆ ˆ ˆ ˆ[
ˆ (1 )

ˆ ˆ( ) ]
i

T Ti N
i i i i N i i ii i i N i i N

i N i Ni

T
j jT T T

j j j N j jj ij jj j j N
j N j j

E
W a a W Q W D W

W

d g W B R R R B W

   
 

 

 


  

 

 
 




     



 
 

 




 (52) 

where ˆ ˆ( ( ) )
i

i
i N i i i i i N ij j j N

j Ni

A d g B u e B u
 
  




   


 , and the tuning law for the ith actor 

NN as 

1ˆ ˆ ˆ ˆ ˆ{( )
4

T
T i N

i N i N i i N i i N i i i N i
si

W a S W F W D W W
m

 
       

 

 2 11 ˆ ˆ( ) }
4

ii

T T
j jT T i N

j j j jj ij jj j j i N
j j sj N

d g B R R R B W W
m

  
 

  




 
 

   (53) 

where  

1( )
T

Ti i
i i ii i

i i

D x B R B
 
 

 

 

, ( 1)
i

T
s i N i Nm     , /( 1)T

i N i N i N i N        , and 

0, 0i i Na a    and 0, 0,i iF G i N    are tuning parameters. 

Theorem 6. Online Cooperative Games.  

Let the error dynamics be given by (8), and consider the cooperative game formulation in 
(15). Let the critic NN at each node be given by (48) and the control input be given for each 
node by actor NN (51). Let the tuning law for the ith critic NN be provided by (52) and the 

tuning law for the ith actor NN be provided by (53). Assume /( 1)T
i N i N i N i N         is 

persistently exciting. Then the closed-loop system states ( )i t , the critic NN errors iW , and 

the actor NN errors i NW 
 are uniformly ultimately bounded. 

Proof: 

The proof is similar to (Vamvoudakis, 2011).  

■ 

Remark 1. Theorem 6 provides algorithms for tuning the actor/critic networks of the N 

agents at the same time to guarantee stability and make the system errors ( )i t  small and 
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the NN approximation errors bounded. Small errors guarantee synchronization of all the 
node trajectories. 

Remark 2. Persistence of excitation is needed for proper identification of the value functions 

by the critic NNs, and nonstandard tuning algorithms are required for the actor NNs to 

guarantee stability. It is important to notice that the actor NN tuning law of every agent 

needs information of the critic weights of all his neighbors, while the critic NN tuning law of 

every agent needs information of the actor weights of all his neighbors, 

Remark 3. NN usage suggests starting with random, nonzero control NN weights in (51) in 

order to converge to the coupled HJ equation solutions. However, extensive simulations 

show that convergence is more sensitive to the persistence of excitation in the control inputs 

than to the NN weight initialization. If the proper persistence of excitation is not selected, 

the control weights may not converge to the correct values. 

Remark 4. The issue of which inputs ( )iz t  to use for the critic and actor NNs needs to be 

addressed. According to the dynamics (8), the value functions (13), and the control inputs 

(16), the NN inputs at node i should consist of its own state, the states of its neighbors, and 

the costates of its neighbors. However, in view of (31) the costates are functions of the states. 

In view of the approximation capabilities of NN, it is found in simulations that it is suitable 

to take as the NN inputs at node i its own state and the states of its neighbors. 

The next result shows that the tuning laws given in Theorem 6 guarantee approximate 

solution to the coupled HJ equations (25) and convergence to the Nash equilibrium. 

Theorem 7. Convergence to Cooperative Nash Equilibrium. 

Suppose the hypotheses of Theorem 6 hold. Then: 

a. ˆ ˆ ˆ( , , , ),i i i i iH W u u i N    are uniformly ultimately bounded, where 

11
2

ˆˆ ( )
T

T i
i i i ii i i

i

u d g R B W



 
  


. That is, ˆ

iW converge to the approximate cooperative 

coupled HJ-solution. 

b. ˆ
i Nu   converge to the approximate cooperative Nash equilibrium (Definition 2) for 

every i . 

Proof: 

The proof is similar to (Vamvoudakis, 2011) but is done only with respect to the neighbors 

(local information) of each agent and not with respect to all agents. 

Consider the weights ˆ ˆ,i i NW W  to be UUB as proved in Theorem 6.  

a. The approximate coupled HJ equations are ˆ ˆ ˆ( , , , ),i i i i iH W u u i N    . 

2 11
4

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( , , , ) ( , ) ( )
T

T T T Ti i i
i i i i i i i i i i ii i i i i i i i ii i i

i ii

H W u u H W W Q W A d g W B R B W
      

 


 
  

    
 
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2 1 1 11 1
4 2

ˆ ˆ ˆ ˆ( )
i

i i

T T
j j jT T T Ti

j j j j jj ij jj j j i ij j jj j j HJ
j j jj N j Ni

d g W B R R R B W W e B R B W
   
  

  

 

  
   

  
   

where ,
iHJ i  are the residual errors due to approximation.  

After adding zero we have 

ˆ ˆ( , ) T i
i i i i i i

i

H W W W A
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

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
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4
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 
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   
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2 1 1 11
2

1 11 1
2 2
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ˆ
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i i

T T
j j jT T T Ti
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 
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11

2
ˆ

i

T
jT Ti

i ij j jj j j
jj Ni

W e B R B W











  (54) 

But  

 ˆ ,i i iW W W i    .  (55) 

After taking norms in (55) and letting maxi iW W one has   

max
ˆ

i i i i i i iW W W W W W W          

Now (54) with sup
iHJ i  becomes 

 

2
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 
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2 2
2 2 2 22 1 1 2 1 11 1

max4 2
( ) ( )

i i

j j
j j j j jj ij jj j j j j jj ij jj

j jj N j N
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 
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 

 
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    

   2 21 11
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i i
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i i ij j jj j j i ij j jj j
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W W e B R W W W e B R W
  
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 
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 2 11
max max2
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i ij j jj j j

jj Ni

W e B R W W








 


   

   2 11
max max 22

i

ji
i i ij j jj j

jj Ni

W W e B R W
 







  


  (56) 

All the signals on the right hand side of (56) are UUB and convergence to the approximate 

coupled HJ solution is obtained for every agent.  

b. According to Theorem 6, ˆ ,i N iW W i   are UUB. Then it is obvious that ˆ ,i Nu i  give 

the approximate cooperative Nash equilibrium (Definition 2). 

■ 

6. Simulation results 

This section shows the effectiveness of the online approach described in Theorem 6 for two 

different cases. 

Consider the three-node strongly connected digraph structure shown in Figure 1 with a 
leader node connected to node 3. The edge weights and the pinning gains are taken equal to 
1 so that 1 2 31, 2d d d   . 

 

Fig. 1. Three agent communication graph showing the interactions. 

Select the weight matrices in (9) as 
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11 22 33

1 0

0 1
Q Q Q

 
    

 
, 11 12 134, 1, 1,R R R   

31 22 23 33 32 214, 9, 1, 9, 1, 1R R R R R R      
   

 

In the examples below, every node is a second-order system. Then, for every agent 

1 2

T

i i i      .  

According to the graph structure, the information vector at each node is 

 1 1 3

TT Tz      , 2 1 2

TT Tz      , 3 1 2 3

TT T Tz        

Since the value is quadratic, the critic NNs basis sets were selected as the quadratic vector in 

the agent’s components and its neighbors’ components. Thus the NN activation functions 

are 

2 2 2 2
1 1 3 11 11 12 12 31 31 32 32( ,0, ) 0 0 0

T
             

2 2 2 2
1 1 2 11 11 12 12 21 21 22 21( , ,0) 0 0 0

T
             

2 2 2 2 2 2
3 1 2 3 11 11 12 12 21 21 22 22 31 31 32 32( , , )

T
                    

6.1 Position and velocity regulated to zero 

For the graph structure shown, consider the node dynamics 

1 1 1 2 2 2 3 3 3

2 1 2 2 1 2 2 1 2
, ,

4 1 1 4 1 3 4 1 2
x x u x x u x x u

             
                                

  

 
and the command generator 0 0

2 1

4 1
x x

 
    

 . 

The graphical game is implemented as in Theorem 6. Persistence of excitation was ensured 
by adding a small exponentially decreasing probing noise to the control inputs. Figure 2 
shows the convergence of the critic parameters for every agent. Figure 3 shows the evolution 
of the states for the duration of the experiment.  

6.2 All the nodes synchronize to the curve behavior of the leader node 

For the graph structure shown above consider the following node dynamics 

1 1 1 2 2 2 3 3 3

0 1 2 0 1 2 0 1 2
, ,

1 0 1 1 0 3 1 0 2
x x u x x u x x u

           
                             

    

with target generator 0 0

0 1

1 0
x x

 
   

 . 
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Fig. 2. Convergence of the critic parameters. 

 

Fig. 3. Evolution of the system states and regulation. 
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Fig. 4. Convergence of the critic parameters. 

The command generator is marginally stable with poles at s j  , so it generates a 

sinusoidal reference trajectory. 

 

Fig. 5. Synchronization of all the agents to the leader node. 
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The graphical game is implemented as in Theorem 6. Persistence of excitation was ensured 
by adding a small exponential decreasing probing noise to the control inputs. Figure 4 
shows the critic parameters converging for every agent. Figure 5 shows the synchronization 
of all the agents to the leader’s behavior as given by the circular Lissajous plot.  

7. Conclusion 

This chapter brings together cooperative control, reinforcement learning, and game theory 
to solve multi-player differential games on communication graph topologies. It formulates 
graphical games for dynamic systems and provides policy iteration and online learning 
algorithms along with proof of convergence to the Nash equilibrium or best response. 
Simulation results show the effectiveness of the proposed algorithms. 
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